Contents

I Annotation and Visualization (Intermediate)

1 Gene-centric Annotation

1.1 Gene-centric annotations with AnnotationDbi
1.2 biomaRt and other web-based resources
1.2.1 Using biomaRt
2 Genomic Annotation

Annotatlons, VISuahZ&tlon, and Varlants 2.1 AnnotationHub
2.2 Whole genome SeqUENCES v v v v e e e
2.3 Genemodels e
2.3.1 TxDb.* packages for model organisms L oL
Marc Carlson, Valerie Obenchain, Hervé Pages, Paul Shannon, Dan Tenenbaum, Martin 24 UCSCtracks
Morganl 2.4.1 Easily creating TranscriptDb objects from GTF files

3 Visualizing Sequence Data
31 GVIZ .« oo
June 23 - 28, 2013 3.2 ggbioo
3.3 shiny for easy interactive reports L oL o

II Variants (Advanced)

4 Called Variants: Manipulation and Annotation

4.1 Variantso e
411 Workflows
4.1.2 Bioconductor software L

4.2 VariantAnnotation and VCF Files o

4.3 Large-scale filtering L

4.4 SNP Annotation e
4.4.1 Variants in and around genes
4.4.2 Amino acid coding changes e
4.4.3 SIFT and PolyPhen databases

4.5 Annotation with ensembIVEP e

5 Structural Variants: Tumor / Normal Pairs

6 Regulatory Variants: BAM to Motif

6.1 Introduction

6.2 Tallying variants

6.3 Manipulation

6.4 Regulatory signatures e

6.5 Conclusions e
References

mtmorgan@fhcre.org

28

29
29
30
31
32
34

35

Part 1

Annotation and Visualization
(Intermediate)

Chapter 1

Gene-centric Annotation

Be sure to update your package to the current version by visiting the course web server 192.168.0.9 and
installing (if neccessary) the current version of the Morgan2013 package.

> PKG_OK <- packageDescription("Morgan2013")$Version >= "0.9.0"
> stopifnot (PKG_OK)

Bioconductor provides extensive annotation resources, some of which are summarized in Figure 1.1.
These can be gene-, or genome-centric. Annotations can be provided in packages curated by Bioconduc-
tor, or obtained from web-based resources. Gene-centric AnnotationDbi packages include:

o Organism level: e.g. org.Mm.eg.db, Homo.sapiens.

o Platform level: e.g. hgul33plus2.db, hgul33plus2.probes, hgul33plus2.cdf.
e Homology level: e.g. hom.Dm.inp.db.

e System biology level: GO.db, KEGG.db, Reactome.db.

Examples of genome-centric packages include:

e GenomicFeatures, to represent genomic features, including constructing reproducible feature or
transcript data bases from file or web resources.

e Pre-built transcriptome packages, e.g. TxDb.Hsapiens.UCSC.hgl9.knownGene based on the H.
sapiens UCSC hgl9 knownGenes track.

o BSgenome for whole genome sequence representation and manipulation.

e Pre-built genomes, e.g., BSgenome. Hsapiens. UCSC.hg19 based on the H. sapiens UCSC hgl9 build.

Web-based resources include

e biomaRt to query biomart resource for genes, sequence, SNPs, and etc.

o rtracklayer for interfacing with browser tracks, especially the UCSC genome browser.

e AnnotationHub for retrieving common large genomic resources in formats that readily fit into R
work flows.

1.1 Gene-centric annotations with AnnotationDbi

Organism-level (‘org’) packages contain mappings between a central identifier (e.g., Entrez gene ids)
and other identifiers (e.g. GenBank or Uniprot accession number, RefSeq id, etc.). The name of an
Rpackageorg package is always of the form org.<Sp>.<id>.db (e.g. org.Sc.sgd.db) where <Sp> is a
2-letter abbreviation of the organism (e.g. Sc for Saccharomyces cerevisiae) and <id> is an abbreviation
(in lower-case) describing the type of central identifier (e.g. sgd for gene identifiers assigned by the
Saccharomyces Genome Database, or eg for Entrez gene ids). The ‘How to use the “.db” annotation
packages’ vignette in the AnnotationDbi package (org packages are only one type of ‘.db’ annotation
packages) is a key reference. The ‘.db’ and most other Bioconductor annotation packages are updated
every 6 months.

PLATFORM
PKGS

GENE ID

ORG
PKGS

GENE ID TRANSCRIPT
ONTO ID \ PKGS
GENE ID

HOMOLOGY
PKGS

\

GENE ID

SYSTEM
BIOLOGY
(GO, KEGG)

ONTO ID'S

Figure 1.1: Annotation Packages: the big picture

Table 1.1: Common operations for retrieving and manipulating annotations.

Category Function Description
Discover cols List the kinds of columns that can be returned
keytypes List columns that can be used as keys
keys List values that can be expected for a given keytype
select Retrieve annotations matching keys, keytype and cols
Manipulate setdiff, union, intersect Operations on sets
duplicated, unique Mark or remove duplicates
%inf%, match Find matches
any, all Are any TRUE? Are all?
merge Combine two different data.frames based on shared keys
GRanges* transcripts, exons, cds Features (transcripts, exons, coding sequence) as GRanges.
transcriptsBy , exonsBy Features group by gene, transcript, etc., as GRangesList.
cdsBy

Annotation packages contain an object named after the package itself. These objects are collec-
tively called AnnotationDb objects, with more specific classes named OrgDb, ChipDb or TranscriptDb
objects. Methods that can be applied to these objects include cols, keys, keytypes and select. Common
operations for retrieving annotations are summarized in Table 1.1.

Exercise 1

What is the name of the org package for Drosophila? Load it. Display the OrgDb object for the
org.Dm.eg.db package. Use the cols method to discover which sorts of annotations can be extracted
from it.

Use the keys method to extract UNIPROT identifiers and then pass those keys in to the select
method in such a way that you extract the SYMBOL (gene symbol) and KEGG pathway information
for each.

Use select to retrieve the ENTREZ and SYMBOL identifiers of all genes in the KEGG pathway
00310.

Solution: The OrgDb object is named org.Dm.eg.db.

> library(org.Dm.eg.db)
> cols(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "CHRLOC"
[6] "CHRLOCEND" "ENZYME" "MAP" "PATH" "PMID"
[11] "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"

[16] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE"
[21] "ONTOLOGY" "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "FLYBASE"
[26] "FLYBASECG" "FLYBASEPROT"

> keytypes(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "CHRLOC"

[6] "CHRLOCEND" "ENZYME" "MAP" "PATH" "PMID"
[11] "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"
[16] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE"
[21] "ONTOLOGY" "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "FLYBASE"
[26] "FLYBASECG" "FLYBASEPROT"

> uniprotKeys <- head(keys(org.Dm.eg.db, keytype="UNIPROT"))
> cols <- c("SYMBOL", "PATH")
> select(org.Dm.eg.db, keys=uniprotKeys, cols=cols, keytype="UNIPROT")

UNIPROT SYMBOL PATH

1 Q8IRZO CG3038 <NA>
2 Q95RP8 (CG3038 <NA>
3 Q95RU8 G9a 00310
4 Q9W5H1 CG13377 <NA>
5 P39205 cin <NA>
6 Q24312 ewg <NA>

Selecting UNIPROT and SYMBOL ids of KEGG pathway 00310 is very similar:

> kegg <- select(org.Dm.eg.db, "00310", c("UNIPROT", "SYMBOL"), "PATH")
> nrow(kegg)

[1] 32
> head(kegg, 3)

PATH UNIPROT SYMBOL
1 00310 Q95RU8 G9a
2 00310 Q9W5EO Hmt4-20
3 00310 Q9W3N9 CG10932

Exercise 2

For convenience, 1rTest, a DGEGLM object from an RNA-seq experiment, is included in the Morgan2013
package. The following code loads this data and creates a ‘top table’ of the ten most differentially
represented genes. This top table is then coerced to a data.frame.

> library(Morgan2013)

> library(edgeR)

> library(org.Dm.eg.db)

> data(lrTest)

> tt <- as.data.frame(topTags(1lrTest))

Extract the Flybase gene identifiers (FLYBASE) from the row names of this table and map them to
their corresponding Entrez gene (ENTREZID) and symbol ids (SYMBOL) using select. Use merge to add the
results of select to the top table.

Solution:

(o2

>
>
>
>
>

Table 1.2: Selected packages querying web-based annotation services.
Package Description
biomaRt http://biomart.org, Ensembl and other annotations
rtracklayer http://genome.ucsc.edu, genome tracks.
AnnotationHub ~ Ensembl, Encode, dbSNP, UCSC data objects
uniprot.ws http://uniprot.org, protein annotations
KEGGREST http://www.genome. jp/kegg, KEGG pathways
SRAdb http://www.ncbi.nlm.nih.gov/sra, sequencing experiments.
GEOquery http://www.ncbi.nlm.nih.gov/geo/, array and other data
ArrayExpress http://www.ebi.ac.uk/arrayexpress/, array and other data

fbids <- rownames (tt)
cols <- c("ENTREZID",

"SYMBOL")

anno <- select(org.Dm.eg.db, fbids, cols, "FLYBASE")
ttanno <- merge(tt, anno, by.x=0, by.y="FLYBASE")

dim(ttanno)

[1] 10 8

>

1
2
3

head (ttanno, 3)

Row.names logConc 1
FBgn0000071 -11
FBgn0024288 -12
FBgn0033764 -12

ogFC LR.statistic PValue FDR ENTREZID SYMBOL
2.8 183 1.1e-41 1.1e-38 40831 Ama
-4.7 179 7.1e-41 6.3e-38 45039 Sox100B
3.5 188 6.8e-43 7.8e-40 <NA> <NA>

1.2 biomaRt and other web-based resources

A short summary of select Bioconductor packages enabling web-based queries is in Table 1.2.

1.2.1 Using biomaRt

The biomaRt package offers access to the online biomart resource. this consists of several data base
resources, referred to as ‘marts’. Each mart allows access to multiple data sets; the biomaRt package
provides methods for mart and data set discovery, and a standard method getBM to retrieve data.

Exercise 3
WARNING: Internet connection required

Load the biomaRt package and list the available marts. Choose the ensembl mart and list the datasets
for that mart. Set up a mart to use the ensembl mart and the hsapiens_gene_ensembl dataset.

A biomaRt dataset can be accessed via getBM. In addition to the mart to be accessed, this function
takes filters and attributes as arguments. Use filterOptions and listAttributes to discover values for

these arguments. Call getBM using filters and attributes of your choosing.

Solution:

> library(biomaRt)

> head(listMarts(), 3) ## list the marts

> head(listDatasets(useMart ("ensembl")), 3) ## mart datasets

> ensembl <- ## fully specified mart
+ useMart ("ensembl", dataset = "hsapiens_gene_ensembl")

> head(listFilters(ensembl), 3) ## filters

> myFilter <- "chromosome_name"

> head(filterOptions(myFilter, ensembl), 3) ## return values

myValues <- c("21", "22")

head (listAttributes(ensembl), 3) ## attributes

myAttributes <- c(”ensembl_gene_id","chromosome_na.me")

assemble and query the mart

res <- getBM(attributes = myAttributes, filters = myFilter,
values = myValues, mart = ensembl)

+ V.V Vv Vv \Vv

Use head (res) to see the results.

Chapter 2

Genomic Annotation

2.1 AnnotationHub

WARNING: This section requires an internet connection, and has been removed from the lab.

2.2 Whole genome sequences
There are a diversity of packages and classes available for representing large genomes. Several include:

TxDb.* For transcript and other genome / coordinate annotation.

BSgenome For whole-genome representation. See available.packages for pre-packaged genomes, and
the vignette ‘How to forge a BSgenome data package’ in the

Homo.sapiens For integrating TxDb* and org.* packages.

SNPlocs.* For model organism SNP locations derived from dbSNP.

FaFile (Rsamtools) for accessing indexed FASTA files.

SIFT.*, PolyPhen Variant effect scores.

2.3 Gene models

2.3.1 TxDb.* packages for model organisms

Genome-centric packages are very useful for annotations involving genomic coordinates. It is straight-
forward, for instance, to discover the coordinates of coding sequences in regions of interest, and from
these retrieve corresponding DNA or protein coding sequences. Other examples of the types of operations
that are easy to perform with genome-centric annotations include defining regions of interest for counting
aligned reads in RNA-seq experiments and retrieving DNA sequences underlying regions of interest in
ChIP-seq analysis, e.g., for motif characterization.

uc002ja.3
uc002jap.3

uc002jar.3

Figure 2.1: Gene model showing exons on three transcripts.

Exercise 4

Load the ‘transcript.db’ package relevant to the dm3 build of D. melanogaster. Use select and friends
to select the Flybase gene ids of the top table tt and the Flybase transcript names (TXNAME) and
Entrez gene identifiers (GENEID).

Use cdsBy to extract all coding sequences, grouped by transcript. Subset the coding sequences to
contain just the transcripts relevant to the top table. How many transcripts are there? What is the
structure of the first transcript’s coding sequence?

Load the ‘BSgenome’ package for the dm3 build of D. melanogaster. Use the coding sequences ranges
of the previous part of this exercise to extract the underlying DNA sequence, using the extractTran-
scriptsFromGenome function. Use Biostrings’ translate to convert DNA to amino acid sequences.

Solution: The following loads the relevant Transcript.db package, and creates a more convenient alias
to the TranscriptDb instance defined in the package.

> library(TxDb.Dmelanogaster.UCSC.dm3. ensGene)
> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

We also need the data — flybase IDs from our differential expression analysis.

> library(Morgan2013)

> library(edgeR)

> data(lrTest)

> fbids <- rownames (topTags(1rTest))

We can discover available keys (using keys) and columns (cols) in txdb, and then use select to retrieve the
transcripts associated with each differentially expressed gene. The mapping between gene and transcript
is not one-to-one — some genes have more than one transcript.

> txnm <- select(txdb, fbids, "TXNAME", "GENEID")
> nrow (txnm)

[1] 19
> head(txnm, 3)

GENEID TXNAME
1 FBgn0039155 FBtr0084549
2 FBgn0039827 FBtr0085755
3 FBgn0039827 FBtr0085756

The TranscriptDb instances can be queried for data that is more structured than simple data frames,
and in particular return GRanges or GRangesList instances to represent genomic coordinates. These
queries are performed using cdsBy (coding sequence), transcriptsBy (transcripts), etc., where the function
argument by specifies how coding sequences or transcripts are grouped. Here we extract the coding
sequences grouped by transcript, returning the transcript names, and subset the resulting GRangesList
to contain just the transcripts of interest to us. The first transcript is composed of 6 distinct coding
sequence regions.

> cds <- cdsBy(txdb, "tx", use.names=TRUE) [txnm$TXNAME]
> length(cds)

[1] 19
> cds[1]
GRangesList of length 1:
$FBtr0084549
GRanges with 6 ranges and 3 metadata columns:
seqnames ranges strand | cds_id cds_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1]1 chr3R [19970946, 19971592] + 39378 <NA> 2
[2] chr3R [19971652, 19971770] + 39379 <NA> 3
[3] chr3R [19971831, 19972024] + | 39380 <NA> 4
[4] chr3R [19972088, 19972461] + | 39381 <NA> 5
[51 chr3R [19972523, 19972589] + 39382 <NA> 6
(61 chr3R [19972918, 19973094] + 39383 <NA> 7
seqlengths:

chr2L chr2R chr3L chr3R ... chrXHet chrYHet chrUextra

23011544 21146708 24543557 27905053 ... 204112 347038 29004656

The following code loads the appropriate BSgenome package; the Dmelanogaster object refers to the
whole genome sequence represented in this package. The remaining steps extract the DNA sequence of
each transcript, and translates these to amino acid sequences. Issues of strand are handled such that
gene regions on the minus strand are reverse compelemented, so returned in 5’ to 3’ orientation).

> library(BSgenome.Dmelanogaster.UCSC.dm3)
> txx <- extractTranscriptsFromGenome (Dmelanogaster, cds)
> length(txx)

[11 19
> head(txx, 3)

A DNAStringSet instance of length 3
width seq names
[1] 1578 ATGGGCAGCATGCAAGTGGCGCT...TGCAGATCAAGTGCAGCGACTAG FBtr0084549
[2] 2760 ATGCTGCGTTATCTGGCGCTTTC. ..TTGCTGCCCCATTCGAACTTTAG FBtr0085755
[3] 2217 ATGGCACTCAAGTTTCCCACAGT...TTGCTGCCCCATTCGAACTTTAG FBtr0085756

> head(translate(txx), 3)

A AAStringSet instance of length 3
width seq
[1] 526 MGSMQVALLALLVLGQLFPSAVANGSSSYSSTST. . .VLDDSRNVFTFTTPKCENFRKRFPKLQIKCSD*
[2] 920 MLRYLALSEAGIAKLPRPQSRCYHSEKGVWGYKP...YCGRCEAPTPATGIGKVHKREVDEIVAAPFEL*
[3] 739 MALKFPTVKRYGGEGAESMLAFFWQLLRDSVQAN...YCGRCEAPTPATGIGKVHKREVDEIVAAPFEL*

2.4 UCSC tracks

2.4.1 Easily creating TranscriptDb objects from GTF files

Exercise 5
WARNING: Internet connection required (Adapted from') The ‘track’ curated annotations at UCSC are
a great resource; this exercise creates a TranscriptDb instance from one such track.

a. Load the GenomicFeatures and rtracklayer packages.

b. Discover available genomes with ucscGenomes, and available tables with the supportedUCSCtables.

c. Use the makeTranscriptDbFromUCSC from a suitable track, e.g., genome genome="ce2", tablename="refGene".

There are some warnings; are these something to be concerned about?

d. Exercise the object that you've created, e.g., exploring the basis of the warnings.

Ihttp://www.sph.emory.edu/ hwu/teaching/bioc/bios560R.html

10

e. Save and load the TranscriptDb object you've created, illustrating how one can make these anno-
tations convenient and reproducible.

f. What’s the difference between makeTranscriptDbFromUCSC and makeFeatureDbFromUCSC? Where else
can transcript and feature data bases be made from?

Solution: Load the GenomicFeatures and rtracklayer packages and discover available genomes and
tables:

> library(rtracklayer)

> library(GenomicFeatures)
> ## genomes

> gnms <- ucscGenomes ()

> nrow(gnms)

[1] 147

> gnms[grep("elegans", gnms$species),]

db species date name
136 cel0 C. elegans Oct. 2010 WormBase v. WS220
137 ce6 C. elegans May 2008 WormBase v. WS190
138 ce4 C. elegans Jan. 2007 WormBase v. WS170
139 ce2 C. elegans Mar. 2004 WormBase v. WS120
> ## tables
> tbls <- supportedUCSCtables()
> nrow(tbls)
[1] 25
> head(tbls)

track subtrack

knownGene UCSC Genes <NA>
knownGene01d3 01d UCSC Genes <NA>
wgEncodeGencodeManualV3 Gencode Genes Genecode Manual
wgEncodeGencodeAutoV3 Gencode Genes Genecode Auto
wgEncodeGencodePolyaV3 Gencode Genes Genecode PolyA
ccdsGene CCDS <NA>

Make the TranscriptDb object (this will take a minute)

> ## Not run
> txdb <- makeTranscriptDbFromUCSC("cel0", "refGene")
> saveDb(txdb, file="/path/to/file.sqlite")

The warnings during object creation are about unusual lengths for CDS (coding sequences should be in
multiples of 3, since there are three nucleotide residues per amino acid residue).

1: In .extractUCSCCdsStartEnd(cdsStart[i], cdsEnd[i], :
UCSC data anomaly in transcript NM_001129046: the cds cumulative
length is not a multiple of 3

but we seem to have a useful object with relevant metadata information for reproducible research:

> txdb

11

TranscriptDb object:

Db type: TranscriptDb

Supporting package: GenomicFeatures

Data source: UCSC

Genome: cel0

Organism: Caenorhabditis elegans

UCSC Table: refGene

Resource URL: http://genome.ucsc.edu/

Type of Gene ID: Entrez Gene ID

Full dataset: yes

miRBase build ID: NA

transcript_nrow: 48714

exon_nrow: 152542

cds_nrow: 129947

Db created by: GenomicFeatures package from Bioconductor
Creation time: 2013-02-10 10:33:50 -0800 (Sun, 10 Feb 2013)
GenomicFeatures version at creation time: 1.11.8

RSQLite version at creation time: 0.11.2
DBSCHEMAVERSION: 1.0

Let us investigate the source of the warnings — what fraction of the CDS have lengths that are not a
multiple of 3?7 To do this we need to determine the sum of the widths of the coding sequence exons in
each transcript. Start by extracting all coding sequence exons, grouped by transcript; verify that this is
a GRangesList with a reasonable number of entries.

> cdsByTx <- cdsBy(txdb, "tx", use.names=TRUE)
> length(cdsByTx)

[1] 26146
> cdsByTx[1:2]

GRangesList of length 2:

$NM_058259
GRanges with 3 ranges and 3 metadata columns:
seqnames ranges strand | cds_id cds_name exon_rank
<Rle> <IRanges> <Rle> | <integer> <character> <integer>
[11 chrI [11641, 11689] + 1 <NA> 1
[2] chrI [14951, 15160] + | 2 <NA> 2
[3] chrI [16473, 16585] + | 3 <NA> 3
$NM_058264
GRanges with 5 ranges and 3 metadata columns:
seqnames ranges strand | cds_id cds_name exon_rank
[1] chrI [43733, 43961] + | 4 <NA> 1
[2] chrI [44030, 44234] + | 5 <NA> 2
[31 chrI [44281, 44324] + 6 <NA> 3
[4] chrI [44372, 44468] + 7 <NA> 4
[5] chrI [44521, 44677] + | 8 <NA> 5
seqlengths:
chrl chrII chrIII chrIV chrV chrX chrM

15072423 15279345 13783700 17493793 20924149 17718866 13794

Extract the width of each each exon; this is an IntegerList instance with one element of the list for each
transcript, and one integer value for each exon.

12

> wd <- width(cdsByTx)
> length(wd)

[1] 26146
> head(wd, 3)

CompressedIntegerList of length 3
[["NM_058259"1]1 49 210 113
[["NM_058264"]] 229 205 44 97 157
[["NM_001026606"]] 139 163 183 166

Use sum to add up the widths within each list element; note that we’re using the sum,CompressedIntegerList—

method, and that this has been specialized to do the summation within list elements.
> head (sum(wd))

NM_058259 NM_058264 NM_001026606 NM_058265 NM_001026607 NM_182094
372 732 651 1341 1620 1221

We now have a standard R vector; a one-liner asking about the number of transcripts with exons that
do not sum to 3 is

> table((sum(width(cdsBy(txdb, "tx"))) 7% 3) != 0)

FALSE TRUE
25676 470
Exercise 6

(Adapted from?) Suppose you have a list of transcription factor binding sites on hg19. How would you
obtain (a) the GC content of each site and (b) the percentage of gene promoters covered by the binding
sites?

Solution: As an outline of a solution, the steps for calculating GC content might be

a. Represent the list of transcription factor binding sites (‘regions of interest’) as a GRanges instance,
roli.

b. Load BSgenome and the appropriate genome package, e.g., BSgenome.Hsapiens.UCSC.hg19.

. Use getSeq to retrieve the sequences, seqs <- getSeq(Hsapiens, gr).

. Use alphabetFrequency(seqs) to summarize nucleotide use, and simple R functions to determine

GC content of each region of interest.

e. Summarize these as density plots, etc. A meaningful extension of this exercise might compare the
observed GC content to the expected content, where expectation is the product of the independent
G and C frequencies.

(=P

To calculate the percentage of promoters covered by binding sites, we might

a. Load the reference genome TxDb package, TxDb.Hsapiens.UCSC.hg19.knownGene.

b. Query the package for promoters using the promoters function, or otherwise manipulating exon or
transcript coordinates to get a GRanges or GRangesList representing genomic regions of interest,
groi.

c. Use countOverlaps(groi, roi) to find how many transcription factor binding sites overlap each
promoter, and from there use standard R functions to tally the number of promoters that have
zero overlaps.

2http://www.sph.emory.edu/ "hwu/teaching/bioc/bios560R . html

13

Chapter 3

Visualizing Sequence Data

R has some great visualization packages; essential references include [1] for a general introduction, Mur-
rell [4] for base graphics, Sarkar [5] for lattice, and Wickham [6] for ggplot2. Here we take a quick tour
of visualization facilities tailored for sequence data and using Bioconductor approaches. Our focus is on
Gviz; an exercise explores interactive visualization using shiny.

3.1 Gviz

The Gviz package produces very elegant images organized in a more-or-less familiar ‘track’ format. The
following exercises walk through the Gviz User guide Section 2.

Exercise 7

Load the Gviz package and sample GRanges containing genomic coordinates of CpG islands. Create a
couple of variables with information on the chromosome and genome of the data (how can this information
be extracted from the cpgIslands object?).

> library(Gviz)
> data(cpgIslands)
> chr <- "chr7"
> genome <- "hg19"

The basic idea is to create a track, perhaps with additional attributes, and to plot it. There are different
types of track, and we create these one at a time. We start with a simple annotation track

> atrack <- AnnotationTrack(cpgIslands, name="CpG")
> plotTracks (atrack)

Then add a track that represents genomic coordinates. Tracks are combined when plotted, as a simple
list. The vertical ordering of tracks is determined by their position in the list.

> gtrack <- GenomeAxisTrack()
> plotTracks(list(gtrack, atrack))

We can add an ideogram to provide overall orientation. . .

> itrack <- IdeogramTrack(genome=genome, chromosome=chr)
> plotTracks(list(itrack, gtrack, atrack))

and a more elaborate gene model, as an data.frame or GRanges object with specific columns of metadata.

> data(geneModels)

> grtrack <-

+ GeneRegionTrack (geneModels, genome=genome,

+ chromosome=chr, name="Gene Model")
> tracks <- list(itrack, gtrack, atrack, grtrack)

> plotTracks (tracks)

14

Figure 3.1: Gviz ideogram, genome coordinate, annotation, and data tracks.

26.7mb

Zooming out changes the location box on the ideogram
> plotTracks (tracks, from=2.5e7, to=2.8e7)
When zoomed in we can add sequence data

> library(BSgenome.Hsapiens.UCSC.hg19)
> strack <- SequenceTrack(Hsapiens, chromosome=chr)
> plotTracks(c(tracks, strack), from=26450430, to=26450490, cex=.8)

As the Gviz vignette humbly says, ‘so far we have replicated the features of a whole bunch of other
genome browser tools out there'. We'd like to be able integrate our data into these plots, with a rich
range of plotting options. The key is the DataTrack function, which we demonstrate with some simulated
data; this final result is shown in Figure 3.1.

some data

1lim <- ¢ (26700000, 26900000)

coords <- seq(lim[1], 1im[2], 101)

dat <- runif(length(coords) - 1, min=-10, max=10)

DataTrack

dtrack <-

DataTrack(data=dat, start=coords[-length(coords)],

end= coords[-1], chromosome=chr, genome=genome,
name="Uniform Random")

plotTracks(c(tracks, dtrack))

V + + + VVVVVYV

Section 4.3 of the Gviz vignette illustrates flexibility of the data track.

3.2 ggbio

The ggbio package complements facilities in Gviz. It uses the central metaphors of the ‘grammar of
graphics’ made popular by the ggplot2 package, and integrates closely with the Bioconductor ranges

15

infrastructure. For example, the autoplot function applied to a Rsamtools BamFile instances results in
a coverage plot. In addition to the grammar of graphics approach, the package offers a wider range of
plots, for instance circular plots. The use of the package is covered in it’s vignette.

3.3 shiny for easy interactive reports

As a final example of visualization, the shiny package and web site' has recently been introduced. It
offers a new model for developing interactive, browser-based visualizations. These visualizations could
be an excellent way to provide sophisticated exploratory or summary analysis in a very accessible way.
The idea is to write a ‘user interface’ component that describes how a page is to be presented to users,
and a ‘server’ that describes how the data are to be calculated or modified in responses to user choices.
The programming model is ‘reactive’, where changes in a user choice automatically trigger re-calculations
in the server. This reactive model is like in a spreadsheet with a formula, where adjusting a cell that
the formula references triggers re-calculation of the formula. As with a spreadsheet, someone creating a
shiny application does not have to work hard to make reactivity work.

Exercise 8
We explore shiny by creating a simple application based on the parathyroidSE package. Start by copying
the directory returned by

> system.file(package="Morgan2013", "shiny")
to a convenient location on your disk, e.g., /shiny. Start R and evaluate the commands

> library(shiny)
> rundpp("~/shiny/se-app0")

Where the path is correct for the location where you placed the shiny folder. This should launch a web
browser, with a simple shiny application.

Add features to the user interface. Do this by adding commands to the file /shiny/se-app0/ui.R
in the sidebarPamel function. Add: (a) a checkboxInput to indicate that the user would like to see
the experiment data; and (b) a checkboxInput to indicate that the user would like to see the column
(sample) data. Add some output to mainPanel, in particular verbatimTextOutput for an overview of a
SummarizedEzperiment. Use the shiny help pages and /shiny/se-appl/ui.R as a guide to correct
syntax.

Re-load the browser page of the shiny app to check that the changes you have made are correct.

Add functionality to the /shiny/se-app0O/server.R. Start by loading the parathyroidSE data pack-
age. Then update the body of shinyServer by: (a) writing a reactive code chunk that evaluates
data(parathyroidGenesSE) to load the data in to R, and then returns the parathyroidGenesSE object;
(b) a renderPrint code chunk that assigns to the output list the result of print’ing the object returned
by the reactive function; and (c) additional renderPrint and renderTable functions to finish the imple-
mentation of the server. Consult the shiny package and /shiny/se-appl/server file for the correct
syntax.

‘Kill’ the running app (cntrl-C in the R session in which is was created?), and reload the app with
runApp (" /shiny/se-app0").

Add additional functionality that would help the user to understand the data present in the parathy-
roidGenesSE instance.

Ihttp://www.rstudio.com/shiny/

16

Part 11

Variants (Advanced)

17

Chapter 4

Called Variants: Manipulation and
Annotation

4.1 Variants
4.1.1 Work flows

The term ‘variant’ applies to a number of different possible analyses:
e Single nucleotide polymorphism
o Copy number change
e Structural variation
e Long-range interaction
Common steps in a variant analysis work flow include:
e Alignment. requires tools sensitive to variation, e.g., GSNAP, BWA; Bowtie not optimized for this.
o Variant calling, e.g., GATK" or VariantTools.
o Filtering and manipulation.
e Biological context — variant annotation.
o Integrative analysis, e.g., GWAS, genetical genomics, regulatory motifs.

This chapter explores filtering, manipulation and biological context of variants; subsequent chapters delve
into variant calling work flows related to tumor / normal pairs (not covered in depth), and to regulatory
motifs.

4.1.2 Bioconductor software

Selected Bioconductor software relevant to DNA-seq work flows are summarized in Table 4.1. The
gmapR package provides access to the well-respected GSNAP aligner. VariantTools is an emerging
tool that works with aligned reads to call single-sample and sample-specific variants; we will work with
VariantTools as part of this course. Packages such as cn.mops and exomeCopy identify copy number
variants from high-throughput sequence data.

Variant Annotation provides facilities for manipulated called variants stored in VCF files; the facilities
are very flexible, including simple range-based filtering, look-up in dbSNP, and coding and effect predic-
tion using standard data bases. VariantAnnotation plays well with ensembIVEP to feed data through
the Ensembl Variant Effect Predictor perl script, and to Bioconductor facilities for SNP analysis and
genetical genomics like snpStats and GGtools.

Ihttp://www.broadinstitute.org/gatk/

18

Table 4.1: Selected Bioconductor packages for DNA-seq analysis.

Package Description

VariantAnnotation ~Manipulating and annotating VCF files
ensemblVEP Interface to the Ensembl Variant Effect Predictor
VariantTools Single-sample and tumor specific variant calls
gmapR Alignment (Linux only)

deepSNV Sub-clonal SNVs in deep sequencing experiments
cn.mops Mixture of Poissons copy number variation estimates
exomeCopy Hidden Markov copy number variation estimates
snpStats Down-stream GWAS; also GWAStools, GGtools

Table 4.2: Working with VCF files and data.

Category Function Description
Read scanVcfHeader Retrieve file header information
scanVcfParam Select fields to read in
readVcf Read VCF file into a VCF class
scanVcf Read VCF file into a list
readInfox Read a single ‘info’ column
readGenosk Read a single ‘geno’ matrix
readGT+ Read ‘GT’ (genotype) fields as matrix
Filter filterVcf Filter a VCF from one file to another
Write writeVcf Write a VCF file to disk
Annotate locateVariants Identify where variant overlaps a gene annotation
predictCoding Amino acid changes for variants in coding regions
summarizeVariants Summarize variant counts by sample
SNPs genotypeToSnpMatrix Convert genotypes to a SnpMatrix
GLtoGP Convert genotype likelihoods to genotypes
snpSummary Counts and distribution statistics for SNPs
Manipulate expand Convert CompressedVCF to ExpandedVCF
cbind, rbind Combine by column or row

*: available in the ‘devel’ version of Bioconductor

4.2 VariantAnnotation and VCF Files

A major product of DNASeq experiments are catalogs of called variants (e.g., SNPs, indels). We will use
the VariantAnnotation package to explore this type of data. Sample data included in the package are
a subset of chromosome 22 from the 1000 Genomes project. Variant Call Format (VCF, see?) text files
contain meta-information lines, a header line with column names, data lines with information about a
position in the genome, and optional genotype information on samples for each position.

Important operations on VCF files available with the VariantAnnotation package are summarized in
Table 4.2.

Exercise 9
The objective of this exercise is to compare the quality of called SNPs that are located in dbSNP, versus
those that are novel.

Locate the sample data in the file system. Explore the metadata (information about the content of
the file) using scanVcfHeader. Discover the ‘info’ fields VT (variant type), and RSQ (genotype imputation
quality).

Input the sample data using readvcf. You'll need to specify the genome build (genome="hg19") on
which the variants are annotated. Take a peak at the rowData to see the genomic locations of each
variant.

Data resources often adopt different naming conventions for sequences. For instance, dbSNP uses

2http://www.1000genomes . org/wiki/Analysis/Variant%20Call%20Format/vct-variant-call-format-version-41

19

abbreviations such as ch22 to represent chromosome 22, whereas our VCF file uses 22. Use rowData and
seqlevels<- to extract the row data of the variants, and rename the chromosomes.

Solution: Explore the header:

> library(VariantAnnotation)
> f1 <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
> (hdr <- scanVcfHeader (f1))

class: VCFHeader

samples(5): HGO0096 HGO0097 HGOO099 HGO0100 HGO0101
meta(1l): fileformat

fixed(1): ALT

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

> info(hdr) [c("VT", "RSQ"),]

DataFrame with 2 rows and 3 columns

Number Type Description
<character> <character> <character>

VT 1 String indicates what type of variant the line represents
RSQ 1 Float Genotype imputation quality from MaCH/Thunder

Input the data and peak at their locations:
> (vcf <- readVcf(fl, "hgl9"))

class: CollapsedVCF
dim: 10376 5
rowData(vef) :

GRanges with 5 metadata columns: paramRangeID, REF, ALT, QUAL, FILTER
info(vef):

DataFrame with 22 columns: LDAF, AVGPOST, RSQ, ERATE, THETA, CIEND, CIPOS,...
info(header (vcf)):

Number Type Description

LDAF 1 Float MLE Allele Frequency Accounting for LD
AVGPOST 1 Float Average posterior probability from MaCH/Thunder
RSQ 1 Float Genotype imputation quality from MaCH/Thunder
ERATE 1 Float Per-marker Mutation rate from MaCH/Thunder
THETA 1 Float Per-marker Transition rate from MaCH/Thunder
CIEND 2 Integer Confidence interval around END for imprecise va...
CIPOS 2 Integer Confidence interval around POS for imprecise va...
END 1 Integer End position of the variant described in this r...
HOMLEN . Integer Length of base pair identical micro-homology at...
HOMSEQ . String Sequence of base pair identical micro-homology ...
SVLEN 1 Integer Difference in length between REF and ALT alleles
SVTYPE 1 String Type of structural variant
AC . Integer Alternate Allele Count
AN 1 Integer Total Allele Count
AA 1 String Ancestral Allele, ftp://ftp.1000genomes.ebi.ac....
AF 1 Float Global Allele Frequency based on AC/AN
[reached getOption("max.print") -- omitted 6 rows]
geno(vef) :
SimpleList of length 3: GT, DS, GL
geno (header (vef)):
Number Type Description
GT 1 String Genotype
DS 1 Float Genotype dosage from MaCH/Thunder
GL . Float Genotype Likelihoods

20

> head(rowData(vcf), 3)

GRanges with 3 ranges and 5 metadata columns:

seqnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
rs7410291 22 [50300078, 50300078] * | <NA>
rs147922003 22 [50300086, 50300086] * | <NA>
rs114143073 22 [50300101, 50300101] * | <NA>
REF ALT QUAL FILTER
<DNAStringSet> <DNAStringSetList> <numeric> <character>
rs7410291 A G 100 PASS
rs147922003 C T 100 PASS
rs114143073 G A 100 PASS
seqlengths:
22
NA

Rename chromosome levels:

> seqlevels(vcf, force=TRUE) <- c("22"="ch22")

4.3 Large-scale filtering

This section was developed from initial work by Paul Shannon.
One source of VCF files is from whole-genome sequencing and variant calling; an example data set is
from Complete Genomics, and a subset is available in the BigData folder accompanying this course

> vcfDir <- "~/BigData/CompleteGenomics"

> dir(vcfDir)

> vcfFile <- dir(vcfDir, ".gz$", full=TRUE)
> stopifnot (length(vcfFile) == 1)

The data were retrieved from the Complete Genomics web site, the first 750,000 of about 14 million
variants selected, and the resulting file compressed and indexed. Indexing makes them accessible to fast
queries using the which argument to ScanVcfParam.

Exercise 10
The objective of this exercise is to filter the larger VCF file to a subset of interesting variants that we
might wish to study in depth at a later date. We use the filterVcf function of the VariantAnnotation
package to perform the filtering.

Start by taking a look at the (complicated) header information

> hdr <- scanVcfHeader (vcfFile)

We’ll be paying attention to the SS INFO field, and the AD GENO field. Determine the data types and
possible values for these fields, using commands like

> info (hdr)
> geno (hdr)

What data type would you use to represent the SS field for a single or several VCF records in R? What
about the AD field, across all samples?

This VCF file is big. While we can read this into memory all at once, we will often want to ‘chunk’
through a file, reading many (e.g., a million) records at a time. We do this by creating a TabizFile and
specifying a yieldSize representing the size of the chunk that we would like to read at each iteration.
Create a TabizFile with yieldSize=100000 and verify with a simple loop that the entire file appears to
be processed in chunks of the specified size, along the lines of. ..

21

> tbx <- TabixFile(vcfFile, yieldSize=10000)
> open(tbx)

> while (len <- nrow(readVcf (tbx, "hg19")))
+ cat("read", len, "rows\n")

As you can see from the chunking exercise, it takes quite a bit of time to process these lines. To filter 14
million variants effectively, it can pay to do a cheaper ‘pre-filter’. Specifically, we’re interested in variants
tagged ‘Germline’. If we were to represents each VCF record as an element of a character vector x, then
we could write a one-liner that returned TRUE if the line contained the word ‘Germline’:

> grepl("Germline", x, fixed=TRUE)

This would be fast to read in to R, and fast to perform the filter. The filterVcf function allows us to
specify a pre-filter that works just like this. The filters are constructed using FilterRules in IRanges, by
translating our one-liner into a simple function call, and placing the function call into a list.

> isGermline <- function(x)
+ grepl("Germline", x, fixed=TRUE)
> filters <- FilterRules(list(isGermline=isGermline))

The idea is that several filters are chained together. Each filter returns a logical vector indicating the
subset of data to be processed by the next filter.
Here is our pre-filter in action:

> destination <- tempfile() # temporary location
> filterVcf(vcfFile, "hgl9", destination, prefilters=filters)

This is pretty fast, and drops the number of variants under consideration quite substantially, to about
110000.

Our next filter is more challenging to write. We're interested in allelic depth, a summary of the
evidence for the variant summarized in the AD GENO field. There are many variants, each sample has
two values of AD, and there are two samples. This means that AD is a three-dimensional array. Our
filter criteria is that the ratio of (‘alternate allele’ of the tumor sample or the ‘reference allele’ of the the
normal sample) to total reads is greater than 0.1. Here is a function implementing this:

> allelicDepth <- function(x)

+ 1

+ ## ratio of AD of the 'alternate allele' for the tumor sample
+ ## OR 'reference allele' for normal samples to total reads for
+ ## the sample should be greater than some threshold (say 0.1,
+ ## that is: at least 10) of the sample should have the allele
+ ## of interest)

+ ad <- geno(x)[["AD"]]

+ tumorPct <- ad[,1,2,drop=FALSE] / rowSums(ad[,1,,drop=FALSE])
+ normPct <- ad[,2,1, drop=FALSE] / rowSums(ad[,2,,drop=FALSE])
+ test <- (tumorPct > 0.1) | (normPct > 0.1)

+ !is.na(test) & test

+}

We can add it to our list of filters

> filters <- FilterRules(list(isGermline=isGermline,
+ allelicDepth=allelicDepth))

To use this filter, we actually need to fully parse the VCF file into the VCF instance; the pre-filter trick
used for germline filtering is not enough. filterVcf allows us to perform a filter on the VCF instance,
too, and does so after pre-filtering

> destination <- tempfile()
> filterVcf (vcfFile, "hgl9", destination, prefilters=filters[1],
+ filters=filters[2])

22

And finally input our interesting variants, confirming that we’ve done our filtering as desired.

> vcf <- readVcf (destination, "hg19")
> all(info(vcf)$SS == "Germline")
> table(allelicDepth(vct))

4.4 SNP Annotation

This section is derived from a vignette by Valerie Obenchain in the VariantAnnotation package.

Variants can be easily identified according to region such as coding, intron, intergenic, spliceSite
etc. Amino acid coding changes are computed for the non-synonymous variants. SIFT and PolyPhen
databases provide predictions of how severely the coding changes affect protein function. Additional
annotations are easily crafted using the GenomicRanges and GenomicFeatures software in conjunction
with Bioconductor and broader community annotation resources.

Exercise 11
The SNPIocs.Hsapiens.dbSNP.20101109 contains information about SNPs in a particular build of dbSNP.
Load the package.

Review the short helper function isInDbSNP, in the Morgan2013 package, to query whether SNPs are
in the data base (a version of this function will be introduced to VariantAnnotation before the next
release)

> library(Morgan2013)
> isInDbSNP

function (vcf, seqname, rsid = TRUE)
{
snpLocs <- getSNPlocs (segname)
idx <- ((seqnames(vcf) == seqname) & (width(rowData(vcf)) ==
1L))
idx <- as.vector(idx)
snps <- rowData(vcf) [idx]
result <- rep(NA, nrow(vcf))
result[idx] <- if (rsid) {
sub("rs", "", names(snps)) %inj, snpLocs[["RefSNP_id"]]
}
else {
start (snps) 7inj, snpLocs[["loc"]]
}
result
}

<environment: namespace:Morgan2013>

Create a data frame containing the dbSNP membership status and imputation quality of each SNP.
Create a density plot to illustrate the results.

Solution: Discover whether SNPs are located in dbSNP, using our helper function.

> library(SNPlocs.Hsapiens.dbSNP.20101109)
> inDbSNP <- .isInDbSNP(vcf, "ch22")
> table (inDbSNP)

Create a data frame summarizing SNP quality and dbSNP membership:

> metrics <-
+ data.frame (inDbSNP=inDbSNP, RSQ=info (vcf)$RSQ)

Finally, visualize the data, e.g., using ggplot2 (Figure 4.1).

23

Figure 4.1: Quality scores of variants in dbSNP, compared to those not in dbSNP.

Table 4.3: Variant locations

Location Details

coding Within a coding region

fiveUTR Within a 5’ untranslated region
threeUTR Within a 3’ untranslated region
intron Within an intron region

intergenic Not within a transcript associated with a gene
spliceSite Overlaps any of the first or last 2 nucleotides of an intron

> library(ggplot2)

> ggplot(metrics, aes(RSQ, fill=inDbSNP)) +

+ geom_density(alpha=0.5) +

scale_x_continuous (name="MaCH / Thunder Imputation Quality") +
scale_y_continuous (name=”Density”) +

theme (1egend.position="top")

+ o+ o+

4.4.1 Variants in and around genes

Variant location with respect to genes can be identified with the locateVariants function. Regions
are specified in the region argument and can be one of the following constructors: CodingVariants(),
IntronVariants(), FiveUTRVariants(), ThreeUTRVariants(), IntergenicVariants(), SpliceSiteVariants(),
or AllVariants(). Location definitions are shown in Table 4.3.

Exercise 12
Load the TxDb.Hsapiens.UCSC.hgl9.knownGene annotation package, and read in the chr22.vcf.gz
example file from the VariantAnnotation package.
Remembering to re-name sequence levels, use the locateVariants function to identify coding variants.
Summarize aspects of your data, e.g., did any coding variants match more than one gene? How many
coding variants are there per gene ID?
Solution: Here we open the known genes data base, and read in the VCF file.
> library(TxDb.Hsapiens.UCSC.hg19.knownGene)
> txdb <- TxDb.Hsapiens.UCSC.hgl19.knownGene
> f1 <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
> vcf <- readVcf(f1, "hgl9")
> seqlevels(vcf, force=TRUE) <- c("22"="chr22")

The next lines locate coding variants.

> rd <- rowData(vcf)
> loc <- locateVariants(rd, txdb, CodingVariants())
> head(loc, 3)

GRanges with 3 ranges and 7 metadata columns:

seqnames ranges strand | LOCATION QUERYID TXID

<Rle> <IRanges> <Rle> | <factor> <integer> <integer>

[1] chr22 [50301422, 50301422] * | coding 24 73482

[2] chr22 [50301476, 50301476] * | coding 25 73482

[3] chr22 [50301488, 50301488] * | coding 26 73482
CDSID GENEID PRECEDEID FOLLOWID

<integer> <character> <character> <character>

24

[1] 217009 79087 <NA> <NA>

[2] 217009 79087 <NA> <NA>
[3] 217009 79087 <NA> <NA>
seqlengths:
chr22
NA

To answer gene-centric questions data can be summarized by gene regardless of transcript.

> ## Did any coding variants match more than one gene?
> splt <- split(loc$GENEID, loc$QUERYID)
> table(sapply(splt, function(x) length(unique(x)) > 1))

FALSE TRUE
956 15

> ## Summarize the number of coding variants by gene ID
> splt <- split(loc$QUERYID, loc$GENEID)
> head(sapply(splt, function(x) length(unique(x))), 3)

113730 1890 23209
22 15 30

4.4.2 Amino acid coding changes

predictCoding computes amino acid coding changes for non-synonymous variants. Only ranges in query
that overlap with a coding region in subject are considered. Reference sequences are retrieved from
either a BSgenome or fasta file specified in seqSource. Variant sequences are constructed by substituting,
inserting or deleting values in the varAllele column into the reference sequence. Amino acid codes are
computed for the variant codon sequence when the length is a multiple of 3.

The query argument to predictCoding can be a GRanges or VCF. When a GRanges is supplied the
varAllele argument must be specified. In the case of a VCF object, the alternate alleles are taken from
alt (<VCF>) and the varAllele argument is not specified.

The result is a modified query containing only variants that fall within coding regions. Each row
represents a variant-transcript match so more than one row per original variant is possible.

> library(BSgenome.Hsapiens.UCSC.hg19)
> coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)
> coding[5:9]

GRanges with 5 ranges and 17 metadata columns:

seqnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
22:50301584 chr22 [50301584, 50301584] - <NA>
REF ALT QUAL FILTER
<DNAStringSet> <DNAStringSetList> <numeric> <character>
22:50301584 C T 100 PASS
varAllele CDSLOC PROTEINLOC QUERYID TXID
<DNAStringSet> <IRanges> <IntegerList> <integer> <character>
22:50301584 A [777, 777] 259 28 73482
CDSID GENEID CONSEQUENCE REFCODON VARCODON
<integer> <character> <factor> <DNAStringSet> <DNAStringSet>
22:50301584 217009 79087 synonymous CCG CCA
REFAA VARAA

<AAStringSet> <AAStringSet>

25

22:50301584 P P
[reached getOption("max.print") -- omitted 4 rows]
seqlengths:
chr22
NA

Using variant rs114264124 as an example, we see varAllele A has been substituted into the refCodon
CGG to produce varCodon CAG. The refCodon is the sequence of codons necessary to make the variant
allele substitution and therefore often includes more nucleotides than indicated in the range (i.e. the
range is 50302962, 50302962, width of 1). Notice it is the second position in the refCodon that has been
substituted. This position in the codon, the position of substitution, corresponds to genomic position
50302962. This genomic position maps to position 698 in coding region-based coordinates and to triplet
233 in the protein. This is a non-synonymous coding variant where the amino acid has changed from R
(Arg) to q (Gln).

When the resulting varCodon is not a multiple of 3 it cannot be translated. The consequence is
considered a frameshift and varAA will be missing.

> coding[coding$CONSEQUENCE == "frameshift"]
GRanges with 1 range and 17 metadata columns:
seqnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
22:50317001 chr22 [50317001, 50317001] + | <NA>
REF ALT QUAL FILTER
<DNAStringSet> <DNAStringSetList> <numeric> <character>
22:50317001 G GCACT 233 PASS
varAllele CDSLOC PROTEINLOC QUERYID TXID
<DNAStringSet> <IRanges> <IntegerList> <integer> <character>
22:50317001 GCACT [808, 808] 270 359 72592
CDSID GENEID CONSEQUENCE REFCODON VARCODON
<integer> <character> <factor> <DNAStringSet> <DNAStringSet>
22:50317001 214765 79174 frameshift GCC GCC
REFAA VARAA
<AAStringSet> <AAStringSet>
22:50317001 A
seqlengths:
chr22
NA

4.4.3 SIFT and PolyPhen databases

From predictCoding we identified the amino acid coding changes for the non-synonymous variants. For
this subset we can retrieve predictions of how damaging these coding changes may be. SIFT (Sorting
Intolerant From Tolerant) and PolyPhen (Polymorphism Phenotyping) are methods that predict the
impact of amino acid substitution on a human protein. The SIFT method uses sequence homology
and the physical properties of amino acids to make predictions about protein function. PolyPhen uses
sequence-based features and structural information characterizing the substitution to make predictions
about the structure and function of the protein.

Collated predictions for specific dbSNP builds are available as downloads from the SIFT and PolyPhen

web sites. These results have been packaged into SIFT.Hsapiens.dbSNP132.db and PolyPhen.Hapiens.dbSNP131.db

and are designed to be searched by rsid. Variants that are in dbSNP can be searched with these database
packages. When working with novel variants, SIFT and PolyPhen must be called directly. See references
for home pages.

Identify the non-synonymous variants and obtain the rsids.

26

> nms <- names(coding)

> idx <- coding$CONSEQUENCE == "nonsynonymous"

> nonsyn <- coding[idx]

> names (nonsyn) <- nms[idx]

> rsids <- unique(names(nonsyn) [grep("rs", names(nonsyn), fixed=TRUE)])

Detailed descriptions of the database columns can be found with ?SIFTDbColumns and ?PolyPhenDbColumns.
Variants in these databases often contain more than one row per variant. The variant may have been
reported by multiple sources and therefore the source will differ as well as some of the other variables.

> library(SIFT.Hsapiens.dbSNP132)
> ## rsids in the package
> head(keys (SIFT.Hsapiens.dbSNP132), 3)

[1] "rs47" "rs268" "rs298"

> ## list available columns
> cols(SIFT.Hsapiens.dbSNP132)

[1] "RSID" "PROTEINID" "AACHANGE" "METHOD" "AA"

[6] "PREDICTION" "SCORE" "MEDIAN" "POSTIONSEQS" "TOTALSEQS"
> ## select a subset of columns

> ## a warning is thrown when a key is not found in the database

> subst <- c¢("RSID", "PREDICTION", "SCORE", "AACHANGE", "PROTEINID")

> sift <- select(SIFT.Hsapiens.dbSNP132, keys=rsids, cols=subst)

> head(sift, 3)

RSID PROTEINID AACHANGE PREDICTION SCORE
rs114264124 NP_077010 R233Q TOLERATED 0.59
rs114264124 NP_077010 R233Q TOLERATED 1.00
rs114264124 NP_077010 R233Q TOLERATED 0.20

w N =

PolyPhen provides predictions using two different training datasets and has considerable information
about 3D protein structure. See ?PolyPhenDbColumns or the PolyPhen web site listed in the references for
more details.

4.5 Annotation with ensemblVEP

WARNING: This section requires an internet connection and additional software, and has been removed
from the lab. As an alternative, consider working through the ensemblVEP vignette, available from
the Bioconductor web site®. This section requires that perl is installed, and that the Ensembl VEP
perl script is available; see instructions in the ensemblVEP README?. The necessary preconditions are
tested by the following code; VEP_OK should be TRUE.

CONNECTION_OK <- tryCatch({
con <- url("http://google.com", "r"); close(con); TRUE
}, error=function(...) FALSE)
VEP_OK <- CONNECTION_OK && require(ensemblVEP) && tryCatch({
file.exists (ensemblVEP: : :.getVepPath())
}, error=function(...) FALSE)
stopifnot (VEP_OK)

V++Vo++V

Functionality of the Ensembl VEP is given on-line® and in [3].

3http://bioconductor.org/packages/release/bioc/html/ensemblVEP.html
4http://bioconductor.org/packages/release/bioc/readnes/ensemblVEP/README
Shttp://www.ensembl.org/info/docs/variation/vep/

27

Chapter 5

Structural Variants: Tumor /
Normal Pairs

WARNING: This chapter requires Linux and has been removed from the lab.
package vignette for a tumor / normal pair work flow.

28

See the VariantTools

Chapter 6

Regulatory Variants: BAM to Motif

6.1 Introduction

This work flow was originally constructed by Paul Shannon and Valerie Obenchain.

This portion of the lab represents a work flow from aligned reads through variant calls to consequences
for regulatory motif binding sites. The work flow reproduces part of Huang et al’s ‘Highly recurrent TERT
promoter mutations in human melanoma’ [2]. Briefly, previous sequencing studies identified mutations
in the TERT promoter locus; Huang et al. validated these in additional cell lines, and noted that the
mutation introduced a binding site for the E-twenty-six transcription factor. We reproduce some of these
results, notably calling variants in the TERT region across cell lines, and matching a data base of binding
motifs to the original and modified promoter regions.

If you are not using windows, load the parallel package and set the number of cores to use to the
number of cores on your machine.

> library(parallel); options(mc.cores=detectCores())

We’ll use annotation resources for humans, specifically the gene-centric org.Hs.eg.db for basic informa-
tion about TERT, the TxDb.Hsapiens. UCSC.hg19.knownGene package for information about exon and
transcript structure of TERT, and the BSgenome. Hsapiens. UCSC.hg19 package for sequence information.

> library(org.Hs.eg.db)
> library(TxDb.Hsapiens.UCSC.hg19.knownGene)
> library(BSgenome.Hsapiens.UCSC.hg19)

Huang et al provide BAM files of reads aligning in the neighborhood of TERT for several cell lines; a
subset of these are available for this lab. Create a variable path that points to the directory containing
these files. For me, the path is

> path <- "~/BigData/TERT/bam"
As a sanity check, confirm that there are 22 files in this directory, 11 BAM and 11 index files.

> stopifnot (length(dir(path, "bam$")) == 11)
> stopifnot(length(dir(path, "bai$")) == 11)

A common challenge in real-world analysis is that the sequence names used in one part of a work flow
(e.g., alignment) differ from sequence names in another part of the work flow, e.g., annotation. Here the
BAM files are aligned using NCBI notation (“7”) but the annotations follow UCSC notation (“chr7”). We
need to make these consistent, and it’s easier to change the behavior of our annotation packages than to
change the bam files.

> seqnameStyle (BSgenome.Hsapiens.UCSC.hg19) <-
+ seqnameStyle (TxDb.Hsapiens.UCSC.hg19.knownGene) <- "NCBI"

29

It is important that we think carefully before re-naming sequence names — the underlying genome coor-
dinates used for alignment need to match exactly the genome coordinates used for annotation. As a final
preparation, let’s make some convenient abbreviations for our genome and txdb, and figure out what the
Entrez ID is for the gene symbol TERT.

> bsgenome <- BSgenome.Hsapiens.UCSC.hg19
> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
> geneid <- select(org.Hs.eg.db, "TERT", "ENTREZID", "SYMBOL")

6.2 Tallying variants
WARNING: This section requires Linux to tally variants with the gmapR package. If you are not using

Linux, then read through the steps and load the called object at the start of the next section. The
necessary precondition to evaluate the code blocks in this section are tested by the following.

> VARIANTTOOLS_OK <- local({

+ sys <- ISys.info() ["sysname"] Jinj, c("Darwin", "Windows")
+ sys && require(VariantTools) && require(gmapR)

+ 1)

> stopifnot (VARIANTTOOLS_OK)

The main goal of this section is to tally variants in our region of interest. We’'ll use an algorithm
implemented in the callVariants function of the VariantTools package. This in turn relies on the gmapR
package, which provides an R interface to the GMAP aligner, gmapR needs a reference genome to do its
work. A neat feature is that the reference genome can be created on the fly from arbitrary nucleotide
sequences.

TERT is located on chromosome 5 (how would we discover that?) so we make an indexed mini-
reference genome of chr5. We get the coordinates and actual sequence for this chromosome from the
BSgenome package.

> roi <- GRanges("5", IRanges(1, seqlengths(bsgenome)[["5"]]))
> chrbseq <- getSeq(bsgenome, roi)
> names(chrbseq) <- "5"

and then make the reference genome in gmapR (gmapR maintains a cache of sequences, so this is only
‘expensive’ the first time; it is important to use a descriptive name, because this is the key used to
retrieve a previously built genome from the cache).

> library(gmapR)
> genome.5 <- GmapGenome (chrbseq, name="hg19_5", create=TRUE)

We want to call variants in the promoter region of TERT, so query the txdb for transcripts grouped
by gene, and then select the TERT gene from the result.

> rng <- transcriptsBy(txdb, "gene")[[geneid$ENTREZID]]
There are three unique start sites.

> unique(start (rng))

[1] 1253287 1255402 1278756

For simplicity we treat the gene as a single range (using range), use an ad hoc definition of promoter as
330 nt upstream of the transcription start site, and define the appropriate ranges using promoter. We
restrict the seqlevels to just chromosome five (seqlevels are acting in some ways like factor levels, they
persist even if there are no elements with the corresponding level).

> unique (start (rng))

[1] 1253287 1255402 1278756

30

> pregion <- promoters(range(rng), upstream=330, downstream=0)
> seqlevels(pregion) <- "5"

Our objective is to use the VariantTools package to call variants. Variant calling is influenced by
parameters specified in creation of a VariantTallyParam object; details of the arguments to this function,
and how they influence variant calling, are present on the VariantTallyParam help page and in the
VariantTools vignette.

> library(VariantTools)
> vtparam <- VariantTallyParam(genome.5, readlen=101L,
+ which=pregion, indels=TRUE)

The next step is to call variants. The basic approach is to invoked the callVariants function on each
bam file, using our vtparam object to influence how variants are called.

Exercise 13
(Linux only) Consult section 2.2 of the VariantTools vignette for a brief description of how variants are
called.

The following two lines calls variants in each of our files.

> fls <- dir(path, "bam$", full=TRUE)
> called <- lapply(fls, callVariants, tally.param=vtparam)

The results can be cleaned up a little. We currently have one GRanges object for each BAM file, but it’s
convenient to create a single GRanges object, adding a column (‘id’) to remember which range came from
which file.

> len <- elementLengths(called)

> called <- do.call(c, called)

> id <- sub(".TERT.bam", "", basename(fls))

> called$id <- factor(rep(id, len), levels=unique(id))

We’ll explore the called object in the next section.

6.3 Manipulation

Here we pick up from the previous section, loading a saved version of the data those of us on Linux were
able to create.

> data(called, package="Morgan2013")

Exercise 14
What class of object is called? How many rows does it have? How many metadata columns?

Solution: The object is a GRanges object with length 88 and 25 metadata columns.

Each row represents a genomic location for which some evidence of a variant was discovered. The
ref and alt columns contain the reference and alternate sequence observed at that location. From the
VariantTools package, some of the important columns are:

ncycles: The number of unique cycles at which the alternate allele was
observed, 'NA' for the reference allele row.
count: The number of reads with the alternate allele, 'NA' for the

reference allele row.

high.quality: The number of reads for the alternate allele that were
above 'high_quality_cutoff', 'NA' for the reference allele
row.

mean.quality: The mean mapping quality for the alternate allele, 'NA'
for the reference allele row.

31

T24_URINARY_TRACT
SNU475_LIVER
ONS76_CENTRAL_NERVOUS_SYSTEM -
NCIH2052_PLEURA |

LOXIMVI_SKIN
HSC3_UPPER_AERODIGESTIVE_TRACT
HCC44_LUNG - |

CALUL_LUNG

7860_KIDNEY —
2313287_STOMACH |
22RV1_PROSTATE -

TTT T T T T T TTT
IS
S

Position

Figure 6.1: Called variants across samples in regulatory regions of TERT

count.pos: The number of positive strand reads for the alternate
allele, 'NA' for the reference allele row.

cycleCount: An additional column is present for each bin formed by the
'cycle_breaks' parameter, with the read count for that bin.

Additional columns are also appended with ‘.ref’, “.total’, .pos’, ‘.neg’, etc., to indicate reference, total,
positive strand and negative strand. The idea is that the metadata columns are providing further
guidance on the nature of evidence supporting each called variant. It is useful to get a sense of the
evidence supporting the called variants by exploring called using standard R commands, e.g., plotting
count and count.ref columns against one another. The called variants depend critically on parameters
used in VariantTallyParam, so we would want to spend some time giving calling and quality assessment
parameters careful consideration.

A quick assessment of called variants, sufficient for reproducing results in [2], can be obtained by
plotting the number of reads supporting each call, across samples. We focus on the highest-quality read
cycles 10 to 91. The result is shown in Figure 6.1.

> library(lattice)
> altCounts <-

+ xtabs(cycleCount.10.91 ~ start(called) + id, mcols(called))
> plt <- levelplot(altCounts, xlab="Position", ylab=NULL,

+ scales=list(x=list(rot=45)), aspect="fill",

+ col.regions=rev(gray.colors(100, 0, 1)))

6.4 Regulatory signatures

Supposing that we have identified, as Huang et al. did, a mutation occurring at position 1295228 across
samples or cell lines. How can we relate this variant to regulatory signature?

We start by extracting the sequence surrounding the SNP in the reference. We do this by creating a
GRanges instance at the SNP, then selecting flanking sequence of say 10 nt.

> snp <- GRanges("5", IRanges (1295228, width=1))
> snp <- flank(snp, 10, both=TRUE)

We then retrieve the sequence from a data source, e.g., the BSgenome, gmapR, or Rsamtools’ FaF'ile on
which alignments were based.

> refSeq <- getSeq(bsgenome, snp)

Alternate sequences are a little more difficult; the helper function variantSequences has been defined
to do the work. It takes the called variants, our SNP regions of interest, and the reference sequence as
arguments. It subsets our called variants to include only those that overlap our region of interest using
subsetByOverlaps. It then injects the variants into the reference sequence using replaceLetterAt.

32

> library(Morgan2013)
> variantSequences

function (x, roi, refSeq, ...)
{
stopifnot(length(roi) == 1L)
x <- subsetByOverlaps(x, roi)
at <- split(start(x) - start(roi) + 1L, x$id)
alt <- split(xalt, xid)
alts <- Map(replaceletterAt, at = at, letter = alt, refSeq)
DNAStringSet (alts)
}

<environment: namespace:Morgan2013>
> altSeq <- variantSequences(called, snp, refSeq)

We can perform various operations on the alt sequences; here we suppose a common signal and create a
consensus string.

> altConsensus <- DNAStringSet (consensusString(altSeq))

We can see the C228T transition in the middle of a DNAStringSet containing first the (complements) of
the reference and consensus alternate sequence.

> complement (c(refSeq, altConsensus))

A DNAStringSet instance of length 2
width seq
[1] 20 TCCCGGGCCTCCCCCGACCC
[2] 20 TCCCGGGCCTTCCCCGACCC

The MotifDb package contains a data base of protein binding motifs. Here we load the data base and
query it for all motifs present in humans and derived from the well-respected JASPAR core! data set.

> library(MotifDb)

> idx <- with(mcols(MotifDb),

+ organism=="Hsapiens" & dataSource == "JASPAR_CORE")
> jasparHumanPWMs <- MotifDb[idx]

We now run all motifs over the regulatory region, searching for possible similarity. We do this for the
the reference sequence and for the alternative consensus.

> ## matchPWMs: helper in Morgan2013

> minScore = "907" # high min. matching score: 1 base change
> (refHits <- matchPWMs (jasparHumanPWMs, reverseComplement (refSeq)[[1]],
+ minScore))

DataFrame with 1 row and 5 columns

PWM score start end

<character> <numeric> <integer> <integer>

1 Hsapiens-JASPAR_CORE-SP1-MA0079.2 7.142857 1 10
seq
<DNAStringSet>

1 CCCAGCCCce

> (altHits <- matchPWMs (jasparHumanPWMs, reverseComplement (altConsensus)[[1]],
+ minScore))

Ihttp://jaspar.cgb.ki.se/

33

DataFrame with 1 row and 5 columns

PWM score start end

<character> <numeric> <integer> <integer>

1 Hsapiens-JASPAR_CORE-ETS1-MA0098.1 4.325 9 14
seq
<DNAStringSet>
1 CTTCCG

Comparison of results shows that the consensus sequence contains a novel high-scoring binding site for
ETS1, as reported in Huang et al.

6.5 Conclusions
This work flow has provided brief tour through key steps in calling regulatory variants, using previous
results by Huang et al., to motivate identification of a novel binding motif associated with introduction of

a called variant. Major components of this work flow include the VariantTools, Biostrings, and MotifDb
packages.

34

References

[1] W. Chang. R Graphics Cookbook. O'Reilly Media, Incorporated, 2012.

[2] F. W. Huang, E. Hodis, M. J. Xu, G. V. Kryukov, L. Chin, and L. A. Garraway. Highly recurrent
tert promoter mutations in human melanoma. Science, 339(6122):957-959, 2013.

[3] W. McLaren, B. Pritchard, D. Rios, Y. Chen, P. Flicek, and F. Cunningham. Deriving the con-
sequences of genomic variants with the ensembl api and snp effect predictor. Bioinformatics,
26(16):2069-2070, 2010.

[4] P. Murrell. R graphics. Chapman & Hall/CRC, 2005.
[5] D. Sarkar. Lattice: multivariate data visualization with R. Springer, 2008.

[6] H. Wickham. ggplot2: elegant graphics for data analysis. Springer Publishing Company, Incorporated,
2009.

35

