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Reproducibility crisis

> Reproducibility in biomedical sciences has attracted a
lot of attention in the last 10 years
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Why data and code sharing?

> Data are precious due to limited
o Amount of samples
o Resources
o Budget

“Anyone who believes in indefinite growth in anything physical, on
a physically finite planet, is either mad or an economist.”

— Kenneth E. Boulding

> Benefits of sharing data and code
o Replicability
o Reproducibility
o Reusability
o Post-publication peer review



High-throughput in vitro drug screening

Drug sensitivity screening
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Long history of data sharing in pharmacogenomics
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More to come...
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Predictors trained on one dataset

hardly validate on an independent set
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Comparative studies
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Challenges in pharmacogenomic
analyses



https://github.com/bhklab/PharmacoGx

PharmacoGx in a nutshell
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PharmacoSet S4 class

@ annotation:

$ name: Acronym of the pharmacogenomic dataset.

$ dateCreated: When the object was created.

$ sessionInfo: Software environment used to create the object.
$ call: Set of parameters used to create the object.

datasetType: Either 'sensitivity’, ‘perturbation’, or 'both’

cell: data frame annotating all cell lines investigated in the study.
drug: data frame annotating all the drugs investigated in the study.
sensitivity:

ONONORS

$ n: Number of experiments for each cell line treated with a given drug

$ info: Metadata for each pharmacological experiment.

$ raw: All cell viability measurements at each drug concentration from the drug dose-response curves.
$ phenotype: Drug sensitivity values summarizing each dose-response curve (ICs9, AUC, etc.)

@ perturbation:

$ n: Number of experiments for each cell line perturbed by a given drug, for each molecular data type
$ info: 'The metadata for the perturbation experiments is available for each molecular type by calling
the appropriate info function’

@ molecularProfiles: List of ExpressionSet objects containing the molecular profiles of the cell lines,
such as mutations, gene expressions, or copy number variations.

— MultiAssayExperiment
T NOBOEOBOBRBRERERERERBREY r



PharmacoGx enables meta-analysis

Datasets available today:
CMAP, GDSC, CCLE and gCSiI

In the oven:
L1000, NCI60, GSK, GNE,
CTRPv2, GRAY



http://web.expasy.org/cellosaurus/
http://web.expasy.org/cellosaurus/
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Fitting of drug dose-response curves
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Correlations of drug sensitivity data

2013 Inconsistency in large pharmacogenomics studies
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Correlations of drug sensitivity data

2015 Revisiting inconsistency in large pharmacogenomic studies
Pharmacogenomic agreement between two cancer cell line data sets
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Correlations of drug sensitivity data

2016 Reproducible pharmacogenomic profiling of cancer cell line panels
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Drug sensitivity

Drug sensitivity
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Conclusions

> Pharmacogenomics is a hot field, new datasets and
new players everyday

o You can even stay in the game after pissing off the major
league :-)

> Great need for standardization
o Experimental protocols
o Data processing

o Annotations

> PharmacoGx provides a unified platform for meta-
analysis of pharmacogenomic studies

Our curation is far from perfect, we need your feedback
to make it better!




Future directions

> MultiAssayExperiment (MAE) to replace the list of
ExpressionSet objects and better integrate diverse
molecular profiles -- Workshop session 3

> PharmacoDb: Companion web-application to
faciltate exploration of the large compendium of
published pharmacogenomics datasets

> Development of statistical/machine learning
methods to jointly analyze heterogeneous
pharmacogenomics datasets

> Extension to drug combinations (AstraZeneca-
Sanger DREAM Challenge)



PharmacoGx can be safely used by

Data vultures Data vampires
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Research parasites = Data Sharing

Dan L. Longo, M.D., and Jeffrey M. Drazen, M.D.
January 2016

Scientists? }
[...] concern held by some is that a new class
person will emerge — people who had nothing to do with
the design and execution of the st~ = ther
group’s data for their own ends, poS| Doing Science? }ﬁ
research productivity planned by th , or
even use the data to try to disprove what the original
investigators had posited. There is concern among some
front-line researchers that the system will be taken over

by what some researchers have characterized as
‘research parasites.”




Acknowledgements

BHK lab
Princess Margaret Cancer Centre

> Zhaleh Safikhani
Petr Smirnov
Nehme El-Hachem

Mark Freeman
Ali Madani

v Vv VvV VvV

Collaborators

> John Quackenbush
> Christos Hatzis
> Christopher Mason
> Leming Shi CUA canadian A,\‘, NSERC
> Anna Goldenberg g sociery gOICR CRSNG
> Nicolai Juul-Birkbak
> Andrew Beck M_ ‘ ’ The Gancer
- esearch
> Hugo Aerts CIHR lec Society




Thank you
for your attention!

Questions?



