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Multiple testing

Many data analysis approaches in genomics rely on item-by-item (i.e. 

multiple) testing:

Microarray or RNA-Seq expression profiles of  “normal” vs “perturbed” 

samples: gene-by-gene

ChIP-chip: locus-by-locus

RNAi and chemical compound screens

Genome-wide association studies: marker-by-marker

QTL analysis: marker-by-marker and trait-by-trait

(You can also think of  this as an extreme form of  regularisation)
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Basic dogma of  data analysis

Can always increase sensitivity 
on the cost of  specificity, or vice 
versa, the art is to 

- optimize both

- find the best trade-off
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Testing vs classification



Testing
Classical hypothesis test:
! null hypothesis H0

! test statistic:   data ↦ real number t
! α = P( t ∈ Γrej  |  H0 true)!      type I error (false positive)

! β = P( t ∉ Γrej  |  H0  false)     type II error (false negative)



Avoid fallacy 

The p-value is the probability of  seeing a result as 
extreme or more extreme than the observed data, 
when the null hypothesis is true.

It it not the probability that the null hypothesis is 
true.

Absence of  evidence ⧧ evidence of  absence



When n tests are 

performed, what 

is the extent of  type I 

errors, and 

how can it be controlled?

E.g.: 20,000 tests at 

α=0.05, 

all with H0 true: expect 

1,000 false positives

Multiple Testing



Experiment-wide type I error rates
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Family-wise error rate: P(V > 0), the probability of  one or more false 

positives. For large m0, this is difficult to keep small.

False discovery rate: E[ V / max{R,1} ], the expected fraction of  false 

positives among all discoveries. 

Not 
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hypotheses
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Benjamini Hochberg multiple testing adjustment

slope: α / #genes



Benjamini Hochberg multiple testing adjustment

slope: α / #genes

BH = {
        i <- length(p):1
        o <- order(p, decreasing = TRUE)
        ro <- order(o)
        pmin(1, cummin(n/i * p[o]))[ro]
    }



Schweder and Spjøtvoll p-value plot

For a series of  
hypothesis tests H1...Hm 
with p-values pi, plot

(1−pi, N(pi))      for all i

where N(p) is the 
number of  p-values 
greater than p.

Schweder T, Spjøtvoll E (1982) 
Plots of P-values to evaluate 
many tests simultaneously. 
Biometrika 69:493–502.



is chosen, and points will be colored red if the adjusted p-value is less than 0.1. Points
which fall out of the window are plotted as open triangles.

plotMA(dds)

Figure 1: The MA-plot shows the log2 fold changes from the treatment over the mean
of normalized counts, i.e. the average of counts normalized by size factor. The DESeq2
package incorporates a prior on log2 fold changes, resulting in moderated estimates from
genes with very low counts, as can be seen by the narrowing of spread of points on the
left side of the plot.

4.2 More information on results columns

Information about which variables and tests were used can be found by calling the
function mcols on the results object.

mcols(res, use.names=TRUE)

DataFrame with 5 rows and 2 columns

type

<character>

baseMean intermediate

log2FoldChange results

lfcSE results

pvalue results

padj results

description

<character>

baseMean the base mean over all rows

DESeq2 lab - parathyroid dataset
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Figure 3: Histogram of the p values returned by the test for di↵erential expression.

high Poisson noise that any biological e↵ect is drowned in the uncertainties from the read counting.
The MA plot suggests that for genes with less than one or two counts per sample, averaged over all
samples, there is no real inferential power. We loose little if we filter out these genes:

> filterThreshold <- 2.0

> keep <- rowMeans( counts( dds, normalized=TRUE ) ) > filterThreshold

> table( keep )

keep

FALSE TRUE

41503 19117

Note that none of the genes below the threshold had a significant adjusted p value

> min( res$padj[!keep], na.rm=TRUE )

[1] 0.421

At first sight, there may seem to be little benefit in filtering out these genes. After all, the test
found them to be non-significant anyway. However, these genes have an influence on the multiple
testing adjustment, whose performance improves if such genes are removed. Compare:

> table( p.adjust( res$pvalue, method="BH" ) < .1 )

FALSE TRUE

28592 505
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Figure 2: The mean of normalized counts provides an independent statistic for filtering
the tests. It is independent because the information about the variables in the design
formula is not used. By filtering out genes which fall to the left of the red line, the
majority of the low p-values are kept.

resFilt <- res[use,]

resFilt$padj <- p.adjust(resFilt$pvalue, method="BH")

sum(res$padj < .1, na.rm=TRUE)

[1] 1241

sum(resFilt$padj < .1, na.rm=TRUE)

[1] 1422

6.2 Why does it work?

Consider the p value histogram in Figure 3. It shows how the filtering ameliorates the
multiple testing problem – and thus the severity of a multiple testing adjustment – by
removing a background set of hypotheses whose p values are distributed more or less
uniformly in [0, 1].

h1 <- hist(res$pvalue[!use], breaks=50, plot=FALSE)

h2 <- hist(res$pvalue[use], breaks=50, plot=FALSE)

colori <- c( do not pass ="khaki", pass ="powderblue")

barplot(height = rbind(h1$counts, h2$counts), beside = FALSE,

col = colori, space = 0, main = "", ylab="frequency")

text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)),

adj = c(0.5,1.7), xpd=NA)

legend("topright", fill=rev(colori), legend=rev(names(colori)))



Independent filtering
From the set of all rows in the table, 
first filter out those that seem to report negligible signal,
then formally test for differential expression on the rest.

Literature: 
von Heydebreck, Huber, Gentleman (2004)
Chiaretti et al., Clinical Cancer Research (2005)
McClintick and Edenberg (BMC Bioinf. 2006) and references therein
Hackstadt and Hess (BMC Bioinf. 2009)
Bourgon et al. (PNAS 2010)
Many others.
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Figure 3: Left panel: the plot shows the number of rejections (i. e. genes detected as di↵erentially expressed) as a
function of the FDR threshold (x-axis) and the filtering cuto↵ ✓ (line colours, specified as quantiles of the distribution
of the filter statistic). The plot is produced by the rejection_plot function. Note that the lines for ✓ = 0% and
10% are overplotted by the line for ✓ = 20%, since for the data shown here, these quantiles correspond all to the same
set of filtered genes (cf. Figure 1). Right panel: the number of rejections at FDR=10% as a function of ✓.

0% 10% 20% 30% 40% 50%

[1,] 0.895 0.895 0.895 NA NA NA

[2,] 0.997 0.997 0.997 0.998 0.995 0.993

[3,] 0.981 0.981 0.981 NA NA NA

[4,] 0.960 0.960 0.960 0.970 NA NA

[5,] 0.593 0.593 0.593 0.517 0.452 0.412

[6,] 0.951 0.951 0.951 0.964 0.938 0.924

The rows of this matrix correspond to the genes (i. e., the rows of res) and the columns to the BH-adjusted p-values
for the di↵erent possible choices of cuto↵ theta. A value of NA indicates that the gene was filtered out at the
corresponding filter cuto↵. The rejection_plot function takes such a matrix and shows how rejection count (R)
relates to the choice of cuto↵ for the p-values. For these data, over a reasonable range of FDR cuto↵s, increased
filtering corresponds to increased rejections.

> rejection_plot(pBH, at="sample",

+ xlim=c(0, 0.5), ylim=c(0, 2000),

+ xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="")

The plot is shown in the left panel of Figure 3.

4.1 Choice of filtering cuto↵

If we select a fixed cuto↵ for the adjusted p-values, we can also look more closely at the relationship between the
fraction of null hypotheses filtered and the total number of discoveries. The filtered_R function wraps filtered_p
and just returns rejection counts. It requires you to choose a particular p-value cuto↵, specified through the argument
alpha.

> theta = seq(from=0, to=0.8, by=0.02)

> rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and
true null hypotheses, very large values of ✓ reduce power in this example:

Diagnostics for independent filtering

Increased detection rates
Stage 1 filter: sum of  counts, across samples, for each row, and 
remove the fraction θ  that are  smallest
Stage 2: standard NB-GLM test
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Increased power?
Increased detection rate implies increased power 

only if  we are still controlling type I errors at the same level as 

before.
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Increased power?
Increased detection rate implies increased power 

only if  we are still controlling type I errors at the same level as 

before.

Concerns: 
• Have we thrown away good genes?
• Use a data-driven criterion in stage 1, but 
do type I error consideration only on 
number of  genes in stage 2

Informal justification:
Filter does not use covariate information



What do we need for type I error control?

I. For each individual (per gene) test statistic, we need to know its 

correct null distribution

II. If  and as much as the multiple testing procedure relies on certain 

(in)dependence structure between the different test statistics, our test 

statistics need to comply. 

I.: one (though not the only) solution is to make sure that by filtering, 

the null distribution is not affected - that it is the same before and after 

filtering

II.: See later



Result: independence of filter and test statistics under 
the null hypothesis

For genes for which the null hypothesis is true (X1 ,..., Xn exchangeable), 
f (filter) and g (test) are statistically independent in all of the following cases: 

• NB-test (DESeq(2)):
! f: overall count sum (or mean)

• Normally distributed data (e.g. microarray data after rma or vsn):
! f: overall variance, overall mean
! g: standard two-sample t-statistic, or any test statistic which is scale and 

location invariant.

• Non-parametrically:
! f: any function that does not depend on the
! order of the arguments. E.g. overall variance, IQR.

! g: the Wilcoxon rank sum test statistic.

Also in the multi-class context: ANOVA, Kruskal-Wallis.
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Derivation

Non-parametric case:
Straightforward decomposition of  the joint probability 
into product of  probabilities using the assumptions.

Normal case:
Use the spherical symmetry of  the joint distribution, p-
dimensional N(0, 1σ2), and of  the overall variance; 
and the scale and location invariance of  t. 

This case is also implied by Basu's theorem 

(V complete sufficient for family of  probability 
measures P,  T ancillary  ⇒  T,  V independent)



What do we need for type I error control?

The distribution of  the test statistic under the null.

I. Marginal: for each individual (per gene) test statistic

II. Joint: some multiple testing procedures relies on certain 

independence properties of  the joint distribution

I.: one solution is to make sure that by filtering, the marginal null 

distribution is not affected - that it is the same before and after filtering 

(possible alternative: empirical nulls) ✓



Multiple testing procedures and dependence

1. Methods that work on the p-values only and allow general dependence 

structure: Bonferroni, Bonferroni-Holm (FWER), Benjamini-Yekutieli 

(FDR)

2. Those that work on the data matrix itself, and use permutations to 

estimate null distributions of  relevant quantities (using the empirical 

correlation structure): Westfall-Young (FWER) 

3. Those that work on the p-values only, and make dependence-related 

assumptions: Benjamini-Hochberg (FDR), q-value (FDR)



Diagnostics

Figure 4: The number of rejections at FDR=10% as a function of ✓ (analogous to the right panel in Figure 3) for a
number of di↵erent choices of the filter statistic.

> plot(theta, rejBH, type="l",

+ xlab=expression(theta), ylab="number of rejections")

The plot is shown in the right panel of Figure 3.

4.2 Choice of filtering statistic

We can use the analysis of the previous section 4.1 also to inform ourselves about di↵erent possible choices of filter
statistic. We construct a dataframe with a number of di↵erent choices.

> filterChoices = data.frame(

+ mean = res$filterstat,

+ geneID = badfilter,

+ min = rowMin(counts(cds)),

+ max = rowMax(counts(cds)),

+ sd = rowSds(counts(cds))

+ )

> rejChoices = sapply(filterChoices, function(f)

+ filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH"))

> library("RColorBrewer")

> myColours = brewer.pal(ncol(filterChoices), "Set1")

> matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2,

+ xlab=expression(theta), ylab="number of rejections")

> legend("bottomleft", legend=colnames(filterChoices), fill=myColours)

The result is shown in Figure 4. It indicates that for the data at hand, mean, max and sd provide similar performance,
whereas the other choices are less e↵ective.

5 Some more plots pertinent to multiple testing

5.1 Joint distribution of filter statistic and p-values

The left panel of Figure 1 shows the joint distribution of filter statistic and p-values. An alternative, perhaps simpler
view is provided by the p-value histograms in Figure 5. It shows how the filtering ameliorates the multiple testing

Diagnostics for independent filtering

Figure 1: Left: scatterplot of the rank (scaled to [0, 1]) of the filter criterion filterstat (x-axis) versus the negative
logarithm of the test pvalue (y-axis). Right: the empirical cumulative distribution function (ECDF) shows the
relationships between the values of filterstat and its quantiles.

This means that by dropping the 40% genes with lowest filterstat, we do not loose anything substantial from our
subsequent results.

For comparison, suppose you had chosen a less useful filter statistic, say, the gene identifiers interpreted as a
decimal number. The analogous scatterplot to that of Figure 1 is shown in Figure 2.

> badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res)))

> plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45)

Figure 2: Scatterplot analogous to Figure 1, but with badfilter.

4 How to choose the filter statistic and the cuto↵?

The filtered_p function in the genefilter package calculates adjusted p-values over a range of possible filtering
thresholds. Here, we call this function on our results from above and compute adjusted p-values using the method of
Benjamini and Hochberg (BH) for a range of di↵erent filter cuto↵s.

> library("genefilter")

> theta = seq(from=0, to=0.5, by=0.1)

> pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

> head(pBH)
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Conclusion
Independent filtering can substantially increase your power at same 

type I error.



Conclusion
Independent filtering can substantially increase your power at same 

type I error.
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Derivation (non-parametric case)

exchangeability

A, B: measureable sets
f: stage 1, g: stage 2

f's permutation invariance

distribution of  g generated 

by permutations



Positive Regression Dependency

On the subset of  true null hypotheses:

If  the test statistics are X = (X1,X2,…,Xm):

For any increasing set D (the product of  rays, each infinite on the 

right), and H0i true, require that 

Prob( X in D | Xi = s ) is increasing in s, for all i.

Important Examples 

Multivariate Normal with positive correlation

Absolute Studentized independent normal

       


