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Two applications of RNA-Seq

• Discovery
• find new transcripts
• find transcript boundaries
• find splice junctions

• Comparison
Given samples from different experimental conditions, find effects 
of the treatment on
• gene expression strengths
• isoform abundance ratios, splice patterns, transcript 

boundaries



Count data in HTS

    Gene       GliNS1  G144    G166    G179    CB541   CB660
13CDNA73   4       0       6       1       0       5
A2BP1      19      18      20      7       1       8
A2M        2724    2209    13      49      193     548
A4GALT     0       0       48      0       0       0
AAAS       57      29      224     49      202     92
AACS       1904    1294    5073    5365    3737    3511
AADACL1    3       13      239     683     158     40
[...]

• RNA-Seq
• Tag-Seq
• ChIP-Seq
• HiC
• Bar-Seq
• ...



Sample-to-sample variation

comparison of 
two replicates

comparison of 
treatment vs control



Sample-to-sample variability

• In RNA-Seq, the minimum variance given by the 
Poisson distribution.

• Taking only Poisson noise into account is 
insufficient, though.

• Many publications ignore this.



Differential expression: Two questions

Assume you use RNA-Seq to determine the concentration of 
transcripts from some gene in different samples. What is your 
question?

1. “Is the concentration in one sample different from 
the expression in another sample?”

or

2. “Can the difference in concentration between 
treated samples and control samples be attributed to 
the treatment?”



“Can the difference in concentration between treated samples 
and control samples be attributed to the treatment?”

Look at the differences between replicates? They show how 
much variation occurs without difference in treatment.

Could it be that the treatment has no effect and the difference 
between treatment and control is just a fluctuation of the same 
kind as between replicates?

To answer this, we need to assess the strength of this sample 
noise.



Replicates

Two replicates permit to
• globally estimate variation

Sufficiently many replicates permit to
• estimate variation for each gene
• randomize out unknown covariates
• spot outliers
• improve precision of expression and fold-change 

estimates



Replication at what level?

Replicates should differ in all aspects in which control 
and treatment samples differ, except for the actual 
treatment.



Estimating noise from the data

• If we have many replicates, we can estimate the 
variance for each gene.

• With only few replicates, we need an additional 
assumption. We use: “Genes with similar 
expression strength have similar variance.”



Variance calculated from comparing two replicates

    Poisson v = μ 
    Poisson + constant CV v = μ + α μ2

    Poisson + local regression v = μ + f(μ2) 

Variance depends strongly on the mean



The NB distribution from a hierarchical model

Biological sample 
with mean  and µ
variance v

Poisson distribution 
with mean q and 
variance q.

Negative binomial 
with mean µ and
variance q+v.



Model fitting

• Estimate the variance from replicates
• Fit a line to get the variance-mean dependence v(μ)

(local regression for a gamma-family generalized linear model, extra math 
needed to handle differing library sizes)



Dispersion fit



Differential expression

RNA-Seq data: overexpression of two different 
genes in flies  [data: Furlong group]



Type-I error control

comparison of 
two replicates

comparison of 
treatment vs control



Two noise ranges

dominating noise How to improve power?
shot noise (Poisson) deeper sampling
biological noise more biological replicates



Further use cases

Similar count data appears in
• comparative ChiP-Seq
• barcode sequencing
• ...
and can be analysed with DESeq as well.



Comparative ChIP-Seq with DESeq

Step 1: Get a list of counting bins by either
• running a peak finder on each samples and merging the 

peak lists, or
• merging the reads and running the finder on the pooled 

reads, or
• using windows around annotated features

Step 2: Make a count table: 
columns  samples; rows  counting bins– –

and use DESeq

Note: The input samples are used in Step 1 only.



Generalized linear models

Simple design:
• Two groups of samples (“control” and “treatment”), 

no sub-structure within each group.

Common complex designs:
• Designs with blocking factors
• Factorial designs



GLMs: Blocking factor

Sample treated sex

S1 no male

S2 no male

S3 no male

S4 no female

S5 no female

S6 yes male

S7 yes male

S8 yes female

S9 yes female

S10 yes female



GLMs: Blocking factor

full model for gene i:

reduced model for gene i:



GLMs: Blocking factor

cds <- newCountDataset( countTable, designTable )

cds <- estimateSizeFactors( cds )
cds <- estimateDispersions( cds, method=” pooled-CR”  )

fit0 <- fitNbinomGLMs( cds, count ~ sex )
fit1 <- fitNbinomGLMs( cds, count ~ sex + treatment )

pvals <- nbinomGLMTest( fit1, fit0 )

Dispersion estimation:  Cox, Reid: J Roy Stat Soc B, 1987
                              McCarthy, Chen, Smyth: Nucl Acid Res, 2012



GLMs: Interaction

full model for gene i:

reduced model for gene i:



GLMs: paired designs

• Often, samples are paired (e.g., a tumour and a 
healthy-tissue sample from the same patient)

• Then, using pair identity as blocking factor 
improves power.

full model:

reduced model:



Alternative splicing

• So far, we counted reads in genes.
• To study alternative splicing, reads have to be 

assigned to transcripts.
• This introduces ambiguity, which adds uncertainty.
• Proper inference has to take thin into account, and 

sample-to-sample variability 



Data set used for to demonstrate DEXSeq:

Drosophila melanogaster S2 cell cultures:
• control (no treatment):

4 biological replicates (2x single end, 2x paired end)

• treatment: knock-down of pasilla (a splicing factor)
3 biological replicates (1x single end, 2x paired end)



Alternative isoform regulation

Data: Brooks et al., Genome Res., 2010



Exon counting bins



Count table for a gene

number of reads mapped to each exon (or part of exon) in gene msn:

    treated_1 treated_2  control_1  control_2

E01       398       556        561        456

E02       112       180        153        137

E03       238       306        298        226

E04       162       171        183        146

E05       192       272        234        199

E06       314       464        419        331

E07       373       525        481        404

E08       323       427        475        373

E09       194       213        273        176

E10        90        90        530        398    <­­­ !

E11       172       207        283        227

E12       290       397        606        368    <­­­ ?

E13        33        48         33         33

E14         0        33          2         37

E15       248       314        468        287

E16       554       841       1024        680

[...]





Model

counts in gene i, 
sample j, exon l

dispersionsize factor

expression strength 
in control

fraction of reads 
falling onto exon l 
in control

change to fraction of 
reads for exon l due 
to treatment

change in expression 
due to treatment



Model, refined

counts in gene i, 
sample j, exon l

dispersionsize factor

expression strength 
in sample j

fraction of reads 
falling onto exon l 
in control

change to fraction of 
reads for exon l due 
to treatment

further refinement: fit an extra factor for library type (paired-end vs single)



Dispersion vs mean



RpS14a (FBgn0004403)



DEXSeq and other tools

• MISO and ALEXA-Seq do not account for biological 
variability.

• Neither does cuffdiff, as described in the authors' 
publications.

• New versions of cuffdiff claim to account for 
biological variability, however ...

• See also Glaus et al.'s EBSeq, though.



DEXSeq and other tools

• MISO and ALEXA-Seq do not account for biological 
variability.

• Neither does cuffdiff, as described in the authors' 
publications.

• New versions of cuffdiff claim to account for 
biological variability, however ...

• See also Glaus et al.'s BitSeq, though.



Test cuffdiff vs DEXSeq





Exons vs isoforms

• DEXSeq deliberately tests at the level of exons, not 
isoforms.

• This might be an advantage: We have more 
annotation on exons than on isoforms, anyway.





DEXSeq

• combination of Python scripts and an R package
• Python script to get counting bins from a GTF file
• Python script to get count table from SAM files
• R functions to set up model frames and perform 

GLM fits and ANODEV
• R functions to visualize results and compile an 

HTML report



Conclusion

• Counting within exons and NB-GLMs allows to 
study isoform regulation.

• Proper statistical testing allows to see whether 
changes in isoform abundances are just random 
variation or may be attributed to changes in tissue 
type or experimental condition.

• Testing on the level of individual exons gives power 
and might be helpful to study the mechanisms of 
alternative isoform regulation.

• DEXSeq is availabe from Bioconductor, paper is 
published in Genome Research.



Outlook: Current developments

Use of shrinkage estimators (empirical Bayes) for
• dispersion
• fold changes / GLM coefficients

Improvements to DEXSeq
• “splice graphs”
• junction reads
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