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EMBL’s five missions

Fundamental research
B Develop new technologies and instruments
B Technology transfer

B Services to member states

Advanced training emeL i



What Can You Do at EMBL ?

Biology

Medicine
Physics
Mathematics
Informatics
Engineering

Internships - Phd programme - Postdocs - Pls - Jobs



Aims for this Lecture

Understand the basic principles of hypothesis testing, its
pitfalls, strengths, use cases and limitations

What changes when we go from single to multiple testing?

False discovery rates, p-value ‘adjustments’, filtering and
welghting



Testing vs Classification
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Bias vs Variance

Accuracy vs Precision -

accuracy—

<—bias




Logical asymmetry between verification
and falsifiability.

No number of positive outcomes at the level
of experimental testing can confirm a scientific theory, but a
single counterexample Is logically decisive: it shows the theory

IS false.



Example

Toss a coin a number of times =

It the coin is fair, then heads should
appear half of the time (roughly).

But what is “roughly” ? We use combinatorics /
probability theory to quantify this.

Suppose we flipped the coin 100 times and got b9
heads. Is this ‘significant’/



Binomial Distribution
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Figure 6.3: The binomial distribution for
the parameters n = 100 and p = 0.5,

P(K=k|n,p) = ( ; )P" (1—p)*



Rejection Region

0.08 -
0.06 -
0.0.04-
0.02-
0.00-
0 25 50 75 100
K

Figure 6.5: As Figure 6.3, with rejection
region (red) whose total area is & = 0.05.



Questions

Does the fact that we don't reject the null hypothesis
mean that the coin is fair?

Would we have a better chance of detecting that the coin
is not fair if we did more coin tosses? How many?

If we repeated the whole procedure and again tossed the
coin 100 times, might we then reject the null hypothesis?

Our rejection region is asymmetric - its left part ends
with 40, while its right part starts with 61. Why is that?
Which other ways of defining the rejection region might
be useful?



The Five Steps of Hypothesis Testing

Choose an experimental design and a data summary function
for the effect that you are interested in: the test statistic

Set up a null hypothesis: a simple, computationally tractable
model of reality that lets you compute the null distribution of
the test statistic, i.e. the possible outcomes and each of their
probabilities.

Decide on the rejection region, i.e., a subset of possible
outcomes whose total probability is small
(<= significance level).

Do the experiment, collect data,
compute the test statistic.

Make a decision: reject null hypothesis
if the test statistic is in the rejection region.




Examples of Null Hypotheses:

e The coin is fair

« The new drug is no better or worse than a

placebo

o The effect of that RNAi-treatment on my
cells is no different than that of a negative
control treatment

These are not Null Hypotheses:

« The number of heads and tails were the
same

e The coin is not fair

e The drug is worth i1ts money



Types of Error in Testing

Test vs reality Null hypothesis is true ...1s false

Reject null hypothesis Type I error (false positive) True positive

Do not reject True negative Type II error (false negative)
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0.1-
0.0- #
0 3 6 9

test statistic



Parametric Theory vs Simulation
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p-Values as Random Variables
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The Test Statistic

Suppose we observed 50 tails in a row, and then 50
heads in a row. Is this a perfectly fair coin?

We could use a different test statistic: number of
times we see two tails in a row

|s this statistic generally and always preferable?
Power

There can be several test statistics, with different
power, for different types of alternative



Continuous Data: . IC
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t- (and [t|-) Distribution
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Figure 6.8: The null distribution of the freedom)

(absolute) t-statistic determined by simula-
tions — namely, by random permutations of

the group labels.



Comments and Pitfalls

The derivation of the t-distribution assumes that
the observations are independent and that they
follow a Normal distribution.

Deviation from Normality - heavier tails: test still
maintains type-l error control, but may no longer
have optimal power.

Options: use permutations; transform (e.g. ranks -
Wilcoxon test)

If the data are dependent, then p-values will likely

be totally wrong (e.g., for positive correlation, too
optimistic).
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Different Data Distributions — Independent Case
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Frequency

150

t-Test Looses Error Control
If Independence Assumption Does not Hold

uncorrelated

ILibrary(“"genefilter”)

batch effects!
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T T T
|for{i in seqlalong=tt))

painenames(tt) (1], xlab="p value")
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p value

= 5))

hist{tt[[1)]sp.value, breaks=180, col=c("skyblue", "“orange")(i],



Avoid Fallacy

The p-value Is the probability

that the data could happen,

under the condition that the
null hypothesis Is true.

It Is not the probability that
the null hypothesis Is true.

Absence of evidence *+
evidence of absence




Recap: Single Hypothesis Testing

p-values are random variables: uniformly distributed if the
null hypothesis is true - and should be close to zero if the

alternative holds.
Note: We only observe one draw.

We prove something by disproving (‘rejecting’) the
opposite (the null hypothesis)

Not rejecting does not prove the null hypothesis
Repeating the experiment (under the null): Around 5% of

the times the p-value will be less than 0.05 by chance

All this reasoning is probabilistic. Testing & p-values are for
rational decision making in uncertain contexts.
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What is p-Value Hacking ?

On the same data, try different tests until one is

significant

On the same data, try different hypotheses until one is
significant (HARKing - hypothesizing after results are known)

Moreover...:
retrospective data picking
‘outlier’ removal

The ASA's Statement on p-Values:
Context, Process, and Purpose
Ronald L. Wasserstein & Nicole A.
Lazara DOI:
10.1080/00031305.2016.1154108

the 5% threshold and publication bias

What can we do about this?



http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108

Multiple Testing
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Multiple Testing
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Multiple Testing




Multiple Testing

Many data analysis
approaches in genomics
employ item-by-item
testing:

* Expression profiling
e ChlIP-Seq

e (Genetic or chemical
compound screens

e Genome-wide
assoclation studies

e Proteomics

e Variant calling
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The Multiple Testing Burden

When performing several tests, type | error goes up: for
o = 0.05 and n indep. tests, probability of no false positive result

IS

0.95-095-...-09 <« 0.9

n—times




The Multiple Testing Opportunity

DID THE SUN JUST EXPLODE?

(ITS NIGHT, 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MEASURES
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False Positive Rate and False Discovery Rate

FPR: fraction of FP among
all genes (etc.) tested

FDR: fraction of FP among
hits called

Example:
20,000 genes, 100 hits, 10 of
them wrong.

FPR: 0.05%
FDR: 10%

Ak,
o N 4 '
CA2N
T e, =3 S5
e Yl
é, - " éé ——y
T
k5%
L A3 AP /
T 5 ,p'\—u *\.—\,\N

“Wait a minute! Isn't anyone here a

real sheep?”



Experiment-Wide Type | Error Rates

Test vs Reality Null Hypothesis is true ...is false Total

Rejected \% S R
Not rejected U T m — R
Total mo m — mo m

e m: total number of hypotheses
* mp: number of null hypotheses
* V: number of false positives (a measure of type I error)

Family-wise error rate (FWER): The probability of one or more
false positives, P(V > 0). For large m,, this is difficult to

keep small.

False discovery rate (FDR): The expected fraction of false
positives among all discoveries, E[ V/ max{R, 1} 1.



Bonferroni Correction

For m tests, multiply each p-value with m.

Then see if anyone still remains below «.



False Discovery Rate




False Discovery Rate

250 - false discoveries _ EDR

all discoveries
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Method of Benjamini & Hochberg (1995)



Method of Benjamini & Hochberg
0.100 - /

i <- length(p):1

o <- order (p, decreasing = TRUE)
ro <- order (o)

pmin(l, cummin(n/i * p[o])) [ro]

BH

il
—~—

}
takes a list of p-values as input and returns a matched

list of ‘adjusted’ p-values.

0.000 / E

0 2000 4000 6000
rank




The Two-Groups Model and
the Local False Discovery Rate

f(p) = mo+ (1 — 7o) fare(p)

fdr(p) = ij)

FDR: a set property. A single

number that applies to a
whole set of discoveries.

fdr: a local property. It applies
to individual hypothesis.



"Exchangeability?




Data set 1: RNA-Se

log fold change
0
|

'ession analysis:

l'."i.l ] -
| | [
1 100 10000
= 11,5, dispersion = «;
mean of normalized counts iz P O‘J)
N061011 trt design <- ~ cellline + dexamethasone

Himes et al. “BRNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates
Cytokine Function in Airway Smooth Muscle Cells.” PLoS One. 2014 GEO: GSE52778.


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52778

Not all Hypothesis Tests
are Created Equal

5 10

asinh(baseMean)
Figure 6.15: Histogram of baseMean. We 0 5000 10000 15000 20000
see that it covers a large dynamic range, rank(baseMean)

from close to o to around 3.3 x 10°.



Covariates - examples

Application

Covariate

Differential RNA-Seq,
ChlIP-Seq, CLIP-seq, ...

(Normalized) mean of
counts for each gene

GWAS Minor allele frequency
eQTL analysis SNP - gene distance
t-tests Overall variance

Two-sided tests

Sign

All applications

Sample size; measures of
signal-to-noise ratio




Independent Filtering

Two steps: N
m All hypotheses H; with
X; < z get filtered. 1e-04-
m Apply BH to remaining
hypotheses. fe=111
(Bourgon, Gentleman, Huber e
PNAS 2010) fe-18]
1e-25 1

mean counts



Data-driven choice of filtering threshold

m Do Independent

Filtering followed by
Benjamini-Hochberg
procedure with all

possible thresholds.

m Report the result with

750

Rejections

the optimal threshold.
m We have been doing
this in DESeq2 for the

last two years.

I I I I I
0.1 0.2 0.3 0.4 0.5
Filter cutoff (Quantile)



R) control (Genovese, Roeder,

’ .*& i’ “’ "“t ‘alpha
\f'} investing’
\

http://www.washingtonpost.com/wp-srv/special/politics/track-presidential-campaign-ads-2012/



Independent filtering is a special case of
weighted BH

S = set of hypotheses 254
retained by filtering step
2.0
s — m/|S| Vie s o 1.5-
t 0 Vi ¢ S £
S
2 1.0
0.5
0.0 -—0—0—0—04

; 100
mean counts



IHW (naive): Independent (data-driven)

hypothesis weighting
m Stratify the tests into &G bins, by covariate X
m Choose o
m For each possible weight vector w = (wq, ..., wg)

apply weighted BH procedure. Choose w that
maximizes the number of rejections at level «.

m Report the result with the optimal weight vector w*.



IHW (naive) is powerful (t-test simulation)

A

15000 1

IHW (naive)

IoNs

10000 -

reject

5000 A

effect size

m = 500,000 m; =20,000 a=01 n=2x4



RNA-Seqg example (DESeg?2)

25
IHW IHW
2.0-
4000 -

@ o 15-

5 BH g greedy

ks g 10- indep.

£ 2000- filtering
0.5-

0- 0.0 —o—o—o—od
0.00 0.05 0.10 0.15 1 100
o mean counts
1e-04-
1e-11-
o

1e-18-
1e-25-

mean counts



But naive IHW does not always control the
FDR (e.g. mp = 1)

0.8-
IHW (naive)
0.6-
o
a)
IL 0.4
0.2
004+
0.025 0.050 0.075 0.100

o



Modified IHW

‘Pre-validation’: randomly split hypotheses
into k folds. Learn weights for the
hypotheses in a fold from the other
k-1 folds

Nikos Ignatiadis

Regularisation:
o for ordered covariate: g |wg—wgq| = A

e for categorical covariate: Z4|wg—-1| = A

Convex relaxation: for weight optimisation (only), replace
ECDFs of the p-values with Grenander estimators
(least concave majorant of the ECDF)



IHW controls FDR

Nulls only
a) b)
IHW naive LSL GBH
0.75-
0.15-
0.50-
o o
o  0.10
L L IHW
0.25- 0.05-
————————————————— ,://_/// FDRreg
0.00+-"" 0.00-
001 003 005 007 0.09 0.025 0050 0.075 0.100
Nominal o Nominal o

SBH: stratified BH (e.g. Yoo, Bull, ...Sun, Genet. Epidem 2010)
GBH: grouped BH (Hu, Zhao, Zhou, JASA 2010)

Clfdr: conditional local fdr (Cai, Sun, JASA 2009)

FDRreg (J. Scott JASA 2015)



IHW controls FDR and is powerful

effect size
c) d) FDRreg
0.25- Clidr
LSL GBH
0.751 IHW
0.20-
+ 0.501
o QO
0.15 2
S H BH
0.101 0.251
0.051 0.00
1.0 15 2.0 2.5 1.0 15 2.0 2.5
Effect size Effect size




Data set 2: hQTL

ChlIP-seq for histone marks in
lymphoblastoid cell lines from 75
sequenced individuals.

Local QTLs: find best-correlated
SNP within 2kb of peak
boundaries/promoters.

14,142 local hQTLs linked to ~10%
of H3K27ac peaks (FDR 10%,
permutations)

Distal: distance cutoffs from 50 to
300 kb; also HIiC

|

Chromatin contact
reference maps

H3K27ac
ChiP-Seq H3K4me1
H3K4me3
x A
5 R AL A A
e ﬁ A
=
o A A _
A A. A a.
x A

Enhancers

swﬁ;;lk o

J

ChlA-PET

\

local
histone QTLs

>50 kb away

distal
histone QTLs

Grubert, Zaugg, Kasowski, et al. Genetic control of chromatin states in humans involves local and distal chromosomal

interactions. Cell (2015).



histone-QTL example: H3K27ac

Rejections
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Why does IHW work?

Rank (and reject) hypotheses by local true (false)
discovery rate, not by p-value

ft) = mo+ (1 —mo)far(t)
fdr(t) = m

tdr(t) = 1—1fdr(¢)

t L i L t
7 = 0.6 70 = 0.6 o = 0.95

different fait same fait




2D decision boundaries

covariate




adj_pvalue

Ranking is not monotonous in raw p-values
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Formal results

IHW is asymptotically consistent: it controls
the FDR at the nominal level a as the number

of hypotheses becomes large.
Proof: generalisation of Storey, Taylor, Siegmund, JRSSB (2004)

Variant “IHW-Bonferroni” has finite sample
FWER control



Availability

Sloconductor « IHW (devel..

& US mpsiiwew Bioconducior.ong packages'dovelt (o L Scarch

Bioconductor

QPN SOURCE LOFTWARL FOR MOINFORMATS

Home « Bloconductor 3.3 « Software Packages « FHW (development version)

IHW

platforms WINY cownioads available in Bioc 0oVl Only
bulld (o8 commits 0,17 LAt COVOTAge  unknown

This Is the development version of THW, to use it, please install the deve! version of Bloconductor,

Independent Hypothesis Weighting

Bloconductor version: Development (3.3)

Independent hypothesis weighting (IHW) is a multiple testing procedure that increases power compared
to the method of Benjamini and Hochberg by assigning data-driven weights to each hypothesis. The input
to THW is 3 two-column table of p-values and covariates, The covariate can De any continuous-valued or
categorical variable that is thought to be informative on the statistical properties of each hypothesis test,
whie it is Independent of the p-value under the null hypothesis,

Author: Nikos Ignatiadis [out, cre)
Maintainer: Nikos Ignatiadis <niicos.ignatiadis01 at gmall.com>
Citation (from within R, enter c a0 "))

Ignatiadis N, Kiaus 8, Zaugg J and Muber W (2015). "Data-driven hypothesis weighting Increases
Getection power in Dig data analytics.™ VoRxv.

Instaliation

T0 Install this packaae. start R and enter:

, Paper in Nature Methods

Documentation

Sioconductor

* Package vignelies and ma
* Workfows for leaming and
* Course and conference
* Videos.

+ Communty resources and tutorials,

Joint work with
Nikos Ignatiadis
. Bernd Klaus
e Judith Zaugg
e Thanks also to

: E°°°° Robert Gentleman
o Richard Bourgon
Misha Savitski
Oliver Stegle
Viad Kim



Summary

* Multiple testing is not a problem
but an opportunity

« Heterogeneity across tests

* Informative covariates are often
apparent to domain scientists

* independent of test statistic under the null
e informative on mi, Fax

* Data-driven weighting

» Scales well to millions of hypotheses

e Controlling ‘overoptimism’
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count

RNA-Seq p-value histogram stratified by average read count
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STUCK IN A DULL, LOW PAYING JOB?
UANT TO MAKE BIG MONEY?. - .

!
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|
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FINISHED HIGH SCHOOL!

0 Yes! I want to get in on the ground Hour of this ex-
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