
Exploring the Ranges Infrastructure

Michael Lawrence

July 27, 2017

Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants

Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants

The Ranges infrastructure: what is it good for?

Method
Prototyping

Data
Analysis

Insight incubation

Platform
Integration

Integrative data analysis

Developing and prototyping methods

Peak calling
Isoform expression

Variant calling

Software integration

S4Vectors

Summarized
Experimentrtracklayer

0
1 00 01

11 1110010

Variant
Annotation

Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants

Data types

Data on genomic ranges Summarized data

Reality

I In practice, we have a BED file:
bash-3.2$ ls *.bed

my.bed

I And we turn to R to analyze the data
df <- read.table("my.bed", sep="\t")
colnames(df) <- c("chrom", "start", "end")

chrom start end
1 chr7 127471196 127472363
2 chr7 127472363 127473530
3 chr7 127473530 127474697
4 chr9 127474697 127475864
5 chr9 127475864 127477031

Reality bites

Now for a GFF file:
df <- read.table("my.bed", sep="\t")
colnames(df) <- c("chr", "start", "end")

GFF

chr start end
1 chr7 127471197 127472363
2 chr7 127472364 127473530
3 chr7 127473531 127474697
4 chr9 127474698 127475864
5 chr9 127475865 127477031

BED

chrom start end
1 chr7 127471196 127472363
2 chr7 127472363 127473530
3 chr7 127473530 127474697
4 chr9 127474697 127475864
5 chr9 127475864 127477031

From reality to ideality
The abstraction gradient

BED File
Of Genes

Text

read.table()

Table

rtracklayer

0
1 00 01

11 1110010

Genomic
Ranges

Gene
Coordinates

I Abstraction is semantic enrichment
I Enables the user to think of data in terms of the problem

domain
I Hides implementation details
I Unifies frameworks

GRanges: data on genomic ranges

249250621chr1
hg19

seqnames start end strand . . .
chr1 1 10 +
chr1 15 24 -

I Plus, sequence information (lengths, genome, etc)

Semantic slack

rtracklayer

0
1 00 01

11 1110010

Genomic
Ranges

Gene
Coordinates

> mcols(gr)
[1] “gene_name”
[2] “gene_symbol”

I Science defies rigidity: we define flexible objects that combine
strongly typed fields with arbitrary user-level metadata

Abstraction is the responsibility of the user

I Only the user knows the true semantics of the data
I Explicitly declaring semantics:

I Helps the software do the right thing
I Helps the user be more expressive

SummarizedExperiment: the central data model

Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants

The Ranges API

I Semantically rich data enables:
I Semantically rich vocabularies and grammars
I Semantically aware behavior (DWIM)

I The range algebra expresses typical range-oriented operations
I Base R API is extended to have range-oriented behaviors

The Ranges API: Examples

Type Range operations Range extensions
Filter subsetByOverlaps() [()
Transform shift(), resize() *() to zoom
Aggregation coverage(), reduce() intersect(), union()
Comparison findOverlaps(), nearest() match(), sort()

Range algebra

range(gr)

reduce(gr)

Operation

disjoin(gr)

flank(gr)

psetdiff(range(gr), gr)

Overlap detection

Outline

Introduction

Data structures

Algorithms

Example workflow: Structural variants

Structural variants are important for disease

I SVs are rarer than SNVs
I SNVs: ~ 4,000,000 per genome
I SVs: 5,000 - 10,000 per genome

I However, SVs are much larger (typically > 1kb) and cover
more genomic space than SNVs.

I The effect size of SV associations with disease is larger than
those of SNVs.

I SVs account for 13% of GTEx eQTLs
I SVs are 26 - 54 X more likely to modulate expression than

SNVs (or indels)

Detection of deletions from WGS data

Coverage Read Pairs Split Reads Assembly

DEL

Motivation

Problem
I Often need to evaluate a tool before adding it to our workflow
I "lumpy" is a popular SV caller

Goal
Evaluate the performance of lumpy

Data

I Simulated a FASTQ containing known deletions using varsim
I Aligned the reads with BWA
I Ran lumpy on the alignments

Overview

1. Import the lumpy calls and truth set
2. Tidy the data
3. Match the calls to the truth
4. Compute error rates
5. Diagnose errors

Data import

Read from VCF:
library(RangesTutorial2017)
calls <- readVcf(system.file("extdata", "lumpy.vcf.gz",

package="RangesTutorial2017"))
truth <- readVcf(system.file("extdata", "truth.vcf.bgz",

package="RangesTutorial2017"))

Select for deletions:
truth <- subset(truth, SVTYPE=="DEL")
calls <- subset(calls, SVTYPE=="DEL")

Data cleaning

Make the seqlevels compatible:
seqlevelsStyle(calls) <- "NCBI"
truth <- keepStandardChromosomes(truth,

pruning.mode="coarse")

Tighten

Move from the constrained VCF representation to a range-oriented
model (VRanges) with a tighter cognitive link to the problem:
calls <- as(calls, "VRanges")
truth <- as(truth, "VRanges")

More cleaning

Homogenize the ALT field:
ref(truth) <- "."

Remove the flagged calls with poor read support:
calls <- calls[called(calls)]

Comparison

I How to decide whether a call represents a true event?
I Ranges should at least overlap:

hits <- findOverlaps(truth, calls)

I But more filtering is needed.

Comparing breakpoints

Compute the deviation in the breakpoints:
hits <- as(hits, "List")
call_rl <- extractList(ranges(calls), hits)
dev <- abs(start(truth) - start(call_rl)) +

abs(end(truth) - end(call_rl))

Select and store the call with the least deviance, per true deletion:
dev_ord <- order(dev)
keep <- phead(dev_ord, 1L)
truth$deviance <- drop(dev[keep])
truth$call <- drop(hits[keep])

Choosing a deviance cutoff

library(ggplot2)
rdf <- as.data.frame(truth)
ggplot(aes(x=deviance),

data=subset(rdf, deviance <= 500)) +
stat_ecdf() + ylab("fraction <= deviance")

Choosing a deviance cutoff

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400

deviance

fr
ac

tio
n

<
=

 d
ev

ia
nc

e

Applying the deviance filter

truth$called <-
with(truth, !is.na(deviance) & deviance <= 300)

Sensitivity

mean(truth$called)

[1] 0.8214107

Specificity

Determine which calls were true:
calls$fp <- TRUE
calls$fp[subset(truth, called)$call] <- FALSE

Compute FDR:
mean(calls$fp)

[1] 0.1009852

Explaining the FDR

I Suspect that calls may be error-prone in regions where the
population varies

I Load alt regions from a BED file:
file <- system.file("extdata",

"altRegions.GRCh38.bed.gz",
package="RangesTutorial2017")

altRegions <- import(file)
seqlevelsStyle(altRegions) <- "NCBI"
altRegions <-

keepStandardChromosomes(altRegions,
pruning.mode="coarse")

FDR and variable "alt" regions

I Compute the association between FP status and overlap of an
alt region:
calls$inAlt <- calls %over% altRegions
xtabs(~ inAlt + fp, calls)

fp
inAlt FALSE TRUE
FALSE 1402 112
TRUE 58 52

	Introduction
	Data structures
	Algorithms
	Example workflow: Structural variants

