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Overview

• Motivation
• Custom connections
• Data processing pipelines
• Parallel processing
• Back-end experiments: Hadoop, RDFS
• Call for participation
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Motivation

• R’s in memory model is fast
- RAM prices declining steadily (unlike CPUs),

[ca. $8/Gb for server RAM now]
- Billion+ rows in R workable

• Problem 1: parallelization

- splitting up data is expensive

• Problem 2: streaming
- conceptually cannot have all data at once
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s <- split(df, ...) ### slow and ineffcient!
y <- mclapply(s, function(x) ...)
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Old, simple idea: chunking

• Process data in (big) chunks
• Parallelization:

- feed each process/worker with chunks, collect results
- can process chunks in parallel (if the processing can be 

independent); no copying

• Streaming:
- keep a mutable state
- process chunks as they come in, modifying state and 

creating results

• Issue: R has no explicit framework/API for this
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Connections

• R has connections: abstraction for data access and 
transport - completely back-end opaque!

• New in R 3.0.0: custom connection support
- packages can create new connection implementations
- some examples:

• zmqc - 0MQ PUB/SUB connections - read from 0MQ streaming 
feeds directly

• hdfsc - read files from HDFS - just like any other file
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f = HDFS(“/data/foo”)
d = read.table(f)
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Data pipeline
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Source - delivers data

connection (text or binary)

Data parser - converts data format to R objects

data frame
(or other R-native object)

Filtering, processing, computing, ...

result
(aggregates, models, graphics, ...)

mean(read.table(HDFS(“foo”))$x)
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Streaming
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Source - delivers data

connection (text or binary)

Data parser - converts data format to R objects

data frame
(or other R-native object)

Filtering, processing, computing, ...

result
(aggregates, models, graphics, ...)

mutable state
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Parallel processing
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Source - delivers data

Data parser

Computing, ...

Data parser

Computing, ...

Data parser

Computing, ...

results
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Proposal: Chunks in a pipeline

• Connections
- define available classes of data sources

• Read from sources in big chunks
• Parsers

- transform data representation to R objects

• Compute
- algorithms that work on chunks

(serial processing + mutable state = streaming, independence = parallel)

• Collect
- algorithms to combine parallel chunks
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contribute!

contribute!

contribute!

contribute!
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Example: streaming

• Use 0MQ PUB/SUB: buffered per subscriber (slow 
subscribers don’t affect others; can detect dropped 
records vis framing)

• Read chunks (lines), parse (read.table)
• Update mutable structure (hash table, model, ...)
• Serve results (file output, web service via 

Rhttpd, ...)
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feed  = zmqc(“ipc:///my-feed.0mq”, “r”)
max   = 1000
state = numeric()
while (TRUE) {
  d     = read.table(feed, FALSE, nrows=max)
  mix   = c(state * 0.9, table(d[,2]))
  state = tapply(mix, names(mix), sum)
  if (any(state <= 1)) state = state[state > 1]
}
    



Tackling Big Data with RPage 

Parallel processing

• At least three stages:
- split (often implicit)
- compute
- combine

• Define functions using this paradigm
simple examples:
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cc.sum   <- function(x) cc(x, sum, sum)

cc.table <- function(x) cc(x, table, function(x) tapply(x, names(x), sum))

cc.mean  <- function(x) cc(x, function(x) c(sum(x), length(x)),
                              function(x) sum(x[1,]) / sum(x[2,]))
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Practical considerations

• The implementation can be seamless: use special 
“distributed vector” class and dispatch on it

• Typically source is big, so splitting is implicit since 
the data does not reside in R (e.g. sequence in a 
file)

• Leverage distributed storage: run computing where 
the chunks are stored
Examples:
- Hadoop
- RDFS
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Hadoop

• A lot of companies invest in Hadoop clusters
(we have to live with it even if there are many better solutions)

• Literal map/reduce based on key/value is very 
inefficient for R since it is not a vector operation

• Hadoop can be (ab)used for chunk-wise 
processing: streaming mode - use HDFS chunks as 
input, compute is map on the entire chunk, 
combine is reduce
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Example

• Aggregate point locations by ZIP code (match 
points against ZCTA US/Census 2010 shapefiles)

• Fairly native R programming
• Implicit defaults (read.table parser, conversion of 

named vectors to key/value entries)
• Result is an HDFS connection
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r <- read.table(hmr(
  hinput("/data/2013/06"),
  function(x)
    table(zcta2010.db()[
       inside(zcta2010.shp(), x[,4], x[,5]), 1]),
  function(x) ctapply(x, names(x), sum)))



Tackling Big Data with RPage 

R Distributed File System - Experiment

• Purely R-based (R client, R server, R code)
• Uses Rserve for fast access

(no setup cost, optional authentication, users switching, 
transport encryption for free)

• Any storage available (RData, ASCII, ...), all storage 
is R-native - parsing step can be removed

• No name node, all nodes are equal
• Scales only to moderate cluster sizes (hundreds of 

nodes), but is very fast (milliseconds for job setup, 
no need to leave R)
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Call for Participation

• More users, more use cases
- is this powerful enough?
- if not, what is missing?

• Make it part of R
- so developers can rely on it

• Start writing functions and packages
- help to create critical mass

• Theoretical work
- methods and approaches that give bounds for 

approximation error, necessary assumptions etc.
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Related work

• Purdue Univ: Divide/Recombine
- results for linear model approximations
- RHipe - very specialized vehicle for the above using 

specific version and brand of Hadoop

• Iterators (also used by foreach)
- idea of running code in iterations; does include chunks
- focused on inner code (chunk processing)
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Conclusions

• New in R 3.0.0: custom connections, to be used as 
building blocks for data pipelines

• Read from connections in chunks, compute and 
collect

• Generic framework that can be applied to 
streaming and parallel processing

• Let us work together to see if it is powerful 
enough to build an official R interface that 
everyone can use and contribute to

• Back-end agnostic - testing on Hadoop and RDFS
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Contact

• Most packages available on RForge.net
(source also on GitHub) 
- http://RForge.net/zmqc
- http://RForge.net/hdfsc

• Remaining packages (iotools, rdfs, ...) in the 
process of being pushed, check RForge.net and
- https://github.com/s-u

Simon URBANEK
simon.urbanek@R-project.org
http://urbanek.info
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