

Florian Hahne
Novartis Institute for Biomedical Research
Preclinical Safety Informatics

Visualizing genomic features with the Gviz package

Gviz package: objectives

§  High quality visualization of potentially large numeric data along
genomic coordinates
•  different views, deal with multiple samples and sample groups

§  Additional annotation features (transcripts, SNPs, conservation,
sequence, reads, …)
•  download from public sources (UCSC, ENSEMBL), own annotations

§  Flexibility
•  accommodate emerging data sources and structures

§  Integration into existing Bioconductor landscape and standard data
sources

§  Scalability

§  Structured API

Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package 2

Gviz package: implementation

§  Loosely based on the existing GenomeGraphs package by James
Bullard and Steffen Durinck

§  Layout similar to the UCSC browser (tracks)

§  Different data types are represented by different track classes

§  Use efficient Bioconductor data structures (run-length encoding,
optimized string representations) and vectorized graphics rendering

§  Smart data summarization: only show the amount of detail according
to the available plotting space

§  Multitude of possible data inputs from within Bioconductor as well as
from external sources (Ensembl, UCSC, flat files)

§  Flexible settings API to control the look and feel

Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package 3

Track layout

4

Title
Panel Data Panel

Genomic coordinates

[D
at

a
ra

ng
e

co
or

di
an

te
s]

Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

Track panel layout

5

Axis

Transcripts

Data 1

Data 2

SNPs

Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

A typical Gviz session

6 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

Chromosome 7

26.6 mb

26.7 mb

26.8 mb

26.9 mb

27 mb

G
en

e
M

od
el

KIAA0087

SKAP2

C7orf71 HMGB3P20

AC004947.2

AC004947.2

SKAP2

RPL7AP38

AC004947.2

SKAP2

SKAP2

SKAP2 SKAP2

SKAP2

SKAP2

SKAP2

SKAP2

> library(Gviz)!
> data(cpgIslands)!
> atr <- AnnotationTrack(cpgIslands, name="CpG")!
> gtr <- GenomeAxisTrack()!
> itr <- IdeogramTrack(genome="mm9", chromosome="chr1")!
> data(geneModels)!
> grtr <- GeneRegionTrack(geneModels, name="Gene Model", showId=TRUE)!
> plotTracks(list(itr, gtr, atr, grtr))!

A typical Gviz session

7 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> library(Gviz)!
> data(cpgIslands)!
> atr <- AnnotationTrack(cpgIslands, name="CpG")!
> gtr <- GenomeAxisTrack()!
> itr <- IdeogramTrack(genome="mm9", chromosome="chr1")!
> data(geneModels)!
> grtr <- GeneRegionTrack(geneModels, name="Gene Model", showId=TRUE)!
> plotTracks(list(itr, gtr, atr, grtr), from=26654641, to=26694641)!

Chromosome 7

26.66 mb

26.67 mb

26.68 mb

26.69 mb

C
pG

G
en

e
M

od
el

C7orf71

Display Parameters: controlling the look and feel

8 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> displayPars(grtr) <- list(showId=FALSE, background.panel="#FFFFEB")!
> plotTracks(list(itr, grtr)) !

Chromosome 7

26.6 mb

26.7 mb

26.8 mb

26.9 mb

27 mb

G
en
e

M
od
el

Chromosome 7

26.6 mb

26.7 mb

26.8 mb

26.9 mb

27 mb

G
en
e

M
od
el

> plotTracks(list(itr, grtr), background.panel="#D6EBFF”,!
+ background.title="#40464C") !

Display Parameters: documentation

§  All available display parameters for a track class are documented in
the “Display Parameters” section of the class documentation

§  A list of available parameters along with their default settings can be
shown using the availableDisplayPars function:

9 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> head(availableDisplayPars("GeneRegionTrack"))!
The following display parameters are available for 'GeneRegionTrack'
objects: (see ? GeneRegionTrack for details on their usage)!
!
rotation (inherited from class 'AnnotationTrack'): 0 !
shape: smallArrow box !
showAxis (inherited from class 'GdObject'): TRUE !
showExonId: FALSE !
showFeatureId (inherited from class 'AnnotationTrack'): FALSE !
showId (inherited from class 'AnnotationTrack'): FALSE !
showOverplotting (inherited from class 'AnnotationTrack'): FALSE !
showTitle (inherited from class 'GdObject'): TRUE !
size (inherited from class 'GdObject'): 1 !

Display Parameters: documentation

§  All available display parameters for a track class are documented in
the “Display Parameters” section of the class documentation

§  A list of available parameters along with their default settings can be
shown using the availableDisplayPars function:

10 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> head(availableDisplayPars("GeneRegionTrack"))!
The following display parameters are available for 'GeneRegionTrack'
objects: (see ? GeneRegionTrack for details on their usage)!
!
rotation (inherited from class 'AnnotationTrack'): 0 !
shape: smallArrow box !
showAxis (inherited from class 'GdObject'): TRUE !
showExonId: FALSE !
showFeatureId (inherited from class 'AnnotationTrack'): FALSE !
showId (inherited from class 'AnnotationTrack'): FALSE !
showOverplotting (inherited from class 'AnnotationTrack'): FALSE !
showTitle (inherited from class 'GdObject'): TRUE !
size (inherited from class 'GdObject'): 1 !

Display Parameters: documentation

§  All available display parameters for a track class are documented in
the “Display Parameters” section of the class documentation

§  A list of available parameters along with their default settings can be
shown using the availableDisplayPars function:

§  The currently set display parameters of a track object can be queried
using the displayPars function:

11 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> head(displayPars(grtr))!
$fill!
[1] "orange”!
$min.distance!
[1] 0!
$col!
NULL!
$geneSymbols!
[1] TRUE!
$showExonId!
[1] FALSE!
$collapseTranscripts!
[1] FALSE!

Track types: overview

12 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

Track Description

GenomeAxisTrack Genomic axis or scale indicator with optional highlighted
regions.

IdeogramTrack View of the displayed region on a schematic model of a
chromosome with chromosome band information from UCSC

SequenceTrack Genomic sequence in letter or false color representation
depending on the zoom level.

AnnotationTrack Generic annotation features (with at least start, stop, strand and
chromosome information), optional grouping.

GeneRegionTrack
Gene or transcript models with grouping on the level of exons
and transcripts. Can be fetched dynamically from Ensembl as
the BiomartGeneRegionTrack child class.

DataTrack Numeric values (single or grouped) along with genomic
coordinates. Can be plotted in a variety of different ways.

AlignedReadsTrack Aligned NGS reads on the genome, either detailed view of
individual reads or summarized coverage information.

Track types: virtual parent classes

13 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

§  Each track class inherits from GdObject:
•  general purpose methods and display parameters

§  All track classes using genomic locations inherit from RangeTrack:
•  range-related methods and display parameters, range collapsing

§  All track classes with potentially multiple lines in the output inherit
from StackedTrack:
•  optimize stacking of items

§  All track classes that contain associated numeric values inherit from
NumericTrack:
•  setting up of y-axis, data aggregation

§  All track classes that implement streaming from a file inherit from
ReferenceTrack:
•  file handles and expected data structure definitions, streaming

GenomeAxisTrack: overview

14 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

Purpose:
Indicate the currently displayed genomic range either as a x-axis with evenly
spaced tick marks or as a scale reference.

Inputs:
NA

Details:
•  Ranges on the axis can be highlighted, e.g. to indicate stretches of N

nucleotides

GenomeAxisTrack: examples!

15 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> plotTracks(axisTrack, from=1e6, to=9e6, showId=TRUE)!

N−stretch N−stretch

2 mb

3 mb

4 mb

5 mb

6 mb

7 mb

8 mb

> axisTrack <- GenomeAxisTrack(range=IRanges(start=c(2e6, 4e6), !
+ end=c(3e6, 7e6), names=rep("N-stretch", 2)))!
> plotTracks(axisTrack, from=1e6, to=9e6)!

2 mb

3 mb

4 mb

5 mb

6 mb

7 mb

8 mb

Highlighting ranges on the axis:

> axisTrack <- GenomeAxisTrack()!
> plotTracks(axisTrack, from=1e06, to=9e6)!

2 mb

3 mb

4 mb

5 mb

6 mb

7 mb

8 mb

Default axis:

GenomeAxisTrack: examples!

16 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> plotTracks(axisTrack, from=1e6, to=9e6, add53=TRUE, add35=TRUE)!

2 mb

3 mb

4 mb

5 mb

6 mb

7 mb

8 mb
5' 3'
3' 5'

Direction indicators:

> plotTracks(axisTrack, from=1e6, to=9e6, exponent=4)!

200 104

300 104

400 104

500 104

600 104

700 104

800 104

> plotTracks(axisTrack, from=1e6, to=9e6, littleTicks=TRUE)!

2 mb

3 mb

4 mb

5 mb

6 mb

7 mb

8 mb

1.4

1.6

1.8 2.2

2.4

2.6

2.8 3.2

3.4

3.6

3.8 4.2

4.4

4.6

4.8 5.2

5.4

5.6

5.8 6.2

6.4

6.6

6.8 7.2

7.4

7.6

7.8 8.2

8.4

8.6

Tick mark formatting:

> plotTracks(axisTrack, from=1e6, to=9e6, labelPos="below")!

2 mb 3 mb 4 mb 5 mb 6 mb 7 mb 8 mb

GenomeAxisTrack: examples!

17 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> plotTracks(axisTrack, from=1e6, to=9e6, scale=0.5)!

4 mb

Scale reference (relative size):

> plotTracks(axisTrack, from=1e6, to=9e6, scale=1e6)!

1 mb

Scale reference (absolute size):

IdeogramTrack: overview

18 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

Purpose:
Indicate the currently displayed genomic range in the context of the current
chromosome.

Inputs:
•  Fetch chromosome band information for the genome from UCSC
•  data.frame!

Details:
•  After the first connection to UCSC the fetched results are being cached

for the duration of the R session

IdeogramTrack: examples

19 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> ideoTrack <- IdeogramTrack(genome="hg19", chromosome="chrX")!
> plotTracks(ideoTrack, from=8e7, to=12e7)!

Chromosome X

Default ideogram:

> plotTracks(ideoTrack, from=8e7, to=12e7, showId=FALSE)!

Chromosome name:

p22.2 p21.1 q21.1 q23 q24 q25 q28

> plotTracks(ideoTrack, from=8e7, to=12e7, showId=FALSE, showBandId=TRUE)!

Chromosome band identifiers:

SequenceTrack: overview

20 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

Purpose:
Show genomic sequence of the currently displayed region

Inputs:
•  DNAStringSet!
•  BSgenome!
•  FASTA file (indexed or not indexed)
•  2bit file

Details:
•  Depending on the zoom level, sequences will be shown as individual

letters, as color-coded boxes or as a horizontal line

SequenceTrack: examples

21 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> library(BSgenome.Hsapiens.UCSC.hg19)!
> sTrack <- SequenceTrack(Hsapiens)!
> plotTracks(sTrack, chromosome="chr1", from=20000, to=20050)!

T C C T G G T G C T C C C A C A A A G G A G A A G G G C T G A T C A C T C A A A G T T G C G A A C A

Default sequence track:

> plotTracks(sTrack, chromosome=1, from=20000, to=20050, add53=TRUE)!

C C T G G T G C T C C C A C A A A G G A G A A G G G C T G A T C A C T C A A A G T T G C G A A C5' 3'

Direction indicators:

> plotTracks(sTrack, chromosome=1, from=20000, to=20050, add53=TRUE, !
+ complement=TRUE)!

G G A C C A C G A G G G T G T T T C C T C T T C C C G A C T A G T G A G T T T C A A C G C T T G3' 5'

Sequence complement:

SequenceTrack: examples

22 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> fcol <- c(A="darkgray", C="darkgray", T="darkgray", G="darkgray")!
> plotTracks(sTrack, chromosome=1, from=20000, to=20050, fontcolor=fcol)!

T C C T G G T G C T C C C A C A A A G G A G A A G G G C T G A T C A C T C A A A G T T G C G A A C A

False color coding of letters:

> plotTracks(sTrack, chromosome=1, from=20000, to=201000)!

> plotTracks(sTrack, chromosome=1, from=20000, to=20100, cex=0.5)!

T C C T G G T G C T C C C A C A A A G G A G A A G G G C T G A T C A C T C A A A G T T G C G A A C A C C A A G C T C A A C A A T G A G C C C T G G A A A A T T T C T G G A A T G G A T T A T T A A A C A

> plotTracks(sTrack, chromosome=1, from=20000, to=20100)!

Zoom level details:

AnnotationTrack: overview

23 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

Purpose:
Simple annotation features with at least start, stop, strand and chromosome
information. Items can be grouped and colored according to type.

Inputs:
•  IRanges (+ chromosome and strand as separate arguments)
•  GRanges!
•  GRangesList
•  Various file types: e.g., BED, GFF, BAM!

Details:
•  Overlapping items are stacked for optimal utilization of available plotting

space
•  Depending on the available space and resolution some items may be

merged
•  Additional information for each annotation item can be added by means

of the DetailsAnnotationTrack child class

AnnotationTrack: examples

24 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> plotTracks(aTrack, shape="ellipse", showFeatureId=TRUE, fontcolor=”blue")!

fo
o Huey Dewey Louie

> aTrack <- AnnotationTrack(start=c(10,40,120), width=15, chromosome="chrX",
+ strand=c("+", "*", "-"), id=c("Huey", "Dewey", "Louie"), !
+ genome="hg19", name="foo")!
> plotTracks(aTrack)!

fo
o

Default annotation track:

> plotTracks(aTrack, shape="box", showFeatureId=TRUE)!

fo
o Huey Dewey Louie

Feature shapes:

AnnotationTrack: examples

25 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> aTrack.groups <- AnnotationTrack(start=c(50,180,260,460,860,1240), !
+ width = c(15,20,40,100,200,20), chromosome="chrX", !
+ strand=rep(c("+","*", "-"), c(1, 3, 2)), group = rep(c("Huey",!
+ "Dewey”,"Louie"), c(1,3,2)), genome="hg19", name="foo")!
> plotTracks(aTrack.groups, showId=TRUE)!

fo
o Dewey Huey Louie

Grouped features:

> feature(aTrack.groups)[1:4] <- c("foo","bar","bar","bar")!
> plotTracks(aTrack.groups, showId=TRUE, foo="darkred", bar="darkgreen")!

fo
o Dewey Huey Louie

Feature type color coding:

AnnotationTrack: examples

26 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> plotTracks(!aTrack.stacked, stacking="dense")!

fo
o

> aTrack.stacked <- AnnotationTrack(start=c(50,180,260,800,600,1240), !
+ width=c(15,20,40,100,500,20), chromosome="chrX", strand="*",name="foo"!
+ group=rep(c("Huey","Dewey","Louie"), c(1,3,2)), genome="hg19")!
> plotTracks(aTrack.stacked, showId=TRUE)!

fo
o Dewey Huey

Louie

Feature stacking:

> data("denseAnnTrack")!
> plotTracks(denseAnnTrack, showOverplotting=TRUE)!

A
nn
ot
at
io
nT
ra
ck

Overplotting density:

AnnotationTrack: item collapsing details

27 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> data(collapseTrack)!
> plotTracks(ctrack)!

a b c d ef g

h ij

k l

group 1

group 2 group 3

group 4

All item collapsing and width expansion disabled:

plotTracks(ctrack, min.width=1)!

a b c d ef g

h ij

k l

group 1

group 2 group 3

group 4

The min.width setting:

AnnotationTrack: item collapsing details

28 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

plotTracks(ctrack, min.width=1, collapse=TRUE)!

a b c d g

h ij

2 merged
features

2 merged
features

group 1

group 2 group 3

group 4

The min.width and min.distance settings and item collapsing:

> plotTracks(ctrack, min.width=3, min.distance=5, collapse=TRUE)!

a d g

h ij

2 merged
features

2 merged
features

2 merged
features

group 1

group 2 group 3

group 4

> plotTracks(ctrack, min.width=3, min.distance=5, collapse=TRUE, !
+ mergeGroups=TRUE)!

a d g

h i

2 merged
features

2 merged
features

3 merged
features2 merged groups

group 1

group 2

The mergeGroups setting:

AnnotationTrack: DetailsAnnotationTrack child class

29 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> details <- function(identifier, ...) {!
+ d <- data.frame(signal=methylation[identifier,], group=sgroups)!
+ print(densityplot(~signal, group=group, data=d,!
+ main=list(label=identifier, cex=0.7), scales=list(draw=FALSE, !
+ x=list(draw=TRUE)), ylab="", xlab="",), newpage=FALSE, !
+ prefix="plot")}!
> deTrack <- AnnotationTrack(range = probes, genome = "hg19",!
+ chromosome=7, id=rownames(methylation), name="probe details",!
+ stacking="squish", fun=details)!
> plotTracks(deTrack)!

pr
ob

e
de

ta
ils

probe1

0 2 4
● ●●● ●● ●● ●●● ●● ●●●●● ●● ●●●●●●● ● ●● ●●●●●● ●●● ●●● ●●● ●● ●●● ●●●●● ●●●●● ●●●●●●●● ●● ●●●●●● ●●● ●● ●● ●●● ● ●● ●●●●● ●●● ● ●●

probe2

0 2 4 6
●● ●●●● ● ●● ●● ●●●● ●●● ●● ●●●● ●● ●● ●●●● ● ●●●● ●● ●●●● ● ●●● ●● ●●●●●● ●●● ●●● ● ●● ●● ● ●●●●● ●●●● ● ●●● ●●●● ●●● ●● ●● ●●●●● ●●●●

probe3

0 2 4 6 8
●● ●● ●●●●●●●●● ●● ●●●●● ● ●●● ●●●●● ●●●●●● ●● ● ●●● ●●●● ●●● ●● ●●● ● ●●●●● ●●● ●●●●●● ●● ●● ●●●● ●●●● ●● ●●● ●● ●●●●●●● ●●● ●●●

probe4

0 2 4 6
● ●●● ●● ● ●●●●● ●● ●●● ●● ●●● ●● ●●● ●●●●● ●●●●● ● ●●●●● ●●● ●● ●● ●● ●● ●●●●●●●● ●●● ●●● ●●●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●

● ● ● ●

● ●

●

●

AnnotationTrack: DetailsAnnotationTrack child class

30 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

selFun <- function(identifier, start, end, track, GdObject, ...) {!
+ gcount <- table(group(GdObject))!
+ pxRange <- Gviz:::.pxResolution(min.width = 20, coord="x")!
+ return((end - start) < pxRange && gcount[identifier] == 1)}!
detFun <- function(identifier, GdObject.original, ...) {!
+ plotTracks(list(GenomeAxisTrack(scale=0.3, size=0.2, cex=0.7), !
+ GdObject.original[group(GdObject.original) == identifier]), !
+ add=TRUE, showTitle=FALSE)}!
deTrack2 <- AnnotationTrack(geneDetails, fun=detFun, selectFun=selFun, !
+ groupDetails=TRUE, details.size=0.5, detailsConnector.cex=0.5, !
+ detailsConnector.lty="dotted", shape=c("smallArrow", "arrow"), !
+ showId=TRUE)!
 plotTracks(deTrack2)!

A
nn

ot
at

io
nT

ra
ck

3 kb

transcript 2

1 kb

transcript 3

4 kb

transcript 4

transcript 1

transcript 2

transcript 3

transcript 4

● ● ●

●

●

●

GeneRegionTrack: overview

31 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

Purpose:
Gene model annotations.

Inputs:
•  IRanges (+ chromosome and strand as separate arguments)
•  GRanges!
•  GRangesList!
•  TranscriptDb
•  Various file types: e.g., GFF, GTF!
•  Direct import from Ensembl via the biomaRt interface

Details:
•  Modeling of exon, transcript and gene relationships
•  Support for human-readable gene symbols
•  Support for coding and non-coding elements

GeneRegionTrack: gene symbols and gene ids

32 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> data(geneModels)!
> grtrack <- GeneRegionTrack(geneModels, genome="hg19", name="foo")!
> plotTracks(grtrack, showId=TRUE)!

fo
o

KIAA0087

SKAP2

C7orf71 HMGB3P20

AC004947.2

AC004947.2

SKAP2

RPL7AP38

AC004947.2

SKAP2

SKAP2

SKAP2

SKAP2

SKAP2

SKAP2

SKAP2

SKAP2

> plotTracks(grtrack, showId=TRUE, geneSymbols=FALSE)!

fo
o

ENSG00000122548

ENSG00000005020

ENSG00000222004

ENSG00000226059 ENSG00000233760

ENSG00000233760

ENSG00000005020

ENSG00000213787

ENSG00000233760

ENSG00000005020

ENSG00000005020

ENSG00000005020

ENSG00000005020

ENSG00000005020

ENSG00000005020

ENSG00000005020

ENSG00000005020

GeneRegionTrack: examples

33 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> plotTracks(grtrack, collapseTranscripts=TRUE, shape="arrow", showId=TRUE)!

fo
o

SKAP2

KIAA0087 RPL7AP38 C7orf71 HMGB3P20

AC004947.2

Collapsing exons information:

> txdb <- loadDb(system.file("extdata", "UCSC_knownGene_sample.sqlite",!
+ package="GenomicFeatures"))!
> txTr <- GeneRegionTrack(txdb, chromosome="chr6", start=300000, end=350000)!
> plotTracks(txTr, showId=TRUE)!

uc010jne.1

Coding and non-coding regions

GeneRegionTrack: BiomartGeneRegionTrack

34 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> biomTrack <- BiomartGeneRegionTrack(genome="hg19", chromosome="chr7",!
+ start=2e7, end=2.1e7, name="Ensembl")!
> plotTracks(biomTrack)!

En
se
m
bl

> plotTracks(biomTrack, col.line=NULL)!

En
se
m
bl

DataTrack: overview

35 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

Purpose:
Numeric data along genomic coordinates.

Inputs:
•  IRanges (+ chromosome, strand and data matrix)
•  GRanges
•  Various file types: e.g., WIG, BedGraph, BigWig, BAM!

Details:
•  Flexible visualization options (e.g. line charts, scatter plots, box plots, bar

charts)
•  Sample grouping
•  Data transformations

DataTrack: examples

36 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> data(twoGroups)!
> dim(mcols(twoGroups))!
[1] 25 6!
> dTrack <- DataTrack(twoGroups, name="uniform")!
> plotTracks(dTrack)!

−20

−10

0

10

20

un
ifo
rm

●
●

●

●

●●

●

●

●
●

●

●
●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

Default data track:

DataTrack: plot types

37 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

Type Description Example

p Dot plot

l Line charts

b Dot and line charts

a Line chart of average values

s/S Horizontal first or vertical first stair steps

h Lines barchart

histogram Bar chart, bar width equal to range
width

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S

−20
−10
0
10
20

g

−20
−10
0
10
20

r

−20
−10
0
10
20

h

−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

−20
−10
0
10
20

p
●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S

−20
−10
0
10
20

g

−20
−10
0
10
20

r
−20
−10
0
10
20

h

−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S

−20
−10
0
10
20

g

−20
−10
0
10
20

r

−20
−10
0
10
20

h
−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S
−20
−10
0
10
20

g

−20
−10
0
10
20

r

−20
−10
0
10
20

h

−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S

−20
−10
0
10
20

g
−20
−10
0
10
20

r

−20
−10
0
10
20

h

−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S

−20
−10
0
10
20

g

−20
−10
0
10
20

r

−20
−10
0
10
20

h
−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S

−20
−10
0
10
20

g

−20
−10
0
10
20

r

−20
−10
0
10
20

h
−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

DataTrack: plot types

38 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

Type Description Example

boxplot Box-and whiskers plot

heatmap False color image of individual values

gradient False color image of summarized
values

mountain Mountain-type plot relative to a baseline

smooth Loess curve

r Linear regression line

g Grid lines

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S

−20
−10
0
10
20

g

−20
−10
0
10
20

r

−20
−10
0
10
20

h

−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S

−20
−10
0
10
20

g

−20
−10
0
10
20

r

−20
−10
0
10
20

h

−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S

−20
−10
0
10
20

g

−20
−10
0
10
20

r

−20
−10
0
10
20

h

−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S

−20
−10
0
10
20

g
−20
−10
0
10
20

r

−20
−10
0
10
20

h

−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b
●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S

−20
−10
0
10
20

g

−20
−10
0
10
20

r

−20
−10
0
10
20

h

−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

S
−20
−10
0
10
20

g

−20
−10
0
10
20

r

−20
−10
0
10
20

h

−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

−20
−10
0
10
20

p

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

l

−20
−10
0
10
20

b

●●

●

●

●●

●

●

●
●

●

● ●

●

●
●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●
●

●

●

●

●
●
●●

●
●

●
●
●

●
●

●●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●

●

● ●
●
●

●

●●

●
●

●

●

●

●

−20
−10
0
10
20

a

−20
−10
0
10
20

s
−20
−10
0
10
20

S

−20
−10
0
10
20

g

−20
−10
0
10
20

r

−20
−10
0
10
20

h

−20
−10
0
10
20

sm
oo
th

−10

−5

0

5

10

hi
st
og
ra
m

−20
−10
0
10
20

m
ou
nt
ai
n

−20
−10
0
10
20

bo
xp
lo
t

●
● ●

● ● ● ●
●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

gr
ad
ie
nt

he
at
m
ap

You will notice that some of the plot types work better for univariate data while others are clearly designed
for multivariate inputs. The a type for instance averages the values at each genomic location before plotting
the derived values as a line. The decision for a particular plot type is totally up to the user, and one could even
overlay multiple types by supplying a character vector rather than a character scalar as the (type) argument.
For example, this will combine a boxplot with an average line and a data grid.

> plotTracks(dTrack, type = c("boxplot", "a", "g"))

17

DataTrack: examples

39 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> plotTracks(dTrack, type = c("boxplot", "a", "g"))!

−20

−10

0

10

20

un
ifo
rm

●
● ● ● ● ● ● ●

●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Combining plot types:

> plotTracks(dTrack, groups=rep(c("control", "treated"),!each=3), !!
+ type=c("a","p"))!

−20

−10

0

10

20

un
ifo
rm

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●
●●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

● ●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

Sample grouping:

DataTrack: examples

40 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> plotTracks(dTrack, groups=rep(c("control", "treated"),!each=3), !!
+ type=c("a","p"), legend=TRUE, aggregateGroups=TRUE)!

−20

−10

0

10

20

un
ifo
rm

●
● ●

●

●
●

●
●

●
●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●●

●
● ●

● ●
● ●

●

●

●

●

●

●

●

● ● ●
●

● ●

●

● ● ●

● control ● treated

Within-group data aggregation:

Sample groups legend:

> plotTracks(dTrack, groups=rep(c("control", "treated"),!each=3), !!
+ type=c("a", "p"), legend=TRUE)!

−20
−10
0
10
20

un
ifo
rm

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●
●●

●
●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●
●

●

●●

● ●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● control ● treated

DataTrack: examples

41 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> plotTracks(dTrack, groups=rep(c("control", "treated"),!each=3), !!
+ type=c("a","p"), legend=TRUE, aggregateGroups=TRUE, aggregation="max")!

−10

0

10

20

un
ifo
rm ●

●

● ●

●

● ●
● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

● control ● treated

Data aggregation method:

DataTrack: grouped plot types

42 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

Type Description Example

a Line chart of group average
values

s/S Horizontal first or vertical first
stair steps

histogram Stacked bar chart

horizontal
histogram Side by side bar chart

boxplot Box-and-whiskers plots stratified
by group

heatmap False color image of average
group values

smooth Loess curves stratified by group

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

sm
oo

th

−20
−10
0
10
20

hi
st

og
ra

m

−20
−10
0
10
20

bo
xp

lo
t

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

he
at

m
ap

−20
−10
0
10
20

ho
r.

hi
st

.

If we need to display some additional information about the individual group levels we can make use of
the legend display parameter to add a simple legend to the plot. Depending on the plot type and on some of
the other display parameters, the look of this legend may vary slightly.

> plotTracks(dTrack, groups = rep(c("control", "treated"),

+ each = 3), type = c("a", "p"), legend = TRUE)

−20
−10
0
10
20

un
ifo
rm

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●
●●

●
●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●
●

●

●●

● ●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● control ● treated

Data transformations

The Gviz package o↵ers quite some flexibility to transform data on the fly. This involves both rescaling
operations (each data point is transformed on the track’s y-axis by a transformation function) as well as
summarization and smoothing operations (the values for several genomic locations are summarized into one
derived value on the track’s x-axis). To illustrate this let’s create a significantly bigger DataTrack than the
one we used before, containing purely syntetic data for only a single sample.

> dat <- sin(seq(pi, 10 * pi, len = 500))

> dTrack.big <- DataTrack(start = seq(1, 1e+05, len = 500),

19

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

sm
oo

th

−20
−10
0
10
20

hi
st

og
ra

m

−20
−10
0
10
20

bo
xp

lo
t

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

he
at

m
ap

−20
−10
0
10
20

ho
r.

hi
st

.

If we need to display some additional information about the individual group levels we can make use of
the legend display parameter to add a simple legend to the plot. Depending on the plot type and on some of
the other display parameters, the look of this legend may vary slightly.

> plotTracks(dTrack, groups = rep(c("control", "treated"),

+ each = 3), type = c("a", "p"), legend = TRUE)

−20
−10
0
10
20

un
ifo
rm

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●
●●

●
●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●
●

●

●●

● ●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● control ● treated

Data transformations

The Gviz package o↵ers quite some flexibility to transform data on the fly. This involves both rescaling
operations (each data point is transformed on the track’s y-axis by a transformation function) as well as
summarization and smoothing operations (the values for several genomic locations are summarized into one
derived value on the track’s x-axis). To illustrate this let’s create a significantly bigger DataTrack than the
one we used before, containing purely syntetic data for only a single sample.

> dat <- sin(seq(pi, 10 * pi, len = 500))

> dTrack.big <- DataTrack(start = seq(1, 1e+05, len = 500),

19

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

sm
oo

th

−20
−10
0
10
20

hi
st

og
ra

m

−20
−10
0
10
20

bo
xp

lo
t

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

he
at

m
ap

−20
−10
0
10
20

ho
r.

hi
st

.

If we need to display some additional information about the individual group levels we can make use of
the legend display parameter to add a simple legend to the plot. Depending on the plot type and on some of
the other display parameters, the look of this legend may vary slightly.

> plotTracks(dTrack, groups = rep(c("control", "treated"),

+ each = 3), type = c("a", "p"), legend = TRUE)

−20
−10
0
10
20

un
ifo
rm

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●
●●

●
●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●
●

●

●●

● ●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● control ● treated

Data transformations

The Gviz package o↵ers quite some flexibility to transform data on the fly. This involves both rescaling
operations (each data point is transformed on the track’s y-axis by a transformation function) as well as
summarization and smoothing operations (the values for several genomic locations are summarized into one
derived value on the track’s x-axis). To illustrate this let’s create a significantly bigger DataTrack than the
one we used before, containing purely syntetic data for only a single sample.

> dat <- sin(seq(pi, 10 * pi, len = 500))

> dTrack.big <- DataTrack(start = seq(1, 1e+05, len = 500),

19

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

sm
oo

th

−20
−10
0
10
20

hi
st

og
ra

m

−20
−10
0
10
20

bo
xp

lo
t

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

he
at

m
ap

−20
−10
0
10
20

ho
r.

hi
st

.

If we need to display some additional information about the individual group levels we can make use of
the legend display parameter to add a simple legend to the plot. Depending on the plot type and on some of
the other display parameters, the look of this legend may vary slightly.

> plotTracks(dTrack, groups = rep(c("control", "treated"),

+ each = 3), type = c("a", "p"), legend = TRUE)

−20
−10
0
10
20

un
ifo
rm

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●
●●

●
●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●
●

●

●●

● ●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● control ● treated

Data transformations

The Gviz package o↵ers quite some flexibility to transform data on the fly. This involves both rescaling
operations (each data point is transformed on the track’s y-axis by a transformation function) as well as
summarization and smoothing operations (the values for several genomic locations are summarized into one
derived value on the track’s x-axis). To illustrate this let’s create a significantly bigger DataTrack than the
one we used before, containing purely syntetic data for only a single sample.

> dat <- sin(seq(pi, 10 * pi, len = 500))

> dTrack.big <- DataTrack(start = seq(1, 1e+05, len = 500),

19

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

sm
oo

th

−20
−10
0
10
20

hi
st

og
ra

m

−20
−10
0
10
20

bo
xp

lo
t

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

he
at

m
ap

−20
−10
0
10
20

ho
r.

hi
st

.

If we need to display some additional information about the individual group levels we can make use of
the legend display parameter to add a simple legend to the plot. Depending on the plot type and on some of
the other display parameters, the look of this legend may vary slightly.

> plotTracks(dTrack, groups = rep(c("control", "treated"),

+ each = 3), type = c("a", "p"), legend = TRUE)

−20
−10
0
10
20

un
ifo
rm

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●
●●

●
●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●
●

●

●●

● ●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● control ● treated

Data transformations

The Gviz package o↵ers quite some flexibility to transform data on the fly. This involves both rescaling
operations (each data point is transformed on the track’s y-axis by a transformation function) as well as
summarization and smoothing operations (the values for several genomic locations are summarized into one
derived value on the track’s x-axis). To illustrate this let’s create a significantly bigger DataTrack than the
one we used before, containing purely syntetic data for only a single sample.

> dat <- sin(seq(pi, 10 * pi, len = 500))

> dTrack.big <- DataTrack(start = seq(1, 1e+05, len = 500),

19

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

sm
oo

th

−20
−10
0
10
20

hi
st

og
ra

m

−20
−10
0
10
20

bo
xp

lo
t

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

he
at

m
ap

−20
−10
0
10
20

ho
r.

hi
st

.

If we need to display some additional information about the individual group levels we can make use of
the legend display parameter to add a simple legend to the plot. Depending on the plot type and on some of
the other display parameters, the look of this legend may vary slightly.

> plotTracks(dTrack, groups = rep(c("control", "treated"),

+ each = 3), type = c("a", "p"), legend = TRUE)

−20
−10
0
10
20

un
ifo
rm

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●
●●

●
●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●
●

●

●●

● ●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● control ● treated

Data transformations

The Gviz package o↵ers quite some flexibility to transform data on the fly. This involves both rescaling
operations (each data point is transformed on the track’s y-axis by a transformation function) as well as
summarization and smoothing operations (the values for several genomic locations are summarized into one
derived value on the track’s x-axis). To illustrate this let’s create a significantly bigger DataTrack than the
one we used before, containing purely syntetic data for only a single sample.

> dat <- sin(seq(pi, 10 * pi, len = 500))

> dTrack.big <- DataTrack(start = seq(1, 1e+05, len = 500),

19

−20
−10
0
10
20

a

−20
−10
0
10
20

s

−20
−10
0
10
20

sm
oo

th

−20
−10
0
10
20

hi
st

og
ra

m

−20
−10
0
10
20

bo
xp

lo
t

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

he
at

m
ap

−20
−10
0
10
20

ho
r.

hi
st

.

If we need to display some additional information about the individual group levels we can make use of
the legend display parameter to add a simple legend to the plot. Depending on the plot type and on some of
the other display parameters, the look of this legend may vary slightly.

> plotTracks(dTrack, groups = rep(c("control", "treated"),

+ each = 3), type = c("a", "p"), legend = TRUE)

−20
−10
0
10
20

un
ifo
rm

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●
●●

●
●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●
●

●

●●

● ●

●

● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● control ● treated

Data transformations

The Gviz package o↵ers quite some flexibility to transform data on the fly. This involves both rescaling
operations (each data point is transformed on the track’s y-axis by a transformation function) as well as
summarization and smoothing operations (the values for several genomic locations are summarized into one
derived value on the track’s x-axis). To illustrate this let’s create a significantly bigger DataTrack than the
one we used before, containing purely syntetic data for only a single sample.

> dat <- sin(seq(pi, 10 * pi, len = 500))

> dTrack.big <- DataTrack(start = seq(1, 1e+05, len = 500),

19

DataTrack: transformations

43 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> plotTracks(dTrack.big, type="histogram", window=50)!

−1

−0.5

0

0.5

1

si
nu
s

> dat <- sin(seq(pi, 10 * pi, len=500))!
> dTrack.big <- DataTrack(start=seq(1, 1e5, len=500), width=15, !
+ chromosome="chrX", genome="hg19", name="sinus",!
+ data=sin(seq(pi, 5*pi, len=500)) * runif(500, 0.5, 1.5))!
> plotTracks(dTrack.big, type="histogram")!

−1

−0.5

0

0.5

1

si
nu
s

Fixed window operations:

Track types: DataTrack

44 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

> plotTracks(dTrack.big, type="histogram", window=-1, windowSize=2500)!

−0.05

0

0.05

si
nu
s

Sliding window operations:

> tfun <- function(x) ifelse(x < 0, 0, x)!
> plotTracks(dTrack.big, type="l", transformation=tfun)!

0

0.5

1

si
nu
s

Transformation operations:

Fetching data directly from UCSC

| TS Application Developers Workshop 2011 | Your Name | PCS Informatics | May 13th 2011 | Title 45

4.9 Creating tracks from UCSC data

The UCSC data bases contain a multitude of genome annotation data for dozents of di↵erent organisms.
Some of those data are very simple annotations like CpG island locations or SNP locations. Others are more
complicated gene models, or even numeric annotations like conservation information. In order to provide
a unified interface to all this information, the Gviz package defines a meta-constructor function UcscTrack.
The idea here is that we can express all of the available Ucsc data in one of the package’s track types. We
use the functionality provided in the rtracklayer package to connect to UCSC and to download the relevant
information. As a little illustrative example, let’s reproduce a view from the famous UCSC genome browser
using the Gviz package. As a final result we want to show something similar to Figure 4.9.

Figure 1: A screen shot of a UCSC genome browser view around the FMR1 locus on the mouse chromosome.

To start we first need to know about the available data in the UCSC data base and about their structure.
A good way to do this is to use the table browser on the UCSC web site (http://genome.ucsc.edu/cgi-bin/
hgTables?command=start). Figure 4.9 shows the table structure for the first gene model track, the known
UCSC genes, in the table browser. We can see that there are multiple fields, some with genomic locations,
other with additional data like labels or identifiers. If we go back to the section about the GeneRegionTrack
class we remember that we need exactly this type of information for the constructor function. So in order
to take the UCSC data and build an object of class GeneRegionTrack we need a way to map them to the
individual constructor arguments. This is exactly what the UcscTrack meta-constructor is supposed to do
for us.

42

Figure 2: A screen shot of a UCSC table browser view on the UCSC Known Genes track.

It needs to know about the track for which to extract the data (and optionally one or several of the tables
that make up the collective track data, see ?UcscTrack for details), about the genomic range including the
chromosome for which to extract data, about the type of Gviz track that we want to translate this data into,
and about the individual track columns and their counterparts in the respective track class constructor. In
our example, the track is called knownGene, the track type to construct is GeneRegionTrack, and the relevant
columns are exonStarts, exonEnds, name and strand, which we will use as the start and end coordinates
of the ranges and for all the exon, transcript and gene identifiers. Here we make use of the high flexibility
of the GeneRegionTrack constructor in the sense that the exon coordinates actually come in the form of a
comma-separated list, combining all the information for one transcript in one row of the table. The function
is smart enough to detect this and to split the annotation regions accordingly. The full function call to create
the GeneRegionTrack from the UCSC data looks like this:

> from <- 65921878

> to <- 65980988

> knownGenes <- UcscTrack(genome = "mm9", chromosome = "chrX",

+ track = "knownGene", from = from, to = to, trackType = "GeneRegionTrack",

+ rstarts = "exonStarts", rends = "exonEnds", gene = "name",

+ symbol = "name", transcript = "name", strand = "strand",

+ fill = "#8282d2", name = "UCSC Genes")

With a similar approach we can construct the next two gene model tracks based on the xenoRefGene and
ensGene data tables.

> refGenes <- UcscTrack(genome = "mm9", chromosome = "chrX",

+ track = "xenoRefGene", from = from, to = to,

+ trackType = "GeneRegionTrack", rstarts = "exonStarts",

+ rends = "exonEnds", gene = "name", symbol = "name2",

+ transcript = "name", strand = "strand", fill = "#8282d2",

+ stacking = "dense", name = "Other RefSeq")

> ensGenes <- UcscTrack(genome = "mm9", chromosome = "chrX",

+ track = "ensGene", from = from, to = to, trackType = "GeneRegionTrack",

+ rstarts = "exonStarts", rends = "exonEnds", gene = "name",

43

Fetch data directly from UCSC

| TS Application Developers Workshop 2011 | Your Name | PCS Informatics | May 13th 2011 | Title 46

> snpLocations <- UcscTrack(genome="mm9", chromosome="chrX",!
+ track="snp128", from=from, to=to, trackType="AnnotationTrack",!
+ start="chromStart", end="chromEnd", id="name", feature="func", !
+ strand="strand", shape="box", stacking="dense", fill="black",!
+ name="SNPs")!

> from <- 65921878!
> to <- 65980988!
> cpgIslands <- UcscTrack(genome="mm9", chromosome="chrX",!
+ track="cpgIslandExt", from=from, to=to,!
+ trackType="AnnotationTrack", start="chromStart", end="chromEnd",!
+ id="name", shape="box", fill="#006400", name="CpG Islands")!

Simple annotation tracks:

Fetching data directly from UCSC

| TS Application Developers Workshop 2011 | Your Name | PCS Informatics | May 13th 2011 | Title 47

> refGenes <- UcscTrack(genome="mm9", chromosome="chrX",!
+ track="xenoRefGene", from=from, to=to,!
+ trackType="GeneRegionTrack", rstarts="exonStarts",!
+ rends="exonEnds", gene="name", symbol="name2",!
+ transcript="name", strand="strand", fill="#8282d2",!
+ stacking="dense", name="Other RefSeq")!

> ensGenes <- UcscTrack(genome="mm9", chromosome="chrX",!
+ track="ensGene", from=from, to=to, trackType="GeneRegionTrack",!
+ rstarts="exonStarts", rends="exonEnds", gene="name",!
+ symbol="name2", transcript="name", strand="strand",!
+ fill="#960000", name="Ensembl Genes")!

> knownGenes <- UcscTrack(genome="mm9", chromosome="chrX",!
+ track="knownGene", from=from, to=to, trackType="GeneRegionTrack",!
+ rstarts="exonStarts", rends="exonEnds", gene="name", symbol="name",!
+ transcript="name", strand="strand", fill="#8282d2", name="UCSC Genes")!

Gene model type tracks:

Fetching data directly from UCSC

| TS Application Developers Workshop 2011 | Your Name | PCS Informatics | May 13th 2011 | Title 48

> gcContent <- UcscTrack(genome="mm9", chromosome="chrX",!
+ track="GC Percent", table="gc5Base", from=from, to=to,!
+ trackType="DataTrack", start="start", end="end", data="score", !
+ type="hist", window=-1, windowSize=1500, fill.histogram="black",!
+ col.histogram="black", ylim=c(30, 70), name="GC Percent")!

> conservation <- UcscTrack(genome="mm9", chromosome="chrX",!
+ track="Conservation", table="phyloP30wayPlacental", from=from, to=to,!
+ trackType="DataTrack", start="start", end="end", data="score",!
+ type="hist", window="auto", col.histogram="darkblue",!
+ fill.histogram="darkblue", ylim=c(-3.7, 4), name="Conservation")!

Data tracks:

> axTrack <- GenomeAxisTrack()!
> idxTrack <- IdeogramTrack(genome="mm9", chromosome="chrX")!
!
> plotTracks(list(idxTrack, axTrack, knownGenes, refGenes,!
+ ensGenes, cpgIslands, gcContent, conservation,!
+ snpLocations), from=from, to=to, showTitle=FALSE)!

Other tracks and plotting:

Fetching data directly from UCSC

| TS Application Developers Workshop 2011 | Your Name | PCS Informatics | May 13th 2011 | Title 49

Chromosome X

65.93 mb

65.94 mb

65.95 mb

65.96 mb

65.97 mb

30
40
50
60
70

−2
0
2
4

Fetching data directly from UCSC

| TS Application Developers Workshop 2011 | Your Name | PCS Informatics | May 13th 2011 | Title 50

Chromosome X

65.93 mb

65.94 mb

65.95 mb

65.96 mb

65.97 mb

30
40
50
60
70

−2
0
2
4

4.9 Creating tracks from UCSC data

The UCSC data bases contain a multitude of genome annotation data for dozents of di↵erent organisms.
Some of those data are very simple annotations like CpG island locations or SNP locations. Others are more
complicated gene models, or even numeric annotations like conservation information. In order to provide
a unified interface to all this information, the Gviz package defines a meta-constructor function UcscTrack.
The idea here is that we can express all of the available Ucsc data in one of the package’s track types. We
use the functionality provided in the rtracklayer package to connect to UCSC and to download the relevant
information. As a little illustrative example, let’s reproduce a view from the famous UCSC genome browser
using the Gviz package. As a final result we want to show something similar to Figure 4.9.

Figure 1: A screen shot of a UCSC genome browser view around the FMR1 locus on the mouse chromosome.

To start we first need to know about the available data in the UCSC data base and about their structure.
A good way to do this is to use the table browser on the UCSC web site (http://genome.ucsc.edu/cgi-bin/
hgTables?command=start). Figure 4.9 shows the table structure for the first gene model track, the known
UCSC genes, in the table browser. We can see that there are multiple fields, some with genomic locations,
other with additional data like labels or identifiers. If we go back to the section about the GeneRegionTrack
class we remember that we need exactly this type of information for the constructor function. So in order
to take the UCSC data and build an object of class GeneRegionTrack we need a way to map them to the
individual constructor arguments. This is exactly what the UcscTrack meta-constructor is supposed to do
for us.

42

Acknowledgements

§  James Bullard and Steffen Durinck for the original software

§  Arne Müller, Robert Ivanek, Steve Lianoglou for code contributions
and discussions

§  Martin Morgan, Nishant Gopalkrishnan, Marc Carlson and the rest of
the Bioconductor crew for their great software suite and quickly
implementing the missing bits and pieces

§  Michael Lawrence and Tengfei Yin for their feedback

§  PCS Informatics and the PCS management

51 Florian Hahne | PCS Informatics | 10 December 2012 | Visualizing genomic features with the Gviz package

