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Multiple testing & Independent filtering



Multiple testing

Many data analysis approaches in genomics rely on item-by-item (i.e.
multiple) testing:

Microarray or RNA-Seq expression profiles of “normal” vs “perturbed”
samples: gene-by-gene

ChlIP-chip: locus-by-locus

RNAI and chemical compound screens

Genome-wide association studies: marker-by-marker

QTL analysis: marker-by-marker and trait-by-trait

(You can also think of this as an extreme form of regularisation)



101

ICS

Statist

<—bias

accuracy—




Basic dogma of data analysis

Can always increase sensitivity
on the cost of specificity, or vice
versa, the artis to

- optimize both

- find the best trade-off




Testing vs classification




Testing

Classical hypothesis test:
null hypothesis H,

test statistic: data ~ real number t
a=P(tel

B=P(tegl

| Hytrue)  type | error (false positive)

rej

| H, false) type Il error (false negative)

rej




Avoid fallacy

The p-value is the probability of seeing a result as
extreme or more extreme than the observed data,
when the null hypothesis is true.

It it not the probability that the null hypothesis is
true.

Absence of evidence + evidence of absence



Multiple Testing

When n tests are
performed, what

is the extent of type |
errors, and

how can it be controlled?

E.g.: 20,000 tests at
a=0.05,
all with H, true: expect

1,000 false positives




Experiment-wide type | error rates

Not
rejected Rejected Total
True null U \' m,
hypotheses
False nuli T S m,
hypotheses
Total m-R R m

Family-wise error rate: P(V > 0), the probability of one or more false
positives. For large m,, this is difficult to keep small.

False discovery rate: E[ V/ max{R,1} ], the expected fraction of false
positives among all discoveries.



FWER: The Bonferroni correction

Suppose we conduct a hypothesis test for each gene ¢ = 1,...,m,
producing

an observed test statistic: 7,

an unadjusted p—value: p,.
Bonferroni adjusted p—values:

~

Py = Min (mpg, 1).

Selecting all genes with p, < a controls the FWER at level «, that is,
Pr(V >0) <a.



Controlling the FDR (Benjamini/Hochberg)

O FDR: the expected proportion of false positives among the significant
genes.

O Ordered unadjusted p—values: p,, <p,, < ... <p, .
O To control FDR = E(V/R) at level «, let

7* = max{j : p,; < (j/m)a}.
Reject the hypotheses H,. forj =1,...,j".

O Is valid for independent test statistics and for some types of
dependence.



Benjamini Hochberg multiple testing adjustment
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Benjamini Hochberg multiple testing adjustment

O - g
) /
i <- length(p):1

o <- order (p, decreasing = TRUE)
ro <- order (o)
pmin(l, cummin(n/i * p[o])) [ro]
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Schweder and Spjostvoll p-value plot
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Schweder T, Spjotvoll E (1982)
Plots of P-values to evaluate
many tests simultaneously.
Biometrika 69:493-502.

For a series of
hypothesis tests H1...Hm
with p-values pi, plot

(1—pi, N(pi))

where N(p) is the
number of p-values
greater than p.

for alli



DESeqg2 lab - parathyroid dataset
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logz fold change
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DESeqg2 lab - parathyroid dataset
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~logg(pvalue)
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DESeqg2 lab - parathyroid dataset
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Independent filtering

From the set of all rows in the table,
first filter out those that seem to report negligible signal,
then formally test for differential expression on the rest.

Literature:
von Heydebreck, Huber, Gentleman (2004)
Chiaretti et al., Clinical Cancer Research (2005)
McClintick and Edenberg (BMC Bioinf. 2006) and references therein
Hackstadt and Hess (BMC Bioinf. 2009)
Bourgon et al. (PNAS 2010)
Many others.



Increased detection rates

Stage 1 filter: sum of counts, across samples, for each row, and
remove the fraction 6 that are smallest
Stage 2: standard NB-GLM test

2000

1500

number of rejections
1000

500

© | I | I

0.0 0.1 0.2 0.3 0.4 0.5
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Increased power?

Increased detection rate implies increased power
only if we are still controlling type | errors at the same level as

before.

o
o
o
ad
o
o
[Tg]

co T

c

S

+—

[&]

2

()] o

= o

5 2

| —

()]

0

£

3

|-
o
o
[Tg]
© | I | I

0.0 0.1 0.2 0.3 0.4 0.5

FDR cutoff (Benjamini & Hochberg adjusted p-value)



Increased power?

Increased detection rate implies increased power
only if we are still controlling type | errors at the same level as
before. o

Concerns:

* Have we thrown away good genes?

* Use a data-driven criterion in stage 1, but
do type | error consideration only on
number of genes in stage 2

Informal justification:
Filter does not use covariate information
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What do we need for type | error control?

|. For each individual (per gene) test statistic, we need to know its

correct null distribution
Il. If and as much as the multiple testing procedure relies on certain
(in)dependence structure between the different test statistics, our test

statistics need to comply.

l.: one (though not the only) solution is to make sure that by filtering,
the null distribution is not affected - that it is the same before and after
filtering

Il.: See later



Result: independence of filter and test statistics under
the null hypothesis

For genes for which the null hypothesis is true (X, ,..., X  exchangeable),
f (filter) and g (test) are statistically independent in all of the following cases:

e NB-test (DESeq(2)):
f: overall count sum (or mean)

e Normally distributed data (e.g. microarray data after rma or vsn):
f: overall variance, overall mean
g: standard two-sample t-statistic, or any test statistic which is scale and
location invariant.

¢ Non-parametrically:
f: any function that does not depend on the
order of the arguments. E.g. overall variance, IQR.
g: the Wilcoxon rank sum test statistic.

Also in the multi-class context: ANOVA, Kruskal-Wallis.



Derivation

Non-parametric case:
Straightforward decomposition of the joint probability
into product of probabilities using the assumptions.

Normal case:
Use the spherical symmetry of the joint distribution, p-
dimensional N(0, 152), and of the overall variance;

and the scale and location invariance of t.

This case is also implied by Basu's theorem

(V complete sufficient for family of probability
measures P, T ancillary = T, V independent)



What do we need for type | error control?

The distribution of the test statistic under the null.
|. Marginal: for each individual (per gene) test statistic

Il. Joint: some multiple testing procedures relies on certain
independence properties of the joint distribution

|.: one solution is to make sure that by filtering, the marginal nuli

distribution is not affected - that it is the same before and after filtering
(possible alternative: empirical nulls)



Multiple testing procedures and dependence

1. Methods that work on the p-values only and allow general dependence

structure: Bonferroni, Bonferroni-Holm (FWER), Benjamini-Yekutieli
(FDR)

2. Those that work on the data matrix itself, and use permutations to
estimate null distributions of relevant quantities (using the empirical
correlation structure): Westfall-Young (FWER)

3. Those that work on the p-values only, and make dependence-related
assumptions: Benjamini-Hochberg (FDR), g-value (FDR)
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Diagnostics
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Conclusion

Independent filtering can substantially increase your power at same
type | error.



Conclusion

Independent filtering can substantially increase your power at same
type | error.
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Bioconductor package genefilter vignette: Diagnostics for
independent filtering

DESeq2 vignette
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Derivation (non-parametric case)

P(feA geB) A, B: measureable sets
f: stage 1, g: stage 2

= [0.(f(X)) 85(9(X)) dP

exchangeability

i' E fa (f o (X)) 85(g o(X)) dP,

f's permutation invariance
- [OA10X) | 3 0u(g00X) |

distribution of g generated

- ﬁéA(f(X)) Plg&B)dky by permutations

- P(fEA)-P(g EB) #



Positive Regression Dependency

On the subset of true null hypotheses:
If the test statistics are X = (X,,X,,...,X, ):

For any increasing set D (the product of rays, each infinite on the
right), and H true, require that

Prob(Xin D | X.=s ) is increasing in s, for all i.

Important Examples
Multivariate Normal with positive correlation

Absolute Studentized independent normal



