Tackling Big Data with R

New features and old concepts for handling large and
streaming data in practice

Simon Urbanek

R Foundation

Overview

e Motivation

e Custom connections

e Data processing pipelines

e Parallel processing

e Back-end experiments: Hadoop, RDFS
e Call for participation

P ——

Motivation

e R's in memory model is fast

- RAM prices declining steadily (unlike CPUs),
[ca. $8/Gb for server RAM now]

- Billion+ rows in R workable
* Problem 1: parallelization

s <— split(df, ...) ### slow and ineffcient!
y <— mclapply(s, function(x) ...)

- splitting up data is expensive
 Problem 2: streaming
- conceptually cannot have all data at once

P ——

Old, simple idea: chunking

e Process data in (big) chunks

e Parallelization:

- feed each process/worker with chunks, collect results

- can process chunks in parallel (if the processing can be
independent); no copying

e Streaming:
- keep a mutable state

- process chunks as they come in, modifying state and
creating results

e |[ssue: R has no explicit framework/API for this

P ——

Connections

e R has connections: abstraction for data access and
transport - completely back-end opaque!

* New in R 3.0.0: custom connection support

- packages can create new connection implementations

- some examples:

e zmqc - OMQ PUB/SUB connections - read from OMQ streaming
feeds directly

e hdfsc - read files from HDFS - just like any other file

HDFS(“/data/fo0”)
read.table(f)

f
d

P ——

Data pipeline

mean(read.table(HDFS(“foo0"))$x)

Source - delivers data
l connection (text or binary)

Data parser - converts data format to R objects

(or other R-native object)

l data frame

Filtering, processing, computing, ...

result
(aggregates, models, graphics, ...)

P ——

Streaming

Source - delivers data
l connection (text or binary)
Data parser - converts data format to R objects

(or other R-native object)

l data frame

Filtering, processing, computing, ...

mutable state
result

(aggregates, models, graphics, ...)

P ——

Parallel processing

Source - delivers data

LN T

Data parser Data parser Data parser
Computing, ... Computing, ... Computing, ...

P ——

Proposal: Chunks in a pipeline

e Connections

- define available classes of data sources contribute!
e Read from sources in big chunks
e Parsers

- transform data representation to R objects contribute!
e Compute

- algorithms that work on chunks contribute!

(serial processing + mutable state = streaming, independence = parallel)

e Collect
- algorithms to combine parallel chunks contribute!

P ——

Example: streaming

e Use OMQ PUB/SUB: buffered per subscriber (slow
subscribers don't affect others; can detect dropped

recor(|
feed = zmqc(“ipc:///my—-feed.Omq”, “r")
e Read| max = 1000
state = numeric()
e Upda while (TRUE) {

d

read.table(feed, FALSE, nrows=max)
* Serve nmix c(state * 0.9, table(d[21))
Rhttp state = tapply(mlx, names(mlx), sum)
if (any(state <= 1)) state = state[state > 1]

P ——

Parallel processing

e At least three stages:
- split (often implicit)
- compute
- combine

e Define functions using this paradigm
simple examples:

cc.sum <- function(x) cc(x, sum, sum)
cc.table <- function(x) cc(x, table, function(x) tapply(x, names(x), sum))

cc.mean <- function(x) cc(x, function(x) c(sum(x), length(x)),
function(x) sum(x[1,]) / sum(x[2,]))

P ———

Practical considerations

e The implementation can be seamless: use special
“distributed vector” class and dispatch on it

e Typically source is big, so splitting is implicit since
the data does not reside in R (e.g. sequence in a
file)

e L everage distributed storage: run computing where
the chunks are stored

Examples:

- Hadoop
- RDFS

P ——

Hadoop

e A lot of companies invest in Hadoop clusters
(we have to live with it even if there are many better solutions)

e Literal map/reduce based on key/value is very
inefficient for R since it is not a vector operation

e Hadoop can be (ab)used for chunk-wise
processing: streaming mode - use HDFS chunks as
input, compute is map on the entire chunk,
combine is reduce

P ——

Example

e Aggregate point locations by ZIP code (match
points against ZCTA US/Census 2010 shapefiles)

r <— read.table(hmr(
hinput("/data/2013/06"),
function(x)
table(zcta2010.db() [
inside(zcta2010.shp(), xI[,4], x[,5]), 11),
function(x) ctapply(x, names(x), sum)))

e Fairly native R programming

e Implicit defaults (read.table parser, conversion of
named vectors to key/value entries)

e Result is an HDFS connection

P ———

R Distributed File System - Experiment

e Purely R-based (R client, R server, R code)

e Uses Rserve for fast access
(no setup cost, optional authentication, users switching,
transport encryption for free)

e Any storage available (RData, ASCI|, ...), all storage
is R-native - parsing step can be removed

* No name node, all nodes are equal

e Scales only to moderate cluster sizes (hundreds of
nodes), but is very fast (milliseconds for job setup,
no need to leave R)

P ——

Call for Participation

e More users, more use cases
- is this powerful enough?
- if not, what is missing?
e Make it part of R
- so developers can rely on it
e Start writing functions and packages
- help to create critical mass
 Theoretical work

- methods and approaches that give bounds for
approximation error, necessary assumptions etc.

P ——

Related work

e Purdue Univ: Divide/Recombine

- results for linear model approximations

- RHipe - very specialized vehicle for the above using
specific version and brand of Hadoop

e |terators (also used by foreach)
- idea of running code in iterations; does include chunks
- focused on inner code (chunk processing)

P ——

Conclusions

e New in R 3.0.0: custom connections, to be used as
building blocks for data pipelines

e Read from connections in chunks, compute and
collect

e Generic framework that can be applied to
streaming and parallel processing

e et us work together to see if it is powerful
enough to build an official R interface that
everyone can use and contribute to

e Back-end agnostic - testing on Hadoop and RDFS

P ———

Contact

e Most packages available on RForge.net
(source also on GitHub)

- http://RForge.net/zmqc
- http://RForge.net/hdfsc

 Remaining packages (iotools, rdfs, ...) in the
process of being pushed, check RForge.net and

- https://github.com/s-u

Simon URBANEK

simon.urbanek@R-project.org
http://urbanek.info

P ——

http://RForge.net/Rserve
http://RForge.net/Rserve
http://RForge.net/Rserve
http://RForge.net/Rserve
https://github.com/s-u
https://github.com/s-u
mailto:urbanek@research.att.com
mailto:urbanek@research.att.com
http://research.att.com/~urbanek
http://research.att.com/~urbanek

