
groHMM Tutorial

July 25, 2025

Contents

1 Introduction . 1

2 Preparation . 2

3 groHMM Workflow . 2

3.1 Read GRO-seq Data Files . 2

3.2 Create a Wiggle File . 3

3.3 Transcript Calling . 3

3.4 Evaluation of Transcript Calling 5

3.5 HMM Tuning . 6

3.6 Working with non-mammalian Genomes. 8

3.7 Repairing Transcript Calling with Annotations 9

3.8 Differential Analysis with edgeR 9

3.9 Metagene Analysis . 11

4 Session Info . 12

1 Introduction
Global Nuclear Run On and Sequencing (GRO-seq) was developed for comprehensively map
transcriptional activity in cells [?, ?]. GRO-seq, which provides a genome wide ‘map’ of
the position and orientation of all transcriptionally active RNA polymerases, has become
increasingly widely used in recent years because it has numerous advantages compared to
alternative methods of transcriptome profiling, such as expression microarrays and RNA-
seq. Among these, GRO-seq provides information on instantaneous transactional responses
because it detects primary transcription, as opposed to mature, processed mRNA. In addition,
because it is independent of RNA polyadenylation, processing, and stability, GRO-seq provides
extensive information on the non-coding transcriptome, including primary miRNAs, lincRNAs,
enhancer RNAs, and potentially additional, yet undiscovered classes of transcription occurring
in cells [?, ?, ?]. Thus, GRO-seq data provides a complete and instantaneous picture of
transcription, and has extensive applications in deciphering the mechanisms of transcriptional
regulation.
We have recently developed several important analytical approaches which make use of GRO-
seq data to address new biological questions. Our pipleline has been packaged and docu-
mented, resulting in the groHMM package for Bioconductor. Among the more advanced

groHMM Tutorial

features, groHMM predicts the boundaries of transcriptional activity across the genome de
novo using a two-state hidden Markov model (HMM). Our model essentially divides the
genome into “transcribed” and “non-transcribed” regions in a strand specific manner [?].
We also use HMMs to identify the leading edge of Pol II at genes activated by a stimu-
lus in GRO-seq time course data. This approach allows the genome-wide interrogation of
transcription rates in cells [?].
In addition to these advanced features, groHMM provides wrapper functions for counting
raw reads [?], generating wiggle files for visualization [?], and creating metagene (averaging)
plots. groHMM takes over all aspects of analysis after reads have been aligned to a reference
genome with short-read alignment tools. Although groHMM is tailored towards GRO-seq
data, the same functions and analytical methodologies can, in principal, be applied to a wide
variety of other short read data sets since the package includes a number of easily usable
and extensible functions for general short read data analysis. This guide focuses on the most
common application of the package.

2 Preparation
The groHMM package is available in the Bioconductor and can be downloaded as follows:
> if (!requireNamespace("BiocManager", quietly=TRUE))

+ install.packages("BiocManager")

> BiocManager::install("groHMM")

>

The following packages are not required to use groHMM, but they are used to download
annotations and evaluate transcripts, and should be installed for this tutorial.
> BiocManager::install("GenomicFeatures")

> BiocManager::install("org.Hs.eg.db")

> BiocManager::install("edgeR")

> BiocManager::install("TxDb.Hsapiens.UCSC.hg19.knownGene")

3 groHMM Workflow

3.1 Read GRO-seq Data Files
In this tutorial we will use example data from Hah et al. [2011] (GEO accession GSE27463).
This experiment was designed to assess transcriptional changes following treatment of MCF-
7 cells with 17β estradiol (E2). The data include a time course of GRO-seq data following
treatment with E2 (i.e., 0, 10, 40 and 160 min.). Two biological replicates are available for
each time point. Bed files were obtained from GEO and lifted over to hg19 using the UCSC
liftOver tool. In order to make the package size more manageable, we have included data
from chromosome 7 only in 0 and 10 min. conditions. groHMM supports parallel processing
and the number of cores to use can be set using mc.cores option.
> library(groHMM)

> options(mc.cores=getCores(4))

2

groHMM Tutorial

groHMM uses the GRanges class from the GenomicRanges packages to represent a collection
of genomic features, allowing synergy with other useful packages in Bioconductor. Most of
the functions in the package take at least two arguments: ‘reads’ and ‘features’. Reads
represent the genomic coordinates of a set of mapped short reads. Features represent a set
of genomic coordinates of interest such as genes, exons, or transcripts.
The example data included in this package can be loaded into R using the following com-
mands.
> S0mR1 <- as(readGAlignments(system.file("extdata", "S0mR1.bam",

+ package="groHMM")), "GRanges")

> S0mR2 <- as(readGAlignments(system.file("extdata", "S0mR1.bam",

+ package="groHMM")), "GRanges") # Use R1 as R2

> S40mR1 <- as(readGAlignments(system.file("extdata", "S40mR1.bam",

+ package="groHMM")), "GRanges")

> S40mR2 <- as(readGAlignments(system.file("extdata", "S40mR1.bam",

+ package="groHMM")), "GRanges") # Use R1 as R2

3.2 Create a Wiggle File
Wiggle files are created for each strand after replicates are combined in order to visualize
GRO-seq data in the UCSC genome browser. Wiggle files can be also normalized by the
sequencing depth, i.e., average number of reads in the dataset. writeWiggle function is a
wrapper of export in rtracklayer for generation of wiggle/bigWig type of files.
> # Combine replicates

> S0m <- c(S0mR1, S0mR2)

> S40m <- c(S40mR1, S40mR2)

> writeWiggle(reads=S0m, file="S0m_Plus.wig", fileType="wig", strand="+",

+ reverse=FALSE)

> writeWiggle(reads=S0m, file="S0m_Minus.wig", fileType="wig", strand="-",

+ reverse=TRUE)

> # For BigWig file:

> # library(BSgenome.Hsapiens.UCSC.hg19)

> # si <- seqinfo(BSgenome.Hsapiens.UCSC.hg19)

> # writeWiggle(reads=S0m, file="S0m_Plus.wig", fileType="BigWig", strand="+",#

> # reverse=FALSE, seqinfo=si)

>

> # Normalized wiggle files

> expCounts <- mean(c(NROW(S0m), NROW(S40m)))

> writeWiggle(reads=S0m, file="S0m_Plus_Norm.wig", fileType="wig", strand="+",

+ normCounts=expCounts/NROW(S0m), reverse=FALSE)

The resulting wiggle files can be uploaded as ‘custom tracks’ in the UCSC genome browser,
or your visualization software of choice.

3.3 Transcript Calling
In groHMM, transcribed regions are detected de novo using a two-state hidden Markov model
(HMM). The model takes GRO-seq read counts as input across the genome and divides
the genome into “transcribed” and “non-transcribed” state as shown in Figure 1. First, a

3

groHMM Tutorial

(a) GRO-seq with called transcripts (b) 2-state HMM

Figure 1: HMM calling of GRO-seq data

single read set is generated by combining all samples for each time point. This combined
approach improves sensitivity for transcripts with low expression levels. Combined reads are
used to train the model parameters using the Baum-Welch Expectation Maximization (EM)
algorithm. Each strand is modeled separately dividing the genome into non-overlapping 50
bp windows classified as either state.
> Sall <- sort(c(S0m, S40m))

> # hmmResult <- detectTranscripts(Sall, LtProbB=-200, UTS=5,

> # threshold=1)

> # Load hmmResult from the saved previous run

> load(system.file("extdata", "Vignette.RData", package="groHMM"))

> txHMM <- hmmResult$transcripts

> head(txHMM)

GRanges object with 6 ranges and 2 metadata columns:

seqnames ranges strand | type ID

<Rle> <IRanges> <Rle> | <Rle> <character>

[1] chr7 199750-203899 + | tx chr7_199750+

[2] chr7 561050-568649 + | tx chr7_561050+

[3] chr7 767600-834149 + | tx chr7_767600+

[4] chr7 852400-941849 + | tx chr7_852400+

[5] chr7 1176600-1178799 + | tx chr7_1176600+

[6] chr7 1198200-1210799 + | tx chr7_1198200+

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The detectTranscripts function also uses two hold-out parameters. These parameters, spec-
ified by the arguments LtProbB and UTS, represents the log-transformed transition probability
of switching from transcribed state to non-transcribed state and variance of the emission
probability for reads in the non-transcribed state, respectively. Holdout parameters are used
to optimize the performance of HMM predictions on known genes.

4

groHMM Tutorial

3.4 Evaluation of Transcript Calling
Predicted transcripts are evaluated by comparison to known annotations, making the assump-
tion that GRO-seq transcripts should largely be in agreement with available annotations. Two
types of error may occur, as described below. The HMM parameters are evaluated by the sum
of the error rates. The procedure involves collecting a set of high-confidence reference tran-
scripts. An annotation dataset can be constructed by downloading from the UCSC database
or alternatively, pre-made TranscriptDb objects can be used if they are available in the Bio-
conductor. We will use the UCSC knownGene track and retrieve transcript annotations with
GenomicFeatures [?] package.
> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> kgdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

> library(GenomicFeatures)

> # For refseq annotations:

> # rgdb <- makeTxDbFromUCSC(genome="hg19", tablename="refGene")

> # saveDb(hg19RGdb, file="hg19RefGene.sqlite")

> # rgdb <- loadDb("hg19RefGene.sqlite")

> kgChr7 <- transcripts(kgdb, filter=list(tx_chrom = "chr7"),

+ columns=c("gene_id", "tx_id", "tx_name"))

> seqlevels(kgChr7) <- seqlevelsInUse(kgChr7)

Because annotations do not provide precise cell type-specific expression information, over-
lapping transcripts must be merged into a single set, in which each annotation represents
the 5′- and 3′-most boundaries of genes. Different isoforms of each gene are collapsed into
one using the ENTREZID. These consensus annotations are used for the evaluation of HMM
calling.
> # Collapse overlapping annotations

> kgConsensus <- makeConsensusAnnotations(kgChr7, keytype="gene_id",

+ mc.cores=getOption("mc.cores"))

> library(org.Hs.eg.db)

> map <- select(org.Hs.eg.db,

+ keys=unlist(mcols(kgConsensus)$gene_id),

+ columns=c("SYMBOL"), keytype=c("ENTREZID"))

> mcols(kgConsensus)$symbol <- map$SYMBOL

> mcols(kgConsensus)$type <- "gene"

There are two types of error that can be evaluated when comparing predicted transcripts
with annotations. (1) The number of transcripts overlapping two or more annotations, (i.e.,
these transcripts ‘merged annotations together’) and (2) the number of annotations that
overlap two or more transcripts on the same strand (i.e., we say that these transcript calls
‘dissociated a single annotation’) must be determined. The optimal tuning parameters can
be found by minimizing the sum of the two errors. This approach allows identification of the
model that best fits the existing annotations and should more precisely predict transcripts in
non-annotated parts of the genome.
> e <- evaluateHMMInAnnotations(txHMM, kgConsensus)

> e$eval

merged dissociated total errorRate txSize

1 64 47 111 0.06098901 830

5

groHMM Tutorial

3.5 HMM Tuning
Here we demonstrate how the optimal value for each tuning parameters can be obtained by
running HMM multiple times over a certain range of the parameters. Among the nine test
cases, both the sum of errors and error rate per called transcript show minimal at case #7,
as shown below. The variation of errors should be greater if whole chromosomes are used.
Also, a larger set of the parameters might be used in practice. This tunning step takes long
time, so you may skip it for quick review of the package.
> tune <- data.frame(LtProbB=c(rep(-100,3), rep(-200,3), rep(-300,3)),

+ UTS=rep(c(5,10,15), 3))

> Fp <- windowAnalysis(Sall, strand="+", windowSize=50)

> Fm <- windowAnalysis(Sall, strand="-", windowSize=50)

> # evals <- mclapply(seq_len(9), function(x) {

> # hmm <- detectTranscripts(Fp=Fp, Fm=Fm, LtProbB=tune$LtProbB[x],

> # UTS=tune$UTS[x])

> # e <- evaluateHMMInAnnotations(hmm$transcripts, kgConsensus)

> # e$eval

> # }, mc.cores=getOption("mc.cores"), mc.silent=TRUE)

> tune <- cbind(tune, do.call(rbind, evals)) # evals from the previous run

> tune

LtProbB UTS merged dissociated total errorRate txSize

1 -100 5 50 135 185 0.07769845 1391

2 -100 10 61 177 238 0.07775237 2071

3 -100 15 68 201 269 0.07441217 2625

4 -200 5 64 47 111 0.06098901 830

5 -200 10 74 65 139 0.06547339 1133

6 -200 15 80 76 156 0.06643952 1358

7 -300 5 69 22 91 0.05501814 664

8 -300 10 82 30 112 0.06005362 875

9 -300 15 90 41 131 0.06498016 1026

> which.min(tune$total)

[1] 7

> which.min(tune$errorRate)

[1] 7

To robustly compare transcripts with known genes, densities representing the frequency of
transcripts can be calculated relative to their mapped gene annotations. Conceptually, the
plot is divided into three distinct regions as shown in Figure 2, including upstream of known
gene annotations, inside genes, and downstream of the annotated polyadenylation site.
Metrics to evaluate the degree of overlap with gene annotations focus on the region upstream
of gene annotations, which provides a measure of specificity, and the region inside of genes,
which provides a measure of sensitivity. The region downstream of the polyadenylation site
is known to contain residual transcription [?] and consequently is not used to define quality.
The metrics are defined relative to an ‘ideal’ transcript caller, which takes the form of a step
function (i.e., red line in the plot). Our quality metrics represent the following (see the plot
below for a graphical representation):

6

groHMM Tutorial

1. true positive; gene body (TP) = (gene annotation area under the curve) /(max area
for matched transcripts),

2. false negative; gene body (FN) = 1 - TP,
3. 5′ false positive; upstream region (5′FP) = (5′ overhang area under the curve) /(max

area for matched transcripts),
4. 5′ true negative; upstream region (5′TN) = TP - 5′FP.

We constrained 5′FP and 5′TN so that their sum to be TP in order to use the upstream region
only if positive number of transcipts are called in the gene body for the calucation of the
quality metrics. Note that these quality metrics are conceptually very similar to true positive,
true negative, false positive and false negative, respectively. During the comparison, only
expressed annotations are used and genes either too small or too large in size are excluded.
And also size of transcripts and annotations are scaled to a smaller unit, i.e., 1K for a visual
representation. Here best overlapped annotations or transcripts are used for either ‘merged
annotations’ or ‘dissociated a single annotation’ type of error. Final quality metrics are
represented as TUA (Transcription Unit Accuracy).
> getExpressedAnnotations <- function(features, reads) {

+ fLimit <- limitToXkb(features)

+ count <- countOverlaps(fLimit, reads)

+ features <- features[count!=0,]

+ return(features[(quantile(width(features), .05) < width(features))

+ & (width(features) < quantile(width(features), .95)),])}

> conExpressed <- getExpressedAnnotations(features=kgConsensus,reads=Sall)

> td <- getTxDensity(txHMM, conExpressed, mc.cores=getOption("mc.cores"))

Merged annotations: 51

Dissociated a single annotation: 35

Overlaps between transcript and annotation:

Total = 494 Used for density = 389

> u <- par("usr")

> lines(c(u[1], 0, 0, 1000, 1000, u[2]), c(0,0,u[4]-.04,u[4]-.04,0,0),

+ col="red")

> legend("topright", lty=c(1,1), col=c(2,1), c("ideal", "groHMM"))

> text(c(-500,500), c(.05,.5), c("FivePrimeFP", "TP"))

> td

$FivePrimeFP

[1] 0.1175103

$TP

[1] 0.7902918

$PostTTS

[1] 0.3441388

$TUA

[1] 0.8172262

7

groHMM Tutorial

−1000 −500 0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative to TSS

D
en

si
ty

ideal
groHMM

FivePrimeFP

TP

Figure 2: Transcript Density Plot

3.6 Working with non-mammalian Genomes
If your target of study is non-mammalian, you can retrieve the relevant annotations from
the Bioconductor if they are supported. You can check the availability with the function
supportedUCSCtable in GenomicsFeautes. If the organism is not supported, you can still
build consensus annotations by directly downloading the annotation table for the organism
from the UCSC genome browser. The following command line shows the mysql query in linux
to download protein-coding RefSeq genes for all chromosomes except chrM for C. Elegans
saving into refgene.bed file. You can find more information about using MySQL for the UCSC
genome browser at https://genome.ucsc.edu/goldenPath/help/mysql.html.
> # mysql --user=genome --host=genome-mysql.cse.ucsc.edu ce10 -e \

> # "select chrom, txStart, txEnd, name, exonCount, strand, name2 from refGene \

> # where chrom not like chrom!='chrM' and cdsStart != cdsEnd" | tail -n +1 > refgene.bed

>

> # G <- read.table("refgene.bed", header=TRUE, stringsAsFactors=FALSE, sep="\t")

> # ce <- GRanges(G$chrom, IRanges(G$txStart, G$txEnd), strand=G$strand, \

> # access=G$name, gene_id=G$name2)

> # ceConsensus <- makeConsensusAnnotations(ce, keytype="gene_id", \

> # mc.cores=getOption("mc.cores"))

8

groHMM Tutorial

As for transcript calling, the default values for detectTranscripts were set for mammalian
genome. In case of C. Elegans genome, it is much smaller than human genome and the
genes are more tightly located. So we recommend to explore higher values for the transition
probability from the transcribed to non-transcribed state. For example, you can use i.e.,
values >-50 instead of -200 for LtProbB.

3.7 Repairing Transcript Calling with Annotations
Prediction of transcripts by the HMM is not perfect. Discrepancies with the annotations will
occur even after the parameters are optimally tuned. Transcript calls can be ‘fixed’ for known
types of error by (1) breaking transcripts that have merged annotations and (2) combining
transcripts that have dissociated a single annotation. The following method will generate a
final set of transcripts for further analysis.
> bPlus <- breakTranscriptsOnGenes(txHMM, kgConsensus, strand="+")

19 transcripts are broken into 46

> bMinus <- breakTranscriptsOnGenes(txHMM, kgConsensus, strand="-")

14 transcripts are broken into 32

> txBroken <- c(bPlus, bMinus)

> txFinal <- combineTranscripts(txBroken, kgConsensus)

87 transcripts are combined to 34

> tdFinal <- getTxDensity(txFinal, conExpressed, mc.cores=getOption("mc.cores"))

3.8 Differential Analysis with edgeR
There are several packages in Bioconductor for differential expression analysis such as DESeq,
baySeq, DEGSeq, or edgeR. edgeR [?] is used for this demonstration. Differential expression
analysis can be done using either by called transcripts or known annotations depending on the
nature of your research question. The procedures are quite similar except reads are counted
using the genomic locations of either called transcript or known annotations. For longer
transcripts or annotated genes, we use a window of +1 to +13 kb from the transcription
start site (TSS), which was chosen in order to exclude reads from RNA polymerases engaged
at the promoter and to allow enough time for the elongation of newly initiated Pol II (See
Hah et al., 2011). However, variations can be used, including the entire length of the called
or annotated transcripts.
> # For called transcripts

> library(edgeR)

> txLimit <- limitToXkb(txFinal)

> ctS0mR1 <- countOverlaps(txLimit, S0mR1)

> ctS0mR2 <- countOverlaps(txLimit, S0mR2)

> ctS40mR1 <- countOverlaps(txLimit, S40mR1)

> ctS40mR2 <- countOverlaps(txLimit, S40mR2)

> pcounts <- as.matrix(data.frame(ctS0mR1, ctS0mR2, ctS40mR1, ctS40mR2))

> group <- factor(c("S0m", "S0m", "S40m", "S40m"))

> lib.size <- c(NROW(S0mR1), NROW(S0mR2), NROW(S40mR1), NROW(S40mR2))

> d <- DGEList(counts=pcounts, lib.size=lib.size, group=group)

9

groHMM Tutorial

> d <- estimateCommonDisp(d)

> et <- exactTest(d)

> de <- decideTests(et, p=0.001, adjust="fdr")

> detags <- seq_len(NROW(d))[as.logical(de)]

> # Number of transcripts regulated at 40m

> cat("up: ",sum(de==1), " down: ", sum(de==-1), "\n")

up: 186 down: 152

> plotSmear(et, de.tags=detags)

> # 2 fold up or down

> abline(h = c(-1,1), col="blue")

4 6 8 10 12

−
5

0
5

Average logCPM

lo
gF

C

Figure 3: Transcript MAplot

> # For ucsc knownGenes

> kgChr7 <- transcripts(kgdb, filter <- list(tx_chrom = "chr7"),

+ columns=c("gene_id", "tx_id", "tx_name"))

> map <- select(org.Hs.eg.db,

+ keys=unique(unlist(mcols(kgChr7)$gene_id)),

+ columns=c("SYMBOL"), keytype=c("ENTREZID"))

> missing <- elementNROWS(mcols(kgChr7)[,"gene_id"]) == 0

10

groHMM Tutorial

> kgChr7 <- kgChr7[!missing,]

> inx <- match(unlist(mcols(kgChr7)$gene_id), map$ENTREZID)

> mcols(kgChr7)$symbol <- map[inx,"SYMBOL"]

> kgLimit <- limitToXkb(kgChr7)

> ctS0mR1 <- countOverlaps(kgLimit, S0mR1)

> ctS0mR2 <- countOverlaps(kgLimit, S0mR2)

> ctS40mR1 <- countOverlaps(kgLimit, S40mR1)

> ctS40mR2 <- countOverlaps(kgLimit, S40mR2)

> counts <- as.matrix(data.frame(ctS0mR1, ctS0mR2, ctS40mR1, ctS40mR2))

> group <- factor(c("S0m", "S0m", "S40m", "S40m"))

> lib.size <- c(NROW(S0mR1), NROW(S0mR2), NROW(S40mR1), NROW(S40mR2))

> d <- DGEList(counts=counts, lib.size=lib.size, group=group)

> d <- estimateCommonDisp(d)

> et <- exactTest(d)

> de <- decideTests(et, p=0.001, adjust="fdr")

> detags <- seq_len(NROW(d))[as.logical(de)]

> symbols <- mcols(kgChr7)$symbol

> # Number of unique genes regulated at 40m

> cat("up: ", NROW(unique(symbols[de==1])), "\n")

up: 149

> cat("down: ", NROW(unique(symbols[de==-1])), "\n")

down: 111

> plotSmear(et, de.tags=detags)

> abline(h = c(-1,1), col="blue")

3.9 Metagene Analysis
Metagenes show the distribution of reads near TSS of a set of regulated genes (or some other
alignable genomic features of interest). It can be thought as a smoothed average of read
density weighted by expression over the set of TSS. The runMetaGene function has option for
sampling. If TRUE, 10% of the transcription units are sampled with replacement 1,000 times
and median value at each position in the transcription unit over the samples is used for final
metagene result. Using subsampling results in an image is more robust to outliers, especially
when the size of sample is relatively small.
> upGenes <- kgChr7[de==1,]

> expReads <- mean(c(NROW(S0m), NROW(S40m)))

> # Metagene around TSS

> mg0m <- runMetaGene(features=upGenes, reads=S0m, size=100,

+ normCounts=expReads/NROW(S0m), sampling=FALSE,

+ mc.cores=getOption("mc.cores"))

> mg40m <- runMetaGene(features=upGenes, reads=S40m, size=100,

+ normCounts=expReads/NROW(S40m), sampling=FALSE,

+ mc.cores=getOption("mc.cores"))

> plotMetaGene <- function(POS=c(-10000:+9999), mg, MIN, MAX){

+ plot(POS, mg$sense, col="red", type="h", xlim=c(-5000, 5000),

+ ylim=c(floor(MIN),ceiling(MAX)), ylab="Read Density",

11

groHMM Tutorial

+ xlab="Position (relative to TSS)")

+ points(POS, (-1*rev(mg$antisense)), col="blue", type="h")

+ abline(mean(mg$sense[5000:8000]), 0, lty="dotted")

+ }

> MAX <- max(c(mg0m$sense, mg40m$sense))

> MIN <- -1*max(c(mg0m$antisense, mg40m$antisense))

> plotMetaGene(mg=mg0m, MIN=MIN, MAX=MAX)

> plotMetaGene(mg=mg40m, MIN=MIN, MAX=MAX)

(a) 0 min. (b) 40 min.

Figure 4: Metagenes

4 Session Info

> toLatex(sessionInfo())

• R version 4.5.1 (2025-06-13 ucrt), x86_64-w64-mingw32
• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.utf8,

LC_MONETARY=English_United States.utf8, LC_NUMERIC=C,
LC_TIME=English_United States.utf8

• Time zone: America/New_York

• TZcode source: internal

• Running under: Windows Server 2022 x64 (build 20348)

• Matrix products: default
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4,

utils
• Other packages: AnnotationDbi 1.71.0, Biobase 2.69.0, BiocGenerics 0.55.0,

Biostrings 2.77.2, GenomicAlignments 1.45.1, GenomicFeatures 1.61.5,
GenomicRanges 1.61.1, IRanges 2.43.0, MASS 7.3-65, MatrixGenerics 1.21.0,
Rsamtools 2.25.1, S4Vectors 0.47.0, Seqinfo 0.99.2, SummarizedExperiment 1.39.1,

12

groHMM Tutorial

TxDb.Hsapiens.UCSC.hg19.knownGene 3.2.2, XVector 0.49.0, edgeR 4.7.3,
generics 0.1.4, groHMM 1.43.1, limma 3.65.1, matrixStats 1.5.0,
org.Hs.eg.db 3.21.0, rtracklayer 1.69.1

• Loaded via a namespace (and not attached): BiocIO 1.19.0, BiocManager 1.30.26,
BiocParallel 1.43.4, BiocStyle 2.37.0, DBI 1.2.3, DelayedArray 0.35.2,
KEGGREST 1.49.1, Matrix 1.7-3, R6 2.6.1, RCurl 1.98-1.17, RSQLite 2.4.2,
S4Arrays 1.9.1, SparseArray 1.9.1, XML 3.99-0.18, abind 1.4-8, bit 4.6.0,
bit64 4.6.0-1, bitops 1.0-9, blob 1.2.4, cachem 1.1.0, cli 3.6.5, codetools 0.2-20,
compiler 4.5.1, crayon 1.5.3, curl 6.4.0, digest 0.6.37, evaluate 1.0.4, fastmap 1.2.0,
grid 4.5.1, htmltools 0.5.8.1, httr 1.4.7, knitr 1.50, lattice 0.22-7, locfit 1.5-9.12,
memoise 2.0.1, pkgconfig 2.0.3, png 0.1-8, restfulr 0.0.16, rjson 0.2.23, rlang 1.1.6,
rmarkdown 2.29, statmod 1.5.0, tools 4.5.1, vctrs 0.6.5, xfun 0.52, yaml 2.3.10

13

	1 Introduction
	2 Preparation
	3 groHMM Workflow
	3.1 Read GRO-seq Data Files
	3.2 Create a Wiggle File
	3.3 Transcript Calling
	3.4 Evaluation of Transcript Calling
	3.5 HMM Tuning
	3.6 Working with non-mammalian Genomes
	3.7 Repairing Transcript Calling with Annotations
	3.8 Differential Analysis with edgeR
	3.9 Metagene Analysis

	4 Session Info

