
New features and old concepts for handling large and
streaming data in practice

Simon Urbanek

R Foundation

Tackling Big Data with R

Tackling Big Data with RPage

Overview

• Motivation
• Custom connections
• Data processing pipelines
• Parallel processing
• Back-end experiments: Hadoop, RDFS
• Call for participation

2

Tackling Big Data with RPage

Motivation

• R’s in memory model is fast
- RAM prices declining steadily (unlike CPUs),

[ca. $8/Gb for server RAM now]
- Billion+ rows in R workable

• Problem 1: parallelization

- splitting up data is expensive

• Problem 2: streaming
- conceptually cannot have all data at once

3

s <- split(df, ...) ### slow and ineffcient!
y <- mclapply(s, function(x) ...)

Tackling Big Data with RPage

Old, simple idea: chunking

• Process data in (big) chunks
• Parallelization:

- feed each process/worker with chunks, collect results
- can process chunks in parallel (if the processing can be

independent); no copying

• Streaming:
- keep a mutable state
- process chunks as they come in, modifying state and

creating results

• Issue: R has no explicit framework/API for this

4

Tackling Big Data with RPage

Connections

• R has connections: abstraction for data access and
transport - completely back-end opaque!

• New in R 3.0.0: custom connection support
- packages can create new connection implementations
- some examples:

• zmqc - 0MQ PUB/SUB connections - read from 0MQ streaming
feeds directly

• hdfsc - read files from HDFS - just like any other file

5

f = HDFS(“/data/foo”)
d = read.table(f)

Tackling Big Data with RPage

Data pipeline

6

Source - delivers data

connection (text or binary)

Data parser - converts data format to R objects

data frame
(or other R-native object)

Filtering, processing, computing, ...

result
(aggregates, models, graphics, ...)

mean(read.table(HDFS(“foo”))$x)

Tackling Big Data with RPage

Streaming

7

Source - delivers data

connection (text or binary)

Data parser - converts data format to R objects

data frame
(or other R-native object)

Filtering, processing, computing, ...

result
(aggregates, models, graphics, ...)

mutable state

Tackling Big Data with RPage

Parallel processing

8

Source - delivers data

Data parser

Computing, ...

Data parser

Computing, ...

Data parser

Computing, ...

results

Tackling Big Data with RPage

Proposal: Chunks in a pipeline

• Connections
- define available classes of data sources

• Read from sources in big chunks
• Parsers

- transform data representation to R objects

• Compute
- algorithms that work on chunks

(serial processing + mutable state = streaming, independence = parallel)

• Collect
- algorithms to combine parallel chunks

9

contribute!

contribute!

contribute!

contribute!

Tackling Big Data with RPage

Example: streaming

• Use 0MQ PUB/SUB: buffered per subscriber (slow
subscribers don’t affect others; can detect dropped
records vis framing)

• Read chunks (lines), parse (read.table)
• Update mutable structure (hash table, model, ...)
• Serve results (file output, web service via

Rhttpd, ...)

10

feed = zmqc(“ipc:///my-feed.0mq”, “r”)
max = 1000
state = numeric()
while (TRUE) {
 d = read.table(feed, FALSE, nrows=max)
 mix = c(state * 0.9, table(d[,2]))
 state = tapply(mix, names(mix), sum)
 if (any(state <= 1)) state = state[state > 1]
}

Tackling Big Data with RPage

Parallel processing

• At least three stages:
- split (often implicit)
- compute
- combine

• Define functions using this paradigm
simple examples:

11

cc.sum <- function(x) cc(x, sum, sum)

cc.table <- function(x) cc(x, table, function(x) tapply(x, names(x), sum))

cc.mean <- function(x) cc(x, function(x) c(sum(x), length(x)),
 function(x) sum(x[1,]) / sum(x[2,]))

Tackling Big Data with RPage

Practical considerations

• The implementation can be seamless: use special
“distributed vector” class and dispatch on it

• Typically source is big, so splitting is implicit since
the data does not reside in R (e.g. sequence in a
file)

• Leverage distributed storage: run computing where
the chunks are stored
Examples:
- Hadoop
- RDFS

12

Tackling Big Data with RPage

Hadoop

• A lot of companies invest in Hadoop clusters
(we have to live with it even if there are many better solutions)

• Literal map/reduce based on key/value is very
inefficient for R since it is not a vector operation

• Hadoop can be (ab)used for chunk-wise
processing: streaming mode - use HDFS chunks as
input, compute is map on the entire chunk,
combine is reduce

13

Tackling Big Data with RPage

Example

• Aggregate point locations by ZIP code (match
points against ZCTA US/Census 2010 shapefiles)

• Fairly native R programming
• Implicit defaults (read.table parser, conversion of

named vectors to key/value entries)
• Result is an HDFS connection

14

r <- read.table(hmr(
 hinput("/data/2013/06"),
 function(x)
 table(zcta2010.db()[
 inside(zcta2010.shp(), x[,4], x[,5]), 1]),
 function(x) ctapply(x, names(x), sum)))

Tackling Big Data with RPage

R Distributed File System - Experiment

• Purely R-based (R client, R server, R code)
• Uses Rserve for fast access

(no setup cost, optional authentication, users switching,
transport encryption for free)

• Any storage available (RData, ASCII, ...), all storage
is R-native - parsing step can be removed

• No name node, all nodes are equal
• Scales only to moderate cluster sizes (hundreds of

nodes), but is very fast (milliseconds for job setup,
no need to leave R)

15

Tackling Big Data with RPage

Call for Participation

• More users, more use cases
- is this powerful enough?
- if not, what is missing?

• Make it part of R
- so developers can rely on it

• Start writing functions and packages
- help to create critical mass

• Theoretical work
- methods and approaches that give bounds for

approximation error, necessary assumptions etc.

16

Tackling Big Data with RPage

Related work

• Purdue Univ: Divide/Recombine
- results for linear model approximations
- RHipe - very specialized vehicle for the above using

specific version and brand of Hadoop

• Iterators (also used by foreach)
- idea of running code in iterations; does include chunks
- focused on inner code (chunk processing)

17

Tackling Big Data with RPage

Conclusions

• New in R 3.0.0: custom connections, to be used as
building blocks for data pipelines

• Read from connections in chunks, compute and
collect

• Generic framework that can be applied to
streaming and parallel processing

• Let us work together to see if it is powerful
enough to build an official R interface that
everyone can use and contribute to

• Back-end agnostic - testing on Hadoop and RDFS

18

Tackling Big Data with RPage

Contact

• Most packages available on RForge.net
(source also on GitHub)
- http://RForge.net/zmqc
- http://RForge.net/hdfsc

• Remaining packages (iotools, rdfs, ...) in the
process of being pushed, check RForge.net and
- https://github.com/s-u

Simon URBANEK
simon.urbanek@R-project.org
http://urbanek.info

19

http://RForge.net/Rserve
http://RForge.net/Rserve
http://RForge.net/Rserve
http://RForge.net/Rserve
https://github.com/s-u
https://github.com/s-u
mailto:urbanek@research.att.com
mailto:urbanek@research.att.com
http://research.att.com/~urbanek
http://research.att.com/~urbanek

