Exploring the Ranges Infrastructure

Michael Lawrence

July 27, 2017

Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants

Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants

The Ranges infrastructure: what is it good for?

Integrative data analysis

Developing and prototyping methods

Software integration

Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants

Data types

Data on genomic ranges

Reality

▶ In practice, we have a BED file: |bash-3.2\$ 1s *.bed mv.bed

And we turn to R to analyze the data

chr9 127475864 127477031

Reality bites

Now for a GFF file:

```
df <- read.table("my.bed", sep="\t")
colnames(df) <- c("chr", "start", "end")</pre>
```

GFF

chr start end 1 chr7 127471197 127472363 2 chr7 127472364 127473530 3 chr7 127473531 127474697 4 chr9 127474698 127475864 5 chr9 127475865 127477031

BED

	chrom	start	end
1	chr7	127471196	127472363
2	chr7	127472363	127473530
3	chr7	127473530	127474697
4	chr9	127474697	127475864

5 chr9 127475864 127477031

From reality to ideality

The abstraction gradient

- Abstraction is semantic enrichment
 - Enables the user to think of data in terms of the problem domain
 - Hides implementation details
 - Unifies frameworks

GRanges: data on genomic ranges

seqnames	start	end	strand	
chr1	1	10	+	
chr1	15	24	-	

▶ Plus, sequence information (lengths, genome, etc)

Semantic slack

► Science defies rigidity: we define flexible objects that combine strongly typed fields with arbitrary user-level metadata

Abstraction is the responsibility of the user

Program

- Only the user knows the true semantics of the data
- Explicitly declaring semantics:
 - ▶ Helps the software do the right thing
 - ▶ Helps the user be more *expressive*

SummarizedExperiment: the central data model

Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants

The Ranges API

- Semantically rich data enables:
 - Semantically rich vocabularies and grammars
 - Semantically aware behavior (DWIM)
- ▶ The range algebra expresses typical range-oriented operations
- Base R API is extended to have range-oriented behaviors

The Ranges API: Examples

Туре	Range operations	Range extensions
Filter	subsetByOverlaps()	[()
Transform	shift(), resize()	*() to zoom
Aggregation	coverage(), reduce()	<pre>intersect(), union()</pre>
Comparison	findOverlaps(), nearest()	match(), sort()

Range algebra

Overlap detection

Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants

Structural variants are important for disease

- SVs are rarer than SNVs
 - ► SNVs: ~ 4,000,000 per genome
 - ► SVs: 5,000 10,000 per genome
- However, SVs are much larger (typically > 1kb) and cover more genomic space than SNVs.
- The effect size of SV associations with disease is larger than those of SNVs.
 - SVs account for 13% of GTEx eQTLs
 - SVs are 26 54 X more likely to modulate expression than SNVs (or indels)

Detection of deletions from WGS data

Motivation

Problem

- ▶ Often need to evaluate a tool before adding it to our workflow
- "lumpy" is a popular SV caller

Goal

Evaluate the performance of lumpy

Data

- Simulated a FASTQ containing known deletions using varsim
- Aligned the reads with BWA
- ► Ran lumpy on the alignments

Overview

- 1. Import the lumpy calls and truth set
- 2. Tidy the data
- 3. Match the calls to the truth
- 4. Compute error rates
- 5. Diagnose errors

Data import

Read from VCF:

Select for deletions:

```
truth <- subset(truth, SVTYPE=="DEL")
calls <- subset(calls, SVTYPE=="DEL")</pre>
```

Data cleaning

```
Make the seqlevels compatible:
```

Tighten

Move from the constrained VCF representation to a range-oriented model (*VRanges*) with a tighter cognitive link to the problem:

```
calls <- as(calls, "VRanges")
truth <- as(truth, "VRanges")</pre>
```

More cleaning

```
Homogenize the ALT field:
|ref(truth) <- "."
Remove the flagged calls with poor read support:
|calls <- calls[called(calls)]</pre>
```

Comparison

- ▶ How to decide whether a call represents a true event?
- Ranges should at least overlap:

hits <- findOverlaps(truth, calls)</pre>

▶ But more filtering is needed.

Comparing breakpoints

Compute the deviation in the breakpoints:

```
hits <- as(hits, "List")
call_rl <- extractList(ranges(calls), hits)
dev <- abs(start(truth) - start(call_rl)) +
    abs(end(truth) - end(call_rl))</pre>
```

Select and store the call with the least deviance, per true deletion:

```
dev_ord <- order(dev)
keep <- phead(dev_ord, 1L)
truth$deviance <- drop(dev[keep])
truth$call <- drop(hits[keep])</pre>
```

Choosing a deviance cutoff

Choosing a deviance cutoff

Applying the deviance filter

```
truth$called <-
   with(truth, !is.na(deviance) & deviance <= 300)</pre>
```

Sensitivity

mean(truth\$called)

[1] 0.8214107

Specificity

```
Determine which calls were true:

|calls$fp <- TRUE
|calls$fp[subset(truth, called)$call] <- FALSE

Compute FDR:

|mean(calls$fp)

[1] 0.1009852
```

Explaining the FDR

- Suspect that calls may be error-prone in regions where the population varies
- ▶ Load alt regions from a BED file:

FDR and variable "alt" regions

Compute the association between FP status and overlap of an alt region:

```
calls$inAlt <- calls %over% altRegions
xtabs(~ inAlt + fp, calls)
fp
inAlt FALSE TRUE
FALSE 1402 112
TRUE 58 52
```