This vignette demonstrates the use of the pengls package for high-dimensional data with spatial or temporal autocorrelation. It consists of an iterative loop around the nlme and glmnet packages. Currently, only continuous outcomes and \(R^2\) and MSE as performance measure are implemented.
The pengls package is available from BioConductor, and can be installed as follows:
Once installed, it can be loaded and version info printed.
suppressPackageStartupMessages(library(pengls))
cat("pengls package version", as.character(packageVersion("pengls")), "\n")## pengls package version 1.14.0We first create a toy dataset with spatial coordinates.
library(nlme)
n <- 25 #Sample size
p <- 50 #Number of features
g <- 15 #Size of the grid
#Generate grid
Grid <- expand.grid("x" = seq_len(g), "y" = seq_len(g))
# Sample points from grid without replacement
GridSample <- Grid[sample(nrow(Grid), n, replace = FALSE),]
#Generate outcome and regressors
b <- matrix(rnorm(p*n), n , p)
a <- rnorm(n, mean = b %*% rbinom(p, size = 1, p = 0.25), sd = 0.1) #25% signal
#Compile to a matrix
df <- data.frame("a" = a, "b" = b, GridSample)The pengls method requires prespecification of a functional form for the autocorrelation. This is done through the corStruct objects defined by the nlme package. We specify a correlation decaying as a Gaussian curve with distance, and with a nugget parameter. The nugget parameter is a proportion that indicates how much of the correlation structure explained by independent errors; the rest is attributed to spatial autocorrelation. The starting values are chosen as reasonable guesses; they will be overwritten in the fitting process.
# Define the correlation structure (see ?nlme::gls), with initial nugget 0.5 and range 5
corStruct <- corGaus(form = ~ x + y, nugget = TRUE, value = c("range" = 5, "nugget" = 0.5))Finally the model is fitted with a single outcome variable and large number of regressors, with the chosen covariance structure and for a prespecified penalty parameter \(\lambda=0.2\).
#Fit the pengls model, for simplicity for a simple lambda
penglsFit <- pengls(data = df, outVar = "a", xNames = grep(names(df), pattern = "b", value =TRUE), glsSt = corStruct, lambda = 0.2, verbose = TRUE)## Starting iterations...
## Iteration 1 
## Iteration 2 
## Iteration 3 
## Iteration 4 
## Iteration 5 
## Iteration 6 
## Iteration 7 
## Iteration 8 
## Iteration 9 
## Iteration 10 
## Iteration 11 
## Iteration 12 
## Iteration 13 
## Iteration 14 
## Iteration 15 
## Iteration 16 
## Iteration 17 
## Iteration 18 
## Iteration 19 
## Iteration 20 
## Iteration 21 
## Iteration 22 
## Iteration 23 
## Iteration 24 
## Iteration 25 
## Iteration 26 
## Iteration 27 
## Iteration 28 
## Iteration 29 
## Iteration 30## Warning in pengls(data = df, outVar = "a", xNames = grep(names(df), pattern = "b", : No convergence achieved in pengls!Standard extraction functions like print(), coef() and predict() are defined for the new “pengls” object.
## pengls model with correlation structure: corGaus 
##  and 18 non-zero coefficientsThe method can also account for temporal autocorrelation by defining another correlation structure from the nlme package, e.g. autocorrelation structure of order 1:
set.seed(354509)
n <- 100 #Sample size
p <- 10 #Number of features
#Generate outcome and regressors
b <- matrix(rnorm(p*n), n , p)
a <- rnorm(n, mean = b %*% rbinom(p, size = 1, p = 0.25), sd = 0.1) #25% signal
#Compile to a matrix
dfTime <- data.frame("a" = a, "b" = b, "t" = seq_len(n))
corStructTime <- corAR1(form = ~ t, value = 0.5)The fitting command is similar, this time the \(\lambda\) parameter is found through cross-validation of the naive glmnet (for full cross-validation , see below). We choose \(\alpha=0.5\) this time, fitting an elastic net model.
penglsFitTime <- pengls(data = dfTime, outVar = "a", verbose = TRUE,
xNames = grep(names(dfTime), pattern = "b", value =TRUE),
glsSt = corStructTime, nfolds = 5, alpha = 0.5)## Fitting naieve model...
## Starting iterations...
## Iteration 1 
## Iteration 2Show the output
## pengls model with correlation structure: corAR1 
##  and 2 non-zero coefficientsThe pengls package also provides cross-validation for finding the optimal \(\lambda\) value. If the tuning parameter \(\lambda\) is not supplied, the optimal \(\lambda\) according to cross-validation with the naive glmnet function (the one that ignores dependence) is used. Hence we recommend to use the following function to use cross-validation. Multithreading is supported through the BiocParallel package :
The function is called similarly to cv.glmnet:
penglsFitCV <- cv.pengls(data = df, outVar = "a", xNames = grep(names(df), pattern = "b", value =TRUE), glsSt = corStruct, nfolds = nfolds)Check the result:
## Cross-validated pengls model with correlation structure: corGaus 
##  and 8 non-zero coefficients.
##  3 fold cross-validation yielded an estimated R2 of -1.024022 .By default, the 1 standard error is used to determine the optimal value of \(\lambda\) :
## [1] 0.9441916## [1] -1.024022Extract coefficients and fold IDs.
## [1] 1.0552207 0.6493971 0.0000000 0.0000000 0.0000000 0.0000000##  67 120  22  36 121 107 178   3 157   8 140  30 167  90  53 126  51 221  72  60 
##   1   3   1   1   2   2   3   1   2   3   2   3   2   3   1   2   1   2   1   3 
##  87  77  99  81 199 
##   3   1   3   1   2By default, blocked cross-validation is used, but random cross-validation is also available (but not recommended for timecourse or spatial data). First we illustrate the different ways graphically, again using the timecourse example:
set.seed(5657)
randomFolds <- makeFolds(nfolds = nfolds, dfTime, "random", "t")
blockedFolds <- makeFolds(nfolds = nfolds, dfTime, "blocked", "t")
plot(dfTime$t, randomFolds, xlab ="Time", ylab ="Fold")
points(dfTime$t, blockedFolds, col = "red")
legend("topleft", legend = c("random", "blocked"), pch = 1, col = c("black", "red"))To perform random cross-validation
penglsFitCVtime <- cv.pengls(data = dfTime, outVar = "a", xNames = grep(names(dfTime), pattern = "b", value =TRUE), glsSt = corStructTime, nfolds = nfolds, cvType = "random")To negate baseline differences at different timepoints, it may be useful to center or scale the outcomes in the cross validation. For instance for centering only:
penglsFitCVtimeCenter <- cv.pengls(data = dfTime, outVar = "a", xNames = grep(names(dfTime), pattern = "b", value =TRUE), glsSt = corStructTime, nfolds = nfolds, cvType = "blocked", transFun = function(x) x-mean(x))
penglsFitCVtimeCenter$cvOpt #Better performance## [1] 0.9949127Alternatively, the mean squared error (MSE) can be used as loss function, rather than the default \(R^2\):
## R version 4.5.0 RC (2025-04-04 r88126)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.2 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] BiocParallel_1.42.0 nlme_3.1-168        pengls_1.14.0      
## 
## loaded via a namespace (and not attached):
##  [1] cli_3.6.4         knitr_1.50        rlang_1.1.6       xfun_0.52        
##  [5] jsonlite_2.0.0    htmltools_0.5.8.1 sass_0.4.10       glmnet_4.1-8     
##  [9] rmarkdown_2.29    grid_4.5.0        evaluate_1.0.3    jquerylib_0.1.4  
## [13] fastmap_1.2.0     yaml_2.3.10       foreach_1.5.2     lifecycle_1.0.4  
## [17] compiler_4.5.0    codetools_0.2-20  Rcpp_1.0.14       lattice_0.22-7   
## [21] digest_0.6.37     R6_2.6.1          parallel_4.5.0    splines_4.5.0    
## [25] shape_1.4.6.1     bslib_0.9.0       Matrix_1.7-3      tools_4.5.0      
## [29] iterators_1.0.14  survival_3.8-3    cachem_1.1.0