
Writing better R code

Laurent Gatto∗

June 27, 2013

Contents

1 Introduction 2

2 Programming 2

3 Performance 9

4 Testing 13

5 Parallelisation 14

6 Debugging 17

7 Other topics of interest 20

This document is distributed under a CC BY-SA 3.0 License1.

More material is available at https://github.com/lgatto/TeachingMaterial.

∗lg390@cam.ac.uk
1http://creativecommons.org/licenses/by-sa/3.0/

1

https://github.com/lgatto/TeachingMaterial
mailto:lg390@cam.ac.uk
http://creativecommons.org/licenses/by-sa/3.0/

1 Introduction

This section focuses on better R programming in terms of cleaner and elegant syn-

tax, code profling and testing, performance improvements via parallelisation and

debugging. These topics are not covered in details but are presented as practical

use-cases.

2 Programming

The R language is in many ways a functional programming language, although other

programming paradigms are also available. Functions are essential parts of the

language that can be passed as arguments to other functions or returned as function

output. Writing functions is very simple and represents a very accessible way of

abstraction.

Writing functions

An R function is composed by

� A name that will be used to call the function (but see anonymous functions

later in section 2); in the code chunk below, we call our function myFun.

� A set on input formal arguments, that are defined in the parenthesis of the

function constructor. The myFun example has two arguments, called i and

j. It is possible to provide default values to arguments, as illustrated for j.

� A function body, with curly brackets (only the body is composed or a single

expression).

� A return statement, that represents the output of the function. If no explicit

return statement is provided, the last statement of the function is return by

default. Functions only support single value, i.e. return(i, j) is an error.

To return multiple values one needs to return a list of the respective return

variables like return(list(i, j)).

> myFun <- function(i, j = 1) {
+ mn <- min(i, j)

+ mx <- max(i, j)

+ k <- rnorm(ceiling(i * j))

+ return(k[k > mn/mx])

+ }

2

> myFun(1.75, 4.45)

[1] 1.5953 0.4874 0.7383

> myFun(1.75) ## j = 1 by default

[1] 0.5758

The example below illustrate pass-by-copy semantics and scoping in R. f1 shows

that functions act on copies of their arguments, leaving the original variables intact.

> x <- 1

> f1 <- function(x) {
+ x <- x + 10

+ x

+ }
>

> f1(x)

[1] 11

> x ## unchanged

[1] 1

f2 demonstrates that functions however have access the variables defined outside

of their body (global variables), while still keeping then unmodified.

> f2 <- function() {
+ x <- x + 10

+ x

+ }
>

> f2()

[1] 11

> x ## still unchanged

[1] 1

3

Function to create functions

Functions can also be written that generate new functions.

> make.power <- function(n)

+ function(x) x^n

> square <- make.power(2)

> cube <- make.power(3)

> square

function(x) x^n

<environment: 0x2516358>

> get("n", environment(square))

[1] 2

> square(2)

[1] 4

> cube(2)

[1] 8

Another interesting example is the colorRampPalette function that, given a vec-

tor of valid colour characters as input, returns a function that will create a colour

palette along the initial colours.

> (rbramp <- colorRampPalette(c("red", "blue")))

function (n)

{

x <- ramp(seq.int(0, 1, length.out = n))

rgb(x[, 1L], x[, 2L], x[, 3L], maxColorValue = 255)

}

<bytecode: 0x276b0b0>

<environment: 0x275cd90>

> rbramp(3)

[1] "#FF0000" "#7F007F" "#0000FF"

4

> rbramp(7)

[1] "#FF0000" "#D4002A" "#AA0055" "#7F007F" "#5500AA"

[6] "#2A00D4" "#0000FF"

The ... arguments

When an arbitrary number of arguments is to be passed to a function or of some

arguments need to be passed down to an inner function, one can use the ... special

arguments.

> plt <- function(n, ...)

+ plot(1:n, ...)

> par(mfrow = c(1, 2))

> plt(5, pch = 19, type = "b")

> plt(10, col = rbramp(10), pch = 15)

●

●

●

●

●

1 2 3 4 5

1
2

3
4

5

Index

1:
n

2 4 6 8 10

2
4

6
8

10

Index

1:
n

> args(cat)

function (..., file = "", sep = " ", fill = FALSE, labels = NULL,

append = FALSE)

NULL

> args(rm)

function (..., list = character(), pos = -1, envir = as.environment(pos),

inherits = FALSE)

NULL

5

Functions as arguments

Using functions to generate input to other function is quite natural in R : sort(rnorm(5))

or x[x > 0]2. There is however a family of functions, the *apply functions, that

are systematically called with other functions as arguments. The general usage of

three of the most apply members is illustrated below.

lapply(X, FUN, ...) iterates over each element of the vector or list X and

applies function FUN to return a list of same length than X. Each element of the

returned list is the return value of FUN for that respective element of X. Additional

arguments can be passed to FUN through

> lapply(1:2, rnorm)

[[1]]

[1] 1.512

[[2]]

[1] 0.3898 -0.6212

> lapply(1:2, rnorm, 10, 2)

[[1]]

[1] 5.571

[[2]]

[1] 12.25 9.91

sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE) is a wrapper around

lapply and returns an vector, matrix or array (if possible).

> library(fortunes)

> lapply(sample(315, 1), fortune)

[[1]]

Tom Backer Johnsen: I have just started looking at R,

and are getting more and more irritated at myself for

not having done that before. However, one of the

things I have not found in the documentation is some

2x > 0 is syntactic sugar for ‘>‘(x, 0) and x[i] is in fact ‘[‘(x, i). As such, x[x > 0] can be
rewritten ‘[‘(x, ‘>‘(x, 0)), where the > function is used as an argument to the [function.

6

way of preparing output from R for convenient

formatting into something like MS Word.

Barry Rowlingson: Well whatever you do, don't start

looking at LaTeX, because that will get you even more

irritated at yourself for not having done it before.

-- Tom Backer Johnsen and Barry Rowlingson

R-help (February 2006)

> sapply(sample(315, 1), fortune)

[,1]

quote "Let's not kid ourselves: the most widely used piece of software for statistics is Excel."

author "Brian D. Ripley"

context "'Statistical Methods Need Software: A View of Statistical Computing'"

source "Opening lecture RSS 2002, Plymouth"

date "September 2002"

apply(X, MARGIN, FUN, ...) iterates of MARGIN of array X, apply function FUN

and return the corresponding vector, array or list, depending on the return value

of FUN.

> set.seed(10)

> m <- matrix(rnorm(10), ncol = 2)

> apply(m, 1, myFun)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.1018 -0.2382 0.74139 -0.9549 0.9255

[2,] 0.7558 0.9874 0.08935 -0.1952 0.4830

> apply(m, 1, myFun)

[[1]]

numeric(0)

[[2]]

[1] -0.6749

[[3]]

[1] -1.2652 -0.3737

[[4]]

7

[1] -0.6876 -0.8722

[[5]]

[1] -0.1018 -0.2538

> apply(m, 1, max) ## Biobase::rowMax

[1] 0.3898 -0.1843 -0.3637 -0.5992 0.2945

> apply(m, 2, min) ## Biobse::rowMin

[1] -1.371 -1.627

mapply(FUN, ...) applies FUN to the first elements of each ... argument, then

the second elements, and so on.

> mapply(rep, 1:4, 4:1)

[[1]]

[1] 1 1 1 1

[[2]]

[1] 2 2 2

[[3]]

[1] 3 3

[[4]]

[1] 4

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE) applies function FUN

to each group of values of the atomic object X; the groups INDEX are defined as a

list of one or more factors.

> dfr <- data.frame(f1 = sample(LETTERS[1:2], 10, replace = TRUE),

+ f2 = sample(LETTERS[3:4], 10, replace = TRUE),

+ x = rnorm(10))

> tapply(dfrx, dfrf1, mean)

A B

0.0008889 -0.2546474

8

> tapply(dfrx, dfrf2, mean)

C D

0.06581 -0.21735

> tapply(dfr$x, list(dfr$f1, dfr$f2), mean)

C D

A 0.3547 -0.26449

B -0.3676 -0.02882

See also by or split for similar behaviours.

The replicate function is a wrapper around sapply and allows repeated evalu-

ation of a function call. See section 3 for an example.

Anonymous functions

Sometimes, when using apply for example, there is not save function to plug-in

directly available and the operation to be performed is a one off. Instead of explicitly

creating a function as shown in section 2, one tends to create an anonymous function,

i.e. create a function on the fly without explicitly assigning it to a name.

> m

[,1] [,2]

[1,] 0.01875 0.3898

[2,] -0.18425 -1.2081

[3,] -1.37133 -0.3637

[4,] -0.59917 -1.6267

[5,] 0.29455 -0.2565

> apply(m, 1, function(x) ifelse(mean(x) > 0, mean(x), max(x)))

[1] 0.20427 -0.18425 -0.36368 -0.59917 0.01903

3 Performance

When performance becomes critical or the code becomes remarkably slow and it

becomes necessary to improve performance, it is essential to start by assessing what

portions of the code are to be optimised. It is also often useful to compare timings

of two approaches and compare implementations.

9

Measuring execution time

We will be using the system.time function to compare for loops with and without

initialisation and the apply functions while iterating over the elements of a list

of length N = 104. We will then compute the mean of each element of the list and

multiply it by its length as implemented in function f.

> ll <- lapply(sample(N), rnorm)

> f <- function(x) mean(x) * length(x)

The first approach we want to test is to use a for loop and append the results at

the end if a vector res1. The important point in the first example is that res1 is

grown dynamically at each iteration.

> res1 <- c()

> system.time({
+ for (i in 1:length(ll))

+ res1[i] <- f(ll[[i]])

+ })

user system elapsed

11.128 1.648 12.838

In the second example, we will use the same for loop but the result vector res2

is initialised and the respective element set throughout the iterations.

> res2 <- numeric(length(ll))

> system.time({
+ for (i in 1:length(ll))

+ res2[i] <- f(ll[[i]])

+ })

user system elapsed

0.856 0.008 0.866

The last approach uses the sapply idiom to apply f over each element of the list

to generate the resulting res3 vector.

> system.time(res3 <- sapply(ll, f))

user system elapsed

0.724 0.000 0.725

10

The first approach is the slowest one, and the difference would become more

substantially more pronounced for increasing values of N. This is because at each ith

iteration, when a new result of f is appended to res1, a copy of res1 of length i−1

is generated to be appended the ith results, essentially resulting in the duplication of

long (and longer) temporary lists. This can be easily avoided by properly initialising

the result vector res2 or by using the sapply function, that will take care of the

housekeeping for us.

Note that in general, using apply is not faster than a for loop with proper initial-

isation. It is however important to appreciate the conciseness and elegance of the

last solution.

From the example above, we can hardly conclude that any of solutions 2 or 3 are

faster than the other one, as we do not have any estimate of the variability of the

timing (which is rather sad, using an environment for statistical computing). It is

very easy to obtain such an estimation by replicating the call, which is elegantly

done using the replicate function.

> summary(replicate(50, system.time(res3 <- sapply(ll, f))["elapsed"]))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.711 0.718 0.723 0.725 0.730 0.769

At this stage, we can’t actually conclude anything as we have not verified that

our three solutions produce identical results. This will be the topic of section 4.

Benchmarking

A more thorough benchmarking can be done using one the the rbenchmark or

microbenchmark packages. Let’s embed solutions 2 and 3 in two functions sol2

and sol3 to facilitate the direct comparisons.

> sol2 <- function(x) {
+ n <- length(x)

+ ans <- numeric(n)

+ for (i in 1:n) {
+ ans[i] <- f(x[[i]])

+ }
+ ans

+ }
> sol3 <- function(x)

+ sapply(x, f)

11

> library("microbenchmark")

> microbenchmark(sol2(ll), sol3(ll), times = 200)

Unit: milliseconds

expr min lq median uq max neval

sol2(ll) 791.9 806.0 812.1 821.5 932.3 200

sol3(ll) 711.3 727.9 733.0 740.1 809.0 200

Based on the benchmarking above, we can now conclude that solution 3 using

sapply is, under these conditions, faster. This can however not be generalised for

all for (with initialisation) and *apply comparisons.

Profiling

To conclude this section on measuring performance, we introduce the Rprof function,

that allows a detailed and complete time profiling. Its usage is simple. The user

initiated the profiling by calling Rprof() (optionally passing a custom file name

as input). From now on, every function call is going to be timed until profiling is

switched of with Rprof(NULL).

> Rprof("sol3.Rprof")

> tmp <- replicate(10, sol3(ll))

> Rprof(NULL)

The detailed report can now be produced using the summaryRprof function (op-

tionally specifying the file storing the profiling timings).

> summaryRprof("sol3.Rprof")

$by.self

self.time self.pct total.time total.pct

"mean.default" 4.60 63.36 4.60 63.36

"mean" 1.94 26.72 6.54 90.08

"FUN" 0.38 5.23 7.26 100.00

"lapply" 0.22 3.03 7.26 100.00

"*" 0.06 0.83 0.06 0.83

"unlist" 0.04 0.55 0.18 2.48

"length" 0.02 0.28 0.02 0.28

$by.total

total.time total.pct self.time self.pct

12

"FUN" 7.26 100.00 0.38 5.23

"lapply" 7.26 100.00 0.22 3.03

"replicate" 7.26 100.00 0.00 0.00

"sapply" 7.26 100.00 0.00 0.00

"sol3" 7.26 100.00 0.00 0.00

"mean" 6.54 90.08 1.94 26.72

"mean.default" 4.60 63.36 4.60 63.36

"unlist" 0.18 2.48 0.04 0.55

"simplify2array" 0.18 2.48 0.00 0.00

"unique" 0.16 2.20 0.00 0.00

"*" 0.06 0.83 0.06 0.83

"length" 0.02 0.28 0.02 0.28

$sample.interval

[1] 0.02

$sampling.time

[1] 7.26

4 Testing

As mentioned above when comparing for and sapply timings, for our comparison

to make sense, we must first verify that our results are correct, i.e. in this case that

our alternative implementations produce identical results.

The best way to verity exact equality between two arbitrary objects is to use the

identical compactor.

> identical(res1, res2)

[1] TRUE

To test for identity of 3 objects, we propose function identical3, taken from the

Matrix package3.

> identical3 <-

+ function(x,y,z) identical(x,y) && identical (y,z)

> identical3(res1, res2, res3)

[1] TRUE

3See in the "test-tools-1.R" from the Matrix package for other similar clever testing functions.

13

Sometimes, exact identity is not desired. A well known example (see R FAQ 7.314

for details) is

> x <- sqrt(2)

> x * x == 2

[1] FALSE

> identical(x*x, 2)

[1] FALSE

Because floating numbers can not be represented exactly in a computer, one needs

to limit the precision of the comparison. Instead of manually rounding the values

to be compared, one can use the hardware specific tolerance .Machine$double.eps

for this, and in particular the all.equal function.

> all.equal(x * x, 2)

[1] TRUE

The above illustrate that when specific expectations are to be met (whether on

results or directly on function inputs), it is advisable to explicitly test them using the

appropriate comparison operator. In particular, the stopifnot function provides a

simple idiom for such testing.

> stopifnot(x * x == 2)

Error: x * x == 2 is not TRUE

> stopifnot(all.equal(x * x, 2))

RUnit and testthat package are two packages that provide a more general frame-

work for testing, in particular for unit testing in the frame of package development.

5 Parallelisation

In addition to the elegant syntax of the apply family of functions, an additional

advantage is that due their underlying iterative nature, where the same function is

4Why doesn’t R think these numbers are equal? http://www.hep.by/gnu/r-patched/r-faq/

R-FAQ_82.html

14

http://www.hep.by/gnu/r-patched/r-faq/R-FAQ_82.html
http://www.hep.by/gnu/r-patched/r-faq/R-FAQ_82.html

called independently on each element of the list/vector/array, it is an obvious candi-

date for parallelisation. The parallelisation support is provided by the parallel,that

is one of the recommended packages that are shipped with R since version 2.14.

Let’s first illustrate the parallelisation using the mclapply function; it is a parallel

version of lapply (see section 2). We pass it an anonymous function that returns

the process id using and specify the number of cores to use with the mc.cores

argument. The detectCores function attempts to detect the number pf CPU cores

on the host.

> library("parallel")

> detectCores()

[1] 4

> mclapply(1:3, function(x) Sys.getpid(), mc.cores = 3)

[[1]]

[1] 25920

[[2]]

[1] 25921

[[3]]

[1] 25922

> mclapply(1:3, function(x) Sys.getpid(), mc.cores = 2)

[[1]]

[1] 25923

[[2]]

[1] 25924

[[3]]

[1] 25923

We see that when specifying 3 computations on 3 cores (out of 4 possible), our

construct returns 3 different process identifiers. When parallelising the same task

on 2 available cores, one process executes two of the computations.

The application of such parallelisation first tasks where independent computations

15

are repeated certain number of times; results just need to be combined after parallel

executions are done. In this section, we consider two frameworks.

� A cluster of nodes (as in package snow): generate multiple workers listening

to the master; these workers are new processes that can run on the current

machine or on similar ones with an identical R installation. This framework

should work on all R platforms.

This approach needs to explicitly create the cluster nodes using the makeCluster

function. The cluster of nodes can be stopped with the stopCluster func-

tions. An important aspect of this solution is that all symbols used within the

parallelised functions must be exported to each node of the cluster. This is

achieved with the clusterExport.

� The R process is forked to create new R processes by taking a complete copy of

the masters process, including the workspace (pioneered by package multicore).

This does not work on Windows though and the parallel function will fall back

in serialised execution (mc.cores = 1).

Let now build a parallelised solution for the example of section 3.

> solmc <- function(x)

+ mclapply(x, f)

> solpar <- function(x, cl)

+ parLapply(cl, x, f)

> sol3 <- function(x)

+ lapply(x, f)

> cl <- makeCluster(4)

> stopifnot(identical3(sol3(ll), solmc(ll), solpar(ll, cl)))

> stopCluster(cl)

If we were to compare the speed to these 3 implementations, we would observe that

the parallelised version would hardly beat the serialised implementation, and most

likely be slower due to the overhead of the parallelisation and the light computing

task of the example. Instead, we have benchmarked the following code.

library("parallel")

library("microbenchmark")

ll <- replicate(8, matrix(rnorm(1e6),1000), simplify=FALSE)

f <- function(x) mean(solve(x), trim=0.7)

pbench <- microbenchmark(

16

res <- lapply(ll, f),

resmc <- mclapply(ll, f, mc.cores = 16L),

times = 10)

stopifnot(identical(res, resmc))

save(pbench, file = "pbench.rda")

Unit: seconds

expr min lq

res <- lapply(ll, f) 4.978 5.054

resmc <- mclapply(ll, f, mc.cores = 16L) 1.491 1.612

median uq max neval

5.235 5.434 5.497 10

1.656 1.701 1.809 10

Several parameters will influence how much can be gained by parallelising code

as illustrated above, including number of cores and overhead of the parallelisation,

speed of individual calculations, possibly other limiting factors like disk access or

load balancing (when when several of the jobs to be run in parallel take different

times).

Finally, other frameworks exists, like the foreach package and Bioconductor’s

BiocParallel package (currently still in development).

Further reading The Parallel R book by McCallum and Weston, O’Reilly (2011),

the parallel and foreach vignettes and the High Performance Computing CRAN task

view5.

6 Debugging

Let’s consider the following case6 where executing function g produces and error

which is not directly results from g’s code, but from another function called, possibly

indirectly, inside g.

> g()

Error in x[-1:2] (from #3) : only 0's may be mixed with negative subscripts

> g

function() f()

5http://cran.r-project.org/web/views/HighPerformanceComputing.html
6Example taken from slides by Martin Morgan and Robert Gentleman.

17

http://cran.r-project.org/web/views/HighPerformanceComputing.html

The first step is to isolate the function in which the error is thrown. This can be

achieved with the traceback function, that will print the call stack of the last call

error.

> traceback()

5: FUN(1:10[[5L]], ...)

4: lapply(X = X, FUN = FUN, ...)

3: sapply(1:10, e) at #1

2: f() at #1

1: g()

We see that after calling g manually, f was called, then sapply iterated over 1:10,

called function e at each iteration. sapply is a wrapper around lapply, which we

see in position 4 and FUN, i.e. e fails at the fifth position on the stack with the error

> Error in x[-1:2] (from #3) : only 0's may be mixed with negative subscripts

From here on, one can display the code the the offending function e and even

reproduce the error directly.

e

function(i) {
x <- 1:4

if (i < 5) x[1:2]

else x[-1:2]

}
e(5)

Error in x[-1:2] (from #3) : only 0's may be mixed with negative subscripts

The next step is typically to the fault function for debugging using with debug(e),

so that browser() will be called on entry. In browser mode, the execution of an

expression is interrupted and it is possible to inspect the state of the environment

and the content of the respective variables. Stepping to the next line is done by

pressing enter of n. Typing Q can be used to exit debugging. To unregister the

faulty function from debugger mode, use undebug(e).

> debug(e)

> e(5)

debugging in: e(5)

debug at #1: {

18

x <- 1:4

if (i < 5)

x[1:2]

else x[-1:2]

}
Browse[2]>

debug at #2: x <- 1:4

Browse[2]>

debug at #3: if (i < 5) x[1:2] else x[-1:2]

Browse[2]> ls()

[1] "i" "x"

Browse[2]> i

[1] 5

Browse[2]> x

[1] 1 2 3 4

Browse[2]>

debug at #3: x[-1:2]

Browse[2]> x[-1:2]

Error in x[-1:2] (from #3) : only 0's may be mixed with negative subscripts

Browse[2]> x[-(1:2)]

[1] 3 4

Browse[2]> Q

> undebug(e)

> fix(e)

Finally, once the error has been identified, it is possible to fix the bug immediately

with fix(e), which will open the default editor for the user to made the necessary

changes. After saving and closing, a new copy of the function will be available in

the global environment.

Other tools of interest are trace() to insert code into functions. It is also possible

to set options(error=recover) to get the call stack and enter into browser mode

in any of the function calls.

Further reading An Introduction to the Interactive Debugging Tools in R7 by

Roger Peng, the Debugging R code slides8 by Gatto and Stojnić and the Debug-

ging section9 of the Writing R Extensions manual. Several editor have debugging

7http://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf
8https://github.com/lgatto/R-debugging
9http://cran.r-project.org/doc/manuals/r-release/R-exts.html#Debugging

19

http://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf
https://github.com/lgatto/R-debugging
http://cran.r-project.org/doc/manuals/r-release/R-exts.html#Debugging

facilities, including the StaET eclipse plugin10 and emacs’ ess tracebug11.

7 Other topics of interest

This document presents an overview of certain useful idioms that are used in R.

Other interesting topics related to R programming and suggested reading are package

development (see for example QuickPackage or R package development) and object-

oriented (see for example Short S4 tutorial or R object oriented programming),

available on the repository.

Session information

All software and respective versions used to produce this document are listed below.

� R Under development (unstable) (2013-06-16 r62969),

x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_GB.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB.UTF-8,

LC_COLLATE=en_GB.UTF-8, LC_MONETARY=en_GB.UTF-8,

LC_MESSAGES=en_GB.UTF-8, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C,

LC_TELEPHONE=C, LC_MEASUREMENT=en_GB.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, parallel, stats,

utils

� Other packages: fortunes 1.5-0, knitr 1.2

� Loaded via a namespace (and not attached): digest 0.6.3, evaluate 0.4.3,

formatR 0.7, microbenchmark 1.3-0, stringr 0.6.2, tools 3.1.0

10http://www.walware.de/goto/statet
11http://ess.r-project.org/Manual/ess.html#ESS-tracebug

20

https://github.com/lgatto/QuickPackage
https://github.com/lgatto/RPackageDevelopment
https://github.com/lgatto/S4-tutorial
https://github.com/lgatto/roo
https://github.com/lgatto/TeachingMaterial
http://www.walware.de/goto/statet
http://ess.r-project.org/Manual/ess.html#ESS-tracebug

	1 Introduction
	2 Programming
	3 Performance
	4 Testing
	5 Parallelisation
	6 Debugging
	7 Other topics of interest

