
A collection of ChIP-seq analyses: exploration,
relating signal to gene expression, region finding

and differential analyses, relating regions to
annotation

Mark Robinson
mark.robinson@imls.uzh.ch

June 22, 2013

Contents

1 Introduction 1

2 Libraries 2

3 Some datasets to explore 2

4 Exploring the distribution of enrichment 5

5 Looking at peaks/regions (and relationship between height and length) using a
simple caller 8

6 Relating ChIP-seq signal to expression (or other) signal 12

7 Clustering combinations of epigenetic signal 14

8 TSS read counts 15

9 Ideas for further exercises 16

10 Versions 16

1 Introduction

Buongiorno! This vignette is a first attempt at collecting materials for a variety of chromatin
immunoprecipitation sequencing (ChIP-seq) or affinity enrichment analyses that can be done in
Bioconductor, largely making use of the Repitools package. The field of ChIP-seq analyses is
large and only a small representation of analyses are given here. Many of these analyses here are

1

exploratory in nature and we only scratch the surface of what can or should be done. Regardless, the
analyses presented here serve as a stepping stone to further steps, using the vast infrastructure within
Bioconductor for dealing with various data types, integration with other sources of information (e.g.
annotation) and statistical and modeling tools.

2 Libraries

This segment loads all the libraries that are necessary for the running of this document, so that users
know what packages need to be installed.

library("GenomicRanges")

library("Repitools")

library("BSgenome.Hsapiens.UCSC.hg18")

library("chipseq")

library("matrixStats")

Refer to http://bioconductor.org/install/ for further instructions on installing Bioconductor
packages (Note: be sure to use the latest version of R and Bioconductor). See the Section“Versions”
at the end of this document for a full list of the versions being used for this exercise.

See Section “Ideas for further exercises” for useful additional packages in the context of ChIP-seq
(or related) data analysis.

3 Some datasets to explore

For this exercise, we first load some pre-processed ChIP-seq and MBD-seq (capture of methylated
DNA using the methylated binding domain) data that are useful for illustrating the summaries and
plots:

load("d.Rdata")

The first dataset contains several ChIP-seq experiments for prostate epithelial (PrEC) cells. Specif-
ically, the dataset includes a mix of reads of different lengths, is reduced to a subset of the genome
in the interest of allowing exploration on low-memory computers and includes the following experi-
ments: H3K27me3, H3K36me3, H3K4me3, CTCF and an INPUT (genomic DNA) control.

load("methGR.Rdata")

The second dataset contains MBD-seq data on experiments for prostate epithelial (PrEC) and control
cells. This dataset also includes a mix of different read lengths, is reduced in the interest of speed
and low-memory requirements and includes: PrEC INPUT (genomic DNA), MBD capture of the
PrEC methylome regions of the PrEC and of fully methylated DNA (in-vitro-treated with SssI).

NOTE: You may wish to know how similar (real and presumably larger) datasets can be loaded in the
same manner as below. We assume that users would start with a set of already-mapped reads (the

http://bioconductor.org/install/

mapping itself is not discussed here), perhaps in BED or BAM format. These can be easily imported
into R using rtracklayer::import or Repitools::BAM2GRanges/Repitools::BAM2GRangesList from
BED and BAM, respectively. Note that the latter will only work for single-end data, while if BED
files are the input, then paired-end reads should already be represented as single fragments (although
not many ChIP-seq experiments are run in paired-end mode). Notice also that, in the interest of
memory, some of the functions discussed below do not require all reads to be loaded into memory;
some operations can take place by calling the function on a character vector of BAM files. Despite
this, some operations, depending on the dataset, may need a computing environment with larger
memory.

The following commands are simply here for the user to explore a few aspects of the loaded data,
to get a feel for what is contained in the pre-processed object (e.g. number and length of reads).
When applied to another dataset, some of these will be useful spot checks to make sure that data
was read in correctly and so on.

class(d)

[1] "GRangesList"

attr(,"package")

[1] "GenomicRanges"

class(d[[1]])

[1] "GRanges"

attr(,"package")

[1] "GenomicRanges"

names(d)

[1] "PrEC_H3K27me3" "PrEC_H3K36me3" "PrEC_H3K4me3" "PrEC_INPUT"

[5] "PrEC_MBD2IP" "PrECp9_CTCF"

d

GRangesList of length 6:

$PrEC_H3K27me3

GRanges with 1598834 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr15 [18260125, 18260174] -

[2] chr15 [18260186, 18260235] -

[3] chr15 [18260352, 18260401] +

[4] chr15 [18260503, 18260552] +

[5] chr15 [18260923, 18260972] -

...

[1598830] chr22 [49585662, 49585711] -

[1598831] chr22 [49589455, 49589504] -

[1598832] chr22 [49589702, 49589751] +

[1598833] chr22 [49591031, 49591080] -

[1598834] chr22 [49591370, 49591419] +

...

<5 more elements>

seqlengths:

chr1 chr2 chr3 chr4 ... chrX chrY chrM

247249719 242951149 199501827 191273063 ... 154913754 57772954 16571

table(seqnames(d[[1]]))

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11

0 0 0 0 0 0 0 0 0 0 0

chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22

0 0 0 248494 252457 257368 215151 187109 217419 102579 118257

chrX chrY chrM

0 0 0

table(width(d)[[1]])

50

1598834

elementLengths(d)

PrEC_H3K27me3 PrEC_H3K36me3 PrEC_H3K4me3 PrEC_INPUT PrEC_MBD2IP

1598834 3874149 2588869 2255895 2813372

PrECp9_CTCF

2900809

lapply(d, function(u) table(width(u)))

$PrEC_H3K27me3

50

1598834

$PrEC_H3K36me3

49

3874149

$PrEC_H3K4me3

49

2588869

$PrEC_INPUT

36

2255895

$PrEC_MBD2IP

36

2813372

$PrECp9_CTCF

49

2900809

Exercise: Understand what each of these commands returns and apply the same to the the methGR

(second dataset). How many reads are there for each experiment? What are the read lengths?
What chromosomes are covered?

In addition, we will later need some annotation and gene expression data:

load("anno.Rdata")

load("expr.Rdata")

I encourage you to look and understand what this data consists of (e.g. using head, dim, table,
etc.). Briefly, the annotation originates from an Affymetrix file and the expr is RMA-summarized-
and-GC-adjusted expression signal from Affymetrix Gene 1.0 ST arrays.

4 Exploring the distribution of enrichment

One useful plot to explore the gross genome-wide relative enrichment of multiple datasets, which
is useful for comparisons between epigenetic marks on the same cells as well as comparisons of the
same epigenetic mark across cell types (or experimental conditions), is frequency versus coverage.
In ChIP-seq experiments, many regions of the genome are not covered and the rate at which the
coverage decays across experiments is different depending mainly on the diversity (e.g. how many
regions are bound by a transcription factor, how many histone tails are in a particular state) of the
captured library as well as on technical factors, such as antibody efficiency.

The enrichmentPlot function can be used on the GRangesList object:

cols <- c("black","red","blue","darkgreen","orange","grey")

e <- enrichmentPlot(d, seq.len=300, lwd=4, xlim=c(0,200), col=cols)

Under the hood, you can get an idea of what is calculated from this:

lapply(e[1:2],head)

[[1]]

coverage bases

0 0.0000000 2809866899

1 0.6254558 150013808

2 1.2509116 71285157

3 1.8763674 29361284

4 2.5018232 11554262

5 3.1272790 4533644

[[2]]

coverage bases

0 0.0000000 2674188537

1 0.2581212 117019762

2 0.5162424 104721849

3 0.7743636 73916116

4 1.0324848 45563230

5 1.2906060 26403773

Note that the coverage here is already adjusted for the total depth.

A variation of this plot gives the coverage (X-axis) on a log scale, similar to plots that many people
use for looking at power-law relationships, which certainly do not appear to happen in these instances.

set ranges to plot

xr <- range(unlist(lapply(e,".subset",1))+1)

yr <- quantile(unlist(lapply(e,".subset",2)),p=c(.02,.98))

Plot coverage frequency by ChIP experiment, manually

plot(xr*10,type="n",xlim=xr, ylim=yr,

xlab="Coverage+1", ylab="Frequency", log="xy")

dummy <- sapply(1:length(e), function(u) {

points(e[[u]]$coverage, e[[u]]$bases, col=cols[u], lwd=4, type="b")

})

legend("topright",names(d),col=cols,lwd=4)

Exercise: From these analyses, which epigenetic marks show high signal and which show more
disperse signal. Is this expected? (Note: the answer to this requires some biological knowledge).

For methylation affinity capture data (e.g. MBD-seq), the above enrichment analyses are useful,
but there are additional features that we can easily take advantage of. In particular, we expect to
capture DNA in regions where methylation is expected (e.g. CpG islands). As yet another spot
check of such data, we can look at the CpG density of the captured fragments. Specifically, we look
at the CpG density of all reads (possibly extended to expected fragment length).

cpgDensityPlot(methGR, seq.len=300, organism=Hsapiens,

lwd=4, w.function="linear", window=600, verbose=TRUE)

Exercise: Another control of interest is the CpG density of just the genome itself. Take a small
sample of regions from the genome and compare it with the CpG density of the genomic DNA input.
Is the genomic DNA INPUT representative of the genome? Hint: randomly select regions of the
genome and add them to the GRangesList object and recalculate the CpG densities of the random
locations, together with those from the input using cpgDensityCalc or cpgDensityPlot.

NOTE: the cpgDensityCalc and cpgDensityPlot function are not lightning fast and do not scale
well to large datasets.

5 Looking at peaks/regions (and relationship between height
and length) using a simple caller

First, let’s define a simple function, which takes a GRanges object as input, and picks off a set of
high coverage regions, according to some threshold. This isn’t necessarily a great way to pick off
enriched regions, but it serves the purpose of comparing “peak” shapes and sizes across epigenetic
marks.

findRegionsSimple <- function(u,frag.len=300,lower=15) {

u is a 'GRanges' of reads

u <- resize(u,frag.len)

cv <- coverage(u)

scv <- slice(cv, lower=lower)

gr <- as(scv,"GRanges")

mcols(gr)$view <- mcols(gr)$view + 1e6*as.numeric(seqnames(gr))

gr <- unlist(reduce(split(gr,mcols(gr)$view)))

mcols(gr)$mean <- unlist(viewMeans(scv))

mcols(gr)$max <- unlist(viewMaxs(scv))

gr

}

Using the Bioconductor chipseq package, we can get an estimate of the fragment size:

load("d.Rdata")

fr <- sapply(d, estimate.mean.fraglen)

fr

PrEC_H3K27me3 PrEC_H3K36me3 PrEC_H3K4me3 PrEC_INPUT PrEC_MBD2IP

chr15 241.3045 217.6382 199.4089 244.3569 172.7182

chr16 236.5979 214.6161 184.9776 233.5614 147.9715

chr17 236.6848 208.9306 168.2439 236.4944 155.8732

chr18 242.8094 226.2935 218.6905 244.4996 161.7939

chr19 235.8289 209.8650 141.3069 234.0066 149.8096

chr20 237.3873 217.1464 195.8362 238.9443 158.3653

chr21 238.2331 217.4095 208.2938 230.2794 143.1191

chr22 239.7376 211.4404 173.1927 233.7997 150.3181

PrECp9_CTCF

chr15 220.7696

chr16 217.8652

chr17 212.6690

chr18 226.7912

chr19 207.1845

chr20 218.3270

chr21 220.6087

chr22 212.6475

frm <- colMedians(fr)

frm

[1] 237.8102 215.8813 190.4069 235.2505 153.0956 218.0961

We can apply our region calling algorithm to a GRangesList object, as follows:

regs <- mapply(function(u,v) {

cat(".")

findRegionsSimple(u,frag.len=round(v))

}, d, frm)

......

We can extract the called peak heights and widths, calculate some reasonable plotting limits:

whs <- sapply(regs, function(u) {

cbind(width=width(u),mean=mcols(u)$mean)

})

xlim <- quantile(unlist(lapply(whs,function(u) u[,1])), p=c(.01,.99))

ylim <- quantile(unlist(lapply(whs,function(u) u[,2])), p=c(.01,.99))

and then plot them:

par(mfrow=c(3,2))

invisible(mapply(function(u,v) {

plot(u,main=v,pch=19,cex=.4,log="xy", xlim=xlim, ylim=ylim); grid();

}, whs, names(whs)))

Exercise: Study these plots and try to get a feel for whether “enriched” regions are disperse or
punctate. Investigate with a more liberal or conservative peak calling.

6 Relating ChIP-seq signal to expression (or other) signal

One thing that is useful as a spot check, but also as an informative analysis, is the association
between the local ChIP-seq signal and the expression levels of the corresponding genes. Indeed, many
things are already well known about these relationships, including a strong association between DNA
methylation or H3K27me3 enrichment and a repressed state of expression and H3K4me3 enrichment
and an active state. Therefore, exploring these relationships should be a standard way of looking at
these datasets; the functions below facilitate this.

In Repitools, there is a general purpose function called featureScores that grabs ChIP-seq (or
similar) signal, relative to given annotation anchor points (often transcription start sites). Users
must specify what region up- and downstream of the anchor points, what resolution and what level
of smoothing to apply, as follows:

covs <- featureScores(d, anno, up=10000, down=10000, freq=100, s.width=500)

The output ScoresList is basically a matrix of signal with a row for each anchor and a column
for each position up and down from the anchor point (one matrix for each element in the input
GRangesList). Since this is in rectangular form, it can easily be related to a gene-level outcome
variable, such as expression measurements from microarrays or sequencing. A useful summary of the
relationship between ChIP-seq and expression can be conducted by putting the genes into ordered
groups according to expression and averaging the corresponding ChIP-seq signal by group. This can
be done and shown as a heatmap as follows:

binPlots(covs[3],ordering=data.frame(affy=expr),

ord.label="Expression",n.bins=50,plot.type="heatmap")

This shows quite clearly that the groups of genes with the highest expression have a sharp H3K4me3
signal in the region very near to the TSS. The same plot can be visualized as a line plot:

binPlots(covs[3],ordering=data.frame(affy=expr),

ord.label="Expression",n.bins=20,plot.type="line")

The same strategy can be applied to ChIP-seq (or similar) signal with any set of anchor points that
have a corresponding numeric or categorical variable.

Exercise: Summarize the relationship between all the ChIP-seq signals and expression. You may

need to modify the range of signal that is collected by featureScores. For H3K36me3, you may
also need to play with the dist argument (of featureScores).

7 Clustering combinations of epigenetic signal

Another useful summary of ChIP-seq (or similar) data is the combination of signals that are present
in the region surrounding the TSS. Scientists sometimes refer to the “histone code” to describe
the (combinatorial) combination of epigenetic marks and how that relates to the regulation of the
corresponding gene. A simple way to look at this is to take the signal from featureScores and
cluster it. In Repitools, the function clusterPlots uses a standard k-means algorithm, since it is
fast, as follows:

clusterPlots(covs[-c(4,6)], function(x) sqrt(x), expr=expr, plot.type="heatmap",

t.name="ChIP-seq related to Affy expression", n.clusters=8)

Note that the expression data is not used here in the clustering, except to order the final clusters.

Exercise: Explore clusterPlots with plot.type="line". Explore other numbers of clusters and
other combinations of marks.

8 TSS read counts

Sometimes, it is useful to reduce ChIP-seq data to a number that can be compare to expression
values or have statistical inference tools operate on. A simple and useful thing is counting the reads
that fall in a region close to the TSS, for example:

ac <- annotationCounts(d, anno, up=500, down=500, seq.len=200)

head(ac)

PrEC_H3K27me3 PrEC_H3K36me3 PrEC_H3K4me3 PrEC_INPUT PrEC_MBD2IP

7906303 1 13 193 4 0

7917645 11 2 13 3 1

7955117 1 15 178 4 0

7968270 4 8 144 5 0

7981748 1 3 3 2 0

7981773 6 15 12 7 1

PrECp9_CTCF

7906303 6

7917645 4

7955117 5

7968270 9

7981748 2

7981773 15

See also the annotationBlocksCounts function, which is just a wrapper for the Bioconductor ma-
chinery to count reads that fall in blocks.

Exercise: Make some scatter plots (or boxplots in bins, etc.) of read counts of epigenetic marks in
relation to themselves and in relation to the corresponding gene expression values.

9 Ideas for further exercises

If you are finished all of the above exercises, here is a list of some additional analyses that can be
performed within Bioconductor:

1. Apply a proper peak calling algorithm, such as those within PICS orBayesPeak

2. Given a properly replicated dataset, apply differential analyses, such as those within DiffBind
or MMDiff, or using abcdDNA within Repitools

3. Given a set of regions (either those enriched or differentially enriched), use ChIPpeakAnno to
annotate the regions (e.g. find distance to neighbouring genes, etc.).

10 Versions

• R version 3.0.0 (2013-04-03), x86_64-apple-darwin10.8.0

• Locale: de_CH.UTF-8/de_CH.UTF-8/de_CH.UTF-8/C/de_CH.UTF-8/de_CH.UTF-8

• Base packages: base, datasets, graphics, grDevices, grid, methods, parallel, stats, utils

• Other packages: BiocGenerics 0.6.0, Biostrings 2.28.0, BSgenome 1.28.0,
BSgenome.Hsapiens.UCSC.hg18 1.3.19, caTools 1.14, chipseq 1.10.1, cluster 1.14.4,
gdata 2.12.0.2, GenomicRanges 1.12.4, gplots 2.11.0.1, gtools 2.7.1, IRanges 1.18.1,
KernSmooth 2.23-10, lattice 0.20-15, latticeExtra 0.6-24, MASS 7.3-26, matrixStats 0.8.1,
RColorBrewer 1.0-5, Repitools 1.6.0, Rsamtools 1.12.3, ShortRead 1.18.0

• Loaded via a namespace (and not attached): Biobase 2.20.0, bitops 1.0-5, edgeR 3.2.3,
hwriter 1.3, limma 3.16.5, R.methodsS3 1.4.2, Rsolnp 1.14, snowfall 1.84-4, stats4 3.0.0,
tools 3.0.0, truncnorm 1.0-6, zlibbioc 1.6.0

	Introduction
	Libraries
	Some datasets to explore
	Exploring the distribution of enrichment
	Looking at peaks/regions (and relationship between height and length) using a simple caller
	Relating ChIP-seq signal to expression (or other) signal
	Clustering combinations of epigenetic signal
	TSS read counts
	Ideas for further exercises
	Versions

