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Two applications of RNA-Seq 

Discovery 
• find new transcripts 
• find transcript boundaries 
• find splice junctions 

 
Comparison 
Given samples from different experimental conditions, find 
effects of the treatment on 

• gene expression strengths 
• isoform abundance ratios, splice patterns, transcript 

boundaries 

 



Alignment 

Should one align to the genome or the 
transcriptome? 
 
to transcriptome 
• easier, because no gapped alignment necessary 
 (but: splice-aware aligners are mature by now) 
but: 
• risk to miss possible alignments! 
   (transcription is more pervasive than annotation 
     claims) 

 
→ Alignment to genome preferred. 

 
 
 



Count data in HTS 

             control-1  control-2  control-3    treated-1    treated-2 

FBgn0000008         78         46         43           47           89 

FBgn0000014          2          0          0            0            0 

FBgn0000015          1          0          1            0            1 

FBgn0000017       3187       1672       1859         2445         4615 

FBgn0000018        369        150        176          288          383 

[...] 

 

• RNA-Seq 
• Tag-Seq 
• ChIP-Seq 
• HiC 
• Bar-Seq 
• ... 

 



Counting rules 

• Count reads, not base-pairs 
• Count each read at most once. 
• Discard a read if 

• it cannot be uniquely mapped 
• its alignment overlaps with several genes 
• the alignment quality score is bad 
• (for paired-end reads) the mates do not map to 

the same gene 
 

 



Why we discard non-unique alignments 

gene A gene B 

control condition 

treatment condition 



Normalization for library size 

• If sample A has been sampled deeper than sample 
B, we expect counts to be higher.  
 

• Naive approach: Divide by the total number of 
reads per sample 

• Problem: Genes that are strongly and differentially 
expressed may distort the ratio of total reads. 
 
 



Normalization for library size 

• If sample A has been sampled deeper than sample 
B, we expect counts to be higher.  
 

• Naive approach: Divide by the total number of 
reads per sample 

• Problem: Genes that are strongly and differentially 
expressed may distort the ratio of total reads. 
 

• By dividing, for each gene, the count from sample 
A by the count for sample B, we get one estimate 
per gene for the size ratio or sample A to sample B. 

• We use the median of all these ratios. 
 



Normalization for library size 



Normalization for library size 



Normalization for library size 

To compare more than two samples: 
 

• Form a “virtual reference sample” by taking, for 
each gene, the geometric mean of counts over all 
samples 

• Normalize each sample to this reference, to get 
one scaling factor (“size factor”) per sample. 
 

Anders and Huber, 2010 
similar approach: Robinson and Oshlack, 2010 

 



Sample-to-sample variation 

comparison of  
two replicates 

comparison of  
treatment vs control 



Effect size and significance 

Fundamental rule: 
• We may attribute a change in expression to a 

treatment only if this change is large compared to 
the expected noise. 
 

To estimate what noise to expect, we need to 
compare replicates to get a variance v. 

If we have m replicates, the standard error of the 
mean is (v/m). 



What do we mean by differential expression? 

A treatment affects some gene, which in turn affect 
other genes. 
In the end, all genes change, albeit maybe only 
slightly. 

 



What do we mean by differential expression? 

A treatment affects some gene, which in turn affect 
other genes. 
In the end, all genes change, albeit maybe only 
slightly. 

 
Potential stances: 
• Biological significance: We are only interested in 

changes of a certain magnitude. (effect size > 
some threshold) 

• Statistical significance: We want to be sure about 
the direction of the change. (effect size ≫ noise ) 
 



Counting noise 

In RNA-Seq, noise (and hence power) depends on 
count level. 

 
Why? 
 



The Poisson distribution 

• This bag contains very many 
small balls, 10% of which are 
red. 
 

• Several experimenters are 
tasked with determining the 
percentage of red balls. 
 

• Each of them is permitted to 
draw 20 balls out of the bag, 
without looking. 
 



3 / 20  = 15% 

1 / 20  =   5% 

2 / 20  = 10% 

0 / 20  =  0% 



7 / 100  =   7% 

10 / 100  = 10% 

8 / 100  =   8% 

11 / 100 = 11% 



Poisson distribution 

• If p is the proportion of red balls in the bag, and 
we draw n balls, we expect µ=pn balls to be red. 

• The actual number k of red balls follows a Poisson 
distribution, and hence k varies around its 
expectation value µ with standard deviation µ. 
 



Poisson distribution 

• If p is the proportion of red balls in the bag, and 
we draw n balls, we expect µ=pn balls to be red. 

• The actual number k of red balls follows a Poisson 
distribution, and hence k varies around its 
expectation value µ with standard deviation µ. 

• Our estimate of the proportion p=k/n hence has 
the expected value µ/n=p and the standard error  

• Δp =  µ/ n = p /  µ. The relative error is Δp/p = 
1 /  µ. 
 



Poisson distribution: Counting uncertainty 

expected number of 
red balls 

standard deviation of 
number of red balls 

relative error in  estimate 
for the fraction of red balls 

10 10 = 3 1 / 10 = 31.6%  

100 100 =   10 1 / 100 = 10.0% 

1,000 1,000 =   32 
 1 / 1000 =   3.2% 

10,000 10,000 = 100 
 1 / 10000 =   1.0% 



• For Poisson-distributed data, the variance is equal 
to the mean.  
 

• Hence, no need to estimate the variance, 
according to many papers 
 

Really? 



Counting noise 

• Consider this situation: 
• Several flow cell lanes are filled with aliquots of the 

same prepared library.  
• The concentration of a certain transcript species is 

exactly the same in each lane.  
• We get the same total number of reads from each lane. 

• For each lane, count how often you see a read from the 
transcript. Will the count all be the same? 



Shot noise 

• Consider this situation: 
• Several flow cell lanes are filled with aliquots of the 

same prepared library.  
• The concentration of a certain transcript species is 

exactly the same in each lane.  
• We get the same total number of reads from each lane. 

• For each lane, count how often you see a read from the 
transcript. Will the count all be the same? 

• Of course not. Even for equal concentration, the counts will 
vary. This theoretically unavoidable noise is called shot 
noise. 
 



Shot noise 

• Shot noise: The variance in counts that persists 
even if everything is exactly equal. (Same as the 
evenly falling rain on the paving stones.) 
 

• Stochastics tells us that shot noise follows a 
Poisson distribution. 

• The standard deviation of shot noise can be 
calculated: it is equal to the square root of the 
average count. 
 



Sample-to-sample noise 

Now consider 
• Several lanes contain samples from biological 

replicates. 
• The concentration of a given transcript varies 

around a mean value with a certain standard 
deviation. 

• This standard deviation cannot be calculated, it has 
to be estimated from the data. 
 



Differential expression: Two questions 

Assume you use RNA-Seq to determine the concentration of 
transcripts from some gene in different samples. What is your 
question? 

 
• 1. “Is the concentration in one sample different from the 

expression in another sample?” 
 

or 
 

• 2. “Can the difference in concentration between treated 
samples and control samples be attributed to the 
treatment?” 
 



Fisher’s exact test between two samples 

Example data: fly cell culture, knock-down of pasilla  
     (Brooks et al., Genome Res., 2011) 

knock-down sample T2  
     versus 
control sample U3 

red: significant genes according to Fisher test (at 10% FDR) 



Fisher’s exact test between two samples 

Example data: fly cell culture, knock-down of pasilla  
     (Brooks et al., Genome Res., 2011) 

knock-down sample T2  
     versus 
control sample U3 

control sample U2 
     versus 
control sample U3 

red: significant genes according to Fisher test (at 10% FDR) 



The negative binomial distribution 

  
A commonly used generalization of the Poisson  
distribution with two parameters 



The NB from a hierarchical model 

Biological sample with 
mean µ and variance v 
 
 
Poisson distribution with  
mean q and variance q. 
 

 
Negative binomial with  
mean µ and variance q+v. 



Testing: Generalized linear models 

Two sample groups, treatment and control. 
 
Assumption: 
• Count value for a gene in sample j is generated by NB 

distribution with mean s j  μj and dispersion α. 
 
Null hypothesis: 
• All samples have the same μj. 

 
Alternative hypothesis: 
• Mean is the same only within groups: 
    log μj = β0  + xj βT             
                                              xj = 0 for if j is control sample 
      xj = 1 for if j is treatment sample 



Testing: Generalized linear models 

 log μj = β0  + xj βT             
                                              xj = 0 for if j is control sample 

      xj = 1 for if j is treatment sample 
 
Calculate the coefficients β that fit best the observed data. 
 
Is the value for βT  significantly different from null? 
 
Can we reject the null hypothesis that it is merely cause by 
noise? 
 
The Wald test gives us a p value. 



p values 

The p value from the Wald test indicates the 
probability that the observed difference between 
treatment and control (as indicated by βT), or an even 
stronger one, is observed even though the there is no 
true treatment effect. 



Multiple testing 

• Consider: A genome with 10,000 genes 
• We compare treatment and control. Unbeknownst 

to us, the treatment had no effect at all. 
• How many genes will have p < 0.05? 



Multiple testing 

• Consider: A genome with 10,000 genes 
• We compare treatment and control. Unbeknownst 

to us, the treatment had no effect at all. 
• How many genes will have p < 0.05? 
 
• 0.05 × 10,000 = 500 genes. 



Multiple testing 

• Consider: A genome with 10,000 genes 
• We compare treatment and control 
• Now, the treatment is real. 

 
• 1,500 genes have p < 0.05. 
• How many of these are false positives? 

 



Multiple testing 

• Consider: A genome with 10,000 genes 
• We compare treatment and control 
• Now, the treatment is real. 

 
• 1,500 genes have p < 0.05. 
• How many of these are false positives? 

 
• 500 genes, i.e., 33% 

 



Dispersion 

• A crucial input to the GLM procedure and the Wald 
test is the estimated strength of within-group 
variability. 
 

• Getting this right is the hard part. 



Replication at what level? 

• Prepare several libraries from the same sample 
(technical replicates). 
 controls for measurement accuracy 
 allows conclusions about just this sample 



Replication at what level? 

• Prepare several samples from the same cell-line 
(biological replicates). 
 controls for measurement accuracy and 

variations in environment an the cells’ response 
to them.  

 allows for conclusions about the specific cell 
line 



Replication at what level? 

• Derive samples from different individuals 
(independent samples). 
 controls for measurement accuracy, variations 

in environment and variations in genotype. 
 allows for conclusions about the species 



How much replication? 

Two replicates permit to 
• globally estimate variation 

 
Sufficiently many replicates permit to 
• estimate variation for each gene 
• randomize out unknown covariates 
• spot outliers 
• improve precision of expression and fold-change 

estimates 
 



Estimation of variability is the bottleneck 

Example: A gene differs by 20% between samples 
within a group (CV=0.2) 
 
What fold change gives rise to p=0.0001? 
 

Number of 
samples 

4 6 8 10 20 100 

CV known 55% 45% 39% 35% 35% 11% 

CV estimated 

(assuming normality and use of z or t test, resp.) 



Estimation of variability is the bottleneck 

Example: A gene differs by 20% between samples 
within a group (CV=0.2) 
 
What fold change gives rise to p=0.0001? 
 

Number of 
samples 

4 6 8 10 20 100 

CV known 55% 45% 39% 35% 35% 11% 

CV estimated 1400% 
(14x) 

180% 
(1.8x) 

91% 64% 31% 11% 

(assuming normality and use of z or t test, resp.) 



Shrinkage estimation of variability 

Comparison of normalized counts 
between two replicate samples 

 
(Drosophila cell culture, treated with siRNA, 

data by Brooks et al., 2011) 

Core assumption: 
Genes of similar expression strength 
have similar sample-to-sample 
variance. 
 
Under this assumption, we can 
estimate variance with more 
precision. 

Baldi & Long (2001); Lönnsted & Speed 
(2002); Smyth (2004); Robinson, 
McCarthy & Smyth (2010); Wu et al 
(2013);… 



Shrinkage estimation of variability 



Dispersion 

• Minimum variance of count data: 
v = μ     (Poisson) 
 

• Actual variance: 
v = μ + α μ ² 
 

• α : “dispersion”   α = (μ - v) / μ ²  
(squared coefficient of variation of extra-Poisson 
variability) 



Shrinkage estimation of variability 



Shrinkage estimation of variability 



Dispersion shrinkage in DESeq2 

• Estimate dispersion for each gene (using only that gene’s 
count data) 

• Fit dependence on mean. 
• Fit log-normal empirical prior for true dispersion scatter 

around fitted values. 
• Narrow prior to account for sampling width. 
• Calculate maximum a-posteriori values as final dispersion 

estimates. 
• Use raw values for high-dispersion outliers. 
 
 (Similar approach: DSS by Wu, Wang & Wu, 2013) 



Weak genes have exaggerated effect sizes 



Shrinkage estimation of effect sizes 

without shrinkage with shrinkage 



Shrinkage estimation of effect sizes 

Procedure: 
• Fit GLMs for all genes without shrinkage. 
• Estimate normal empirical-Bayes prior from non-

intercept coefficients. 
• Adding log prior to the GLMs’ log likelihoods 

results in a ridge penalty term. 
• Fit GLMs again, now with the penalized likelihood 

to get shrunken coefficients. 



From testing to estimating 

• Testing: Is the gene’s change noticeably different 
from zero?  
Can we say whether it is up or down? 

 
• Estimation: How strong is the change?  

 
  
  



From testing to estimating 

• Testing: Is the gene’s change noticeably different 
from zero?  
Can we say whether it is up or down? 

 
• Estimation: How strong is the change?  

How precise is this estimate? 
 

 Fold change estimates need information on their 
standard error. 



From testing to estimating 

 Fold change estimates need information on their 
standard error. 

 
It is convenient to have the same precision for all 
fold-change estimates. 
 
Hence: Shrinkage. (variance-bias trade-off) 

 
 



Gene ranking 

How to rank a gene list to prioritize down-stream 
experiments? 
• by p value? 
• by log fold change? 



Gene ranking 

How to rank a gene list to prioritize down-stream 
experiments? 
• by p value? 
• by log fold change? 

 
• by shrunken log fold change! 



Gene-set enrichment analysis 

Given the list of genes with strong effects in an 
experiment (“hits”): What do they mean? 
 
Common approach: Take a collection of gene sets 
(e.g., GO, KEGG, Reactome, etc.), look for sets that 
are enriched in hits. 



Gene-set enrichment analysis 

Given the list of genes with strong effects in an 
experiment (“hits”): What do they mean? 
 
Common approach: Take a collection of gene sets 
(e.g., GO, KEGG, Reactome, etc.), look for sets that 
are enriched in hits. 



Gene-set enrichment analysis 

Two approaches: 
 
Categorical test: Is the gene set enriched for 
significantly differentially-expressed genes? 
 
Continuous test: Are the fold changes of the genes in 
the set particularly strong?  



Gene-set enrichment analysis: 
Worries 

Power in RNA-Seq depends on counts. 
Hit lists are enriched for genes with high count 
values: strong genes, and genes with long transcripts. 
 
This causes bias in categorical tests. 

 
(e.g., Oshlack & Wakefield, 2009) 



Gene-set enrichment analysis: 
Worries 

Fold-change estimates in RNA-Seq depends on 
counts. 
Genes with low counts have exaggerated fold 
changes. 
 
This causes bias in continuous tests. 

 
(e.g., Oshlack & Wakefield, 2009) 



Gene-set enrichment analysis: 
Shrinkage to the rescue 

After shrinkage, log-fold-changes a re homoskedastic. 
This makes a continuous test easy:  



Gene-set enrichment analysis: 
Shrinkage to the rescue 

After shrinkage, log-fold-changes (LFCs) are 
homoskedastic. This makes a continuous test easy: 
 
Perform an ordinary t test: 
•  Is the mean of the LFCs of all the genes in the set 

non-zero? 



GSEA with shrunken log fold changes 

fly cell culture, knock-down of pasilla versus control  (Brooks et al., 2011) 
 
turquoise circles: genes in Reactome Path 3717570 
         “APC/C-mediated degradation of cell cycle proteins” 
    56 genes, avg LFC: -0.15,  p value: 4‧10-11 (t test) 



More things to do with shrinkage: 
The rlog transformation  

Many useful methods want homoscedastic data: 
• Hierarchical clustering 
• PCA and MDS 

 
But: RNA-Seq data is not homoscedastic. 

 



More things to do with shrinkage: 
The rlog transformation  

Many useful methods want homoscedastic data: 
• Hierarchical clustering 
• PCA and MDS 

 
But: RNA-Seq data is not homoscedastic. 

 



More things to do with shrinkage: 
The rlog transformation  

RNA-Seq data is not homoscedastic. 
 
• On the count scale, large counts have large 

(absolute) variance. 
 
• After taking the logarithm, small counts show 

excessive variance. 
 



Visualization of rlog-transformed data: 
Sample clustering and PCA 

Data: Parathyroid samples from Haglung et al., 2012 



Visualizationof rlog-transformed data: 
Gene clustering 



More things to do with shrinkage: 
The rlog transformation  

Conceptual idea of the rlog transform: 
 
Log-transform the average across samples of each 
gene’s normalized count. 
 
Then “pull in” the log normalized counts towards the 
log averages. Pull more for weaker genes. 



More things to do with shrinkage: 
The rlog transformation  

Procedure: 
• Fit log-link GLM with intercept for average and one 

coefficient per sample. 
• Estimate empirical-Bayes prior from sample 

coefficients. 
• Fit again, now wth ridge penalty from EB prior. 
• Return fitted linear predictors. 



Summary: Effect-size shrinkage 

A simple method that makes many things easier, 
including: 
• visualizing and interpreting effect sizes 
• ranking genes 
• performing GSEA 
• performing clustering and ordination analyses 



Complex designs 

Simple: Comparison between two groups. 
 
More complex: 
• paired samples 
• testing for interaction effects 
• accounting for nuisance covariates 
• … 
 



GLMs: Blocking factor 

Sample treated sex 

S1 no male 

S2 no male 

S3 no male 

S4 no female 

S5 no female 

S6 yes male 

S7 yes male 

S8 yes female 

S9 yes female 

S10 yes female 



GLMs: Blocking factor 

full model for gene i: 

reduced model for gene i: 



GLMs: Interaction 

full model for gene i: 

reduced model for gene i: 



GLMs: paired designs 

•   Often, samples are paired (e.g., a tumour and  
    a healthy-tissue sample from the same patient) 
 
•   Then, using pair identity as blocking factor improves power. 

full model: 

reduced model: 



GLMs: Dual-assay designs 

How does the affinity of an RNA-binding protein to  
mRNA change under some drug treatment? 
 
Prepare control and treated samples (in replicates)  
and perform on each sample RNA-Seq and CLIP-Seq. 
 
For each sample, we are interested in the  
ratio of CLIP-Seq to RNA-Seq reads. 
 
How is this ratio affected by treatment? 



GLMs: CLIP-Seq/RNA-Seq assay 

 
 
full model: 
   count ~ assayType + treatment + assayType:treatment 
 
 

reduced model: 
   count ~ assayType + treatment 
 
 



GLMs: CLIP-Seq/RNA-Seq assay 

 
 
full model: 
   count ~ sample + assayType + assayType:treatment 
 
 

reduced model: 
   count ~ sample + assayType 
 
 



Genes and transcripts 

• So far, we looked at read counts per gene. 
 
A gene’s read count may increase 
• because the gene produces more transcripts 
• because the gene produces longer transcripts 

 
How to look at gene sub-structure? 



Assigning reads to transcripts 

100 reads 10 reads 
 

from A 

30 reads 
 

from B 

A 

B 



Assigning reads to transcripts 

200 reads 
 

  (50 from A, 
   150 from B?) 

5 reads 
 

from A 

15 reads 
 

from B 

A 

B 

total:   A:   55 reads 
           B: 165 reads     (accuracy?) 



One step back:  
Differential exon usage 

Our tool, DEXSeq, tests for differential usage of 
exons. 
 
 
Usage on an exon =  

number of reads mapping to the exon 
number of reads mapping to any other exon of the same gene 



Differential exon usage -- Example 



Differential exon usage -- Example 



Differential usage of  
exons or of isoforms? 

A 

B 

C 

D 

casette exon with  
well-understood 
function 

casette exon with  
uncharacterized 
function 



Summary 

• Estimating fold-changes without estimating 
variability is pointless. 

• Estimating variability from few samples requires 
information sharing across genes (shrinkage) 

• Shrinkage can also regularize fold-change 
estimates.  (New in DESeq2) 

• This helps with interpretation, visualization, GSEA, 
clustering, ordination, etc. 

• Testing for exon usage sheds light on alternative 
isoform regulation (DEXSeq) 
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