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Mapping determinants of human gene expression
by regional and genome-wide association

Vivian G. Cheung'?~, Richard S. Spielman?, Kathryn G. Ewens?, Teresa M. Weber?*>, Michael Morley’

& Joshua T. Burdick®

To study the genetic basis of natural variation in gene expression,
we previously carried out genome-wide linkage analysis and
mapped the determinants of ~1,000 expression phenotypes'. In
the present study, we carried out association analysis with dense
sets of single-nucleotide polymorphism (SNP) markers from the
International HapMap Project’. For 374 phenotypes, the associ-
ation study was performed with markers only from regions with
strong linkage evidence; these regions all mapped close to the
expressed gene. For a subset of 27 phenotypes, analysis of genome-
wide association was performed with >770,000 markers. The

present at the marker. In contrast, allelic association with a linked
marker requires correlation with a particular SNP allele; that is,
linkage disequilibrium. Even if there are several different alleles at the
determinant (‘allelic heterogeneity’), linkage can be detected. But if
there is allelic heterogeneity, it is less likely that there will be
detectable association. Therefore, it was not obvious that evidence
for linkage would predict evidence for association. So, for a set of
phenotypes with cis linkage, we performed association analysis with
SNPs within the target genes and within 50 kilobases (kb) of the 5’
and 3’ ends, and compared results with those from the previous
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Figure 2 | Results of genome-wide linkage analysis (dotted line)
superimposed on those from genome-wide association (bars) for the
chromosome where the expressed gene is located. The location of the
expressed gene is indicated by an arrow. The dotted horizontal line is for
data from linkage scans and correspondsto t = 4, P = 3.7 X 10>, The solid
horizontal line is for data from GWA and corresponds to P = 0.05 after
Sidak correction. The x axis indicates chromosome location in megabases.



Review

The influence of genetic variation
on gene expression

Rohan B.H. Williams,'-%3* Eva K.F. Chan,'-**> Mark . Cowley,'* and Peter F.R. Little'-

"School of Biotechnology and Biomolecular Sciences, University of New South Wales, Randwick, NSW 2052, Australia;
?Ramaciotti Centre for Gene Function Analysis, University of New South Wales, Randwick, NSW 2052, Australia

The view that changes to the control of gene expression rather than alterations to protein sequence are central to
the evolution of organisms has become something of a truism in molecular biology. In reality, the direct evidence
for this is limited, and only recently have we had the ability to look more globally at how genetic variation
influences gene expression, focusing upon inter-individual variation in gene expression and using microarrays to test
for differences in mRNA levels. Here, we review the scope of these experimental analyses, what they are designed to
tell us about genetic variation, and what are their limitations from both a technical and a conceptual viewpoint. We
conclude that while we are starting to understand the impact of this class of genetic variation upon steady-state
mRNA levels, we are still far from identifying the potential phenotypic and evolutionary outcomes.

The conceptual framework specific DNA probes, and we have not attempted to extend our
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How DNA variants might affect variation in
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Figure 1. Plausible sites of action for genetic determinants of mRNA
levels. Genetic variations influencing gene expression may reside within
the regulatory sequences, promoters, enhancers, splice sites, and second-
ary structure motifs of the target gene and so be genetically in cis (red
stars), or there may be variations in the molecular machinery that interact
with cis-regulatory sequences and so act genetically in trans (blue stars).
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Figure 2. Regulon analysis of genes. Following sparse latent factor analysis, each gene is represented
as a purple vertex connected to other genes by a gray line if the posterior probability of being
correlated across the three tissues is =0.90. Linkage is drawn to the chromosomes below (1-19, X, left
to right) if P< 10 *: line color indicates the relevant tissue (blue, brain; green, kidney; red, liver). Note



Guest Editorial

Functional intronic polymorphisms:
Buried treasure awaiting discovery within

our genes

‘In Nature’s infinite book of secrecy, a little I can read!

Antony and Cleopatra [Act I, Scene 2], William Shakespeare

Pathological mutations occurring within the
extended consensus sequences of exon-—intron
splice junctions account for ~10 per cent of all
inherited lesions logged in The Human Gene
Mutation Database (HGMD®; http://www.hgmd.
org)' and are frequently encountered in mutation
screening studies.” Mutations residing in other
intronic locations (including the canonical branch-
point sequence,” 5-YURAY-3), however, may

variants will have been seriously under-ascertained
to date. Although most of these variants are single
nucleotide polymorphisms (SNPs), others may be
of the insertion/deletion type.” With the advent
of genome-wide association studies (GWAS), an
increasing number of potentially functional intronic
variants are being identified.” In the majority of
cases, however, it i1s unclear whether such variants
are of direct functional significance, as opposed to
simply being in linkage disequilibrium with
another (as yet unidentified) functional SNP in the
vicinity.'” Even when GWAS studies deem a newly



Table |. Selected examples of in vitro characterised human functional intronic polymorphisms located more than ~30 bp from the
nearest splice site

BANKI/

CD244

CD244

COLIAI

Predisposition to
congenital anomalies of
the kidney and urinary
tract

Susceptibility to systemic
lupus erythematosus

Susceptibility to
rheumatoid arthritis

Susceptibility to
rheumatoid arthritis

Reduced bone density/
osteoporosis

Xq22-q23

4q23

1q23.1

1q23.1

17q21.33

IVS1, AS, A > G, -29
(rs1403543)

(rs17266594)

(rs6682654)

IVSS5, DS, G = A, +526
(rs3766379)

IVS1, AS, G = T, —440
(rs1800012)

SNP occurs within
branchpoint motif and
alters splicing efficiency

SNP occurs within
branchpoint motif and
risk allele alters
expression of alternative
transcripts

Risk allele associated with
increased transcriptional

activity

Risk allele associated with
increased transcriptional

activity

SNP occurs within
Sp|-binding site; risk
allele alters Sp| binding
and transcriptional
activity

Nishimura
et al (1999)*

Kozyrev et al.
(2008)°

Suzuki et al.
(2008)°

Suzuki et al.
(2008)°

Mann et al.
(2001)°



Summary

DNA variants affecting mRNA abundance
observable using standard microarray platforms

“Regulon” models for coexpression networks
have been proposed

Numerous ‘functional’ polymorphisms connected
with disease, some mechanistic explanations
How can mechanics be further elaborated?

— Structural localization

— Details of mMRNA processing; alternate splicing

— ldentifying and understanding allelic imbalance
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High-Resolution Mapping of Expression-QTLs Yields
Insight into Human Gene Regulation

Jean-Baptiste Veyrieras'*, Sridhar Kudaravalli’, Su Yeon Kim?, Emmanouil T. Dermitzakis®, Yoav Gilad'*,
Matthew Stephens'2*, Jonathan K. Pritchard**

1 Department of Human Genetics, The University of Chicago, Chicago, lllinois, United States of America, 2 Department of Statistics, The University of Chicago, Chicago,
lllinois, United States of America, 3 Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom, 4 Howard Hughes Medical Institute, Chevy Chase, Maryland,
United States of America

Abstract

Recent studies of the HapMap lymphoblastoid cell lines have identified large numbers of quantitative trait loci for gene
expression (eQTLs). Reanalyzing these data using a novel Bayesian hierarchical model, we were able to create a surprisingly
high-resolution map of the typical locations of sites that affect mRNA levels in cis. Strikingly, we found a strong enrichment of
eQTLs in the 250 bp just upstream of the transcription end site (TES), in addition to an enrichment around the transcription start
site (TSS). Most eQTLs lie either within genes or close to genes; for example, we estimate that only 5% of eQTLs lie more than
20 kb upstream of the TSS. After controlling for position effects, SNPs in exons are ~2-fold more likely than SNPs in introns to be
eQTLs. Our results suggest an important role for mRNA stability in determining steady-state mRNA levels, and highlight the
potential of eQTL mapping as a high-resolution tool for studying the determinants of gene regulation.

Citation: Veyrieras J-B, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, et al. (2008) High-Resolution Mapping of Expression-QTLs Yields Insight into Human Gene
Regulation. PLoS Genet 4(10): e1000214. doi:10.1371/journal.pgen.1000214

Editor: Greg Gibson, The University of Queensland, Australia
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Figure 5. Expression-QTNs are under-represented in coding sequence introns, even after controlling for position effects. T
shows the odds ratios for the probability that a SNP in a particular part of the gene (e.g., coding exon) is inferred to be an eQTN, relative
probability for a SNP in an “internal” intron (i.e,, an intron within the coding sequence). The odds ratios are estimated using the hierarchica
with internal introns fixed at a value of 1, and control for SNP position using the TSS+TES model. The vertical bars show 95% confidence ir
doi:10.1371/journal.pgen.1000214.9g005




Functional integration of transcriptional and RNA processing

machineries

Shatakshi Pandit, Dong Wang and Xiang-Dong Fu

Coftranscriptional RNA processing not only permits temporal
RNA processing before the completion of transcription but also
allows sequential recognition of RNA processing signals on
nascent transcripts threading out from the elongating RNA
polymerase || (RNAPIIl) complex. Rapid progress in recent years
nas established multiple contacts that physically connect the
transcription and RNA processing machineries, which centers
on the C-terminal domain (CTD) of the largest subunit of
RNAPII. Although cotranscriptional RNA processing has been
substantiated, the evidence for ‘reciprocal’ coupling starts to
emerge, which emphasizes functional integration of
transcription and RNA processing machineries in a mutually
beneficial manner for efficient and regulated gene expression.
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fashion along the gene [3]. As illustrated in Figure 1, this
dynamic change in CTD phosphorylation suggests that
the RNAPII complex is rearranging its content during
transcription to allow sequential action of distinct machi-
neries for cotranscriptional RNA processing. However,
sequential action does not necessarily mean sequential
recruitment of RNA processing factors to the RNAPII
complex because many ‘downstream’ factors seem to be
recruited at the very beginning of transcription [8,9].

Although most studies focus on understanding how RNA
processing takes advantage of the transcriptional machin-
ery to execute cotranscriptional processing for efficient
gene expression, increasing evidence suggests that tran-
serintion mav alsn henefit fram and/or denend on snecific
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Figure 1. Plausible sites of action for genetic determinants of mRNA
levels. Genetic variations influencing gene expression may reside within
the regulatory sequences, promoters, enhancers, splice sites, and second-
ary structure motifs of the target gene and so be genetically in cis (red
stars), or there may be variations in the molecular machinery that interact
with cis-regulatory sequences and so act genetically in trans (blue stars).



Dissecting transcription and pre-mRNA processing:
initiation, cotranscription (splicing, capping,...), post-tx

Figure 1
Initial pausing Elongation Termination
5' capping mRNAiplicing 3’ processing
/
Ser5P \SerzP

& RNAPII

O various RNA processing factors mRNA Iﬁ Export

@ that are directly recruited to RNAPI
@ during transcription initiation

Nascent RNA

Current Opinion in Cell Biology

Coupling between transcription and pre-mRNA processing. The RNA polymerase || (RNAPII) is modified on its CTD with Ser5 phosphorylatic
predominately at the beginning of the gene (blue line) and Ser2 phosphorylation in the middle and end of the gene (yellow line). 5'-Capping

enzymes are recruited through direct interactions with Ser5 phosphorylated CTD to catalyze the cotranscriptional capping reaction. Various ¢
factors are recruited during the elongation phase of transcription, most of which in a CTD Ser2 phosphorylation-dependent manner, to facili
cotranscriptional splicing. The 3'-end formation is functionally tied to transcription termination. Importantly, increasing evidence now sugges:
that the transcription and RNA processing machineries are functionally integrated in a reciprocal fashion such that individual cotranscription:



The study of eQTL variations by
RNA-seq: from SNPs to phenotypes

Jacek Majewski and Tomi Pastinen

Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Avenue, Rm 7210,

Montreal, Quebec, H3A 1A4, Canada

Common DNA variants alter the expression levels and
patterns of many human genes. Loci responsible for this
genetic control are known as expression quantitative
trait loci (eQTLs). The resulting variation of gene expres-
sion across individuals has been postulated to be a
determinant of phenotypic variation and susceptibility
to complex disease. In the past, the application of ex-
pression microarray and genetic variation data to study
populations enabled the rapid identification of eQTLs in
model organisms and humans. Now, a new technology
promises to revolutionize the field. Massively parallel
RNA sequencing (RNA-seq) provides unprecedented res-
olution, allowing us to accurately monitor not only the
expression output of each genomic locus but also recon-
struct and quantify alternatively spliced transcripts.
RNA-seq also provides new insights into the regulatory
mechanisms underlying eQTLs. Here, we discuss the

more widespread importance of noncoding or regulatory
DNA alterations in disease as implied by GWAS now calls
for approaches to characterize such a variation and its
links to disease phenotypes.

Genome-wide identification of loci controlling gene
expression

The parallel assessment of thousands of transcripts using
DNA microarrays is clearly one of the revolutionary tech-
nologies that launched the ‘genomic’ era. The genome-
wide association of genetic and transcriptome variations
was first achieved in yeast [6], where expression traits of
the progeny were shown to be largely correlated with the
genetic contribution of parental genotypes. The excite-
ment of observing thousands of quantitative traits, or
eQTLs, in a technically straightforward experiment quick-
ly spread to studies in more complex genomes [7] including
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Fine-Scale Variation and Genetic Determinants of
Alternative Splicing across Individuals

Jasmin Coulombe-Huntington'?, Kevin C. L. Lam?, Christel Dias? Jacek Majewski'**

1 Department of Human Genetics, McGill University, Montreal, Québec, Canada, 2 McGill University and Génome Québec Innovation Centre, Montréal, Québec, Canada

Abstract

Recently, thanks to the increasing throughput of new technologies, we have begun to explore the full extent of alternative
pre-mRNA splicing (AS) in the human transcriptome. This is unveiling a vast layer of complexity in isoform-level expression
differences between individuals. We used previously published splicing sensitive microarray data from lymphoblastoid cell
lines to conduct an in-depth analysis on splicing efficiency of known and predicted exons. By combining publicly available
AS annotation with a novel algorithm designed to search for AS, we show that many real AS events can be detected within
the usually unexploited, speculative majority of the array and at significance levels much below standard multiple-testing
thresholds, demonstrating that the extent of cis-regulated differential splicing between individuals is potentially far greater
than previously reported. Specifically, many genes show subtle but significant genetically controlled differences in splice-
site usage. PCR validation shows that 42 out of 58 (729%) candidate gene regions undergo detectable AS, amounting to the
largest scale validation of isoform eQTLs to date. Targeted sequencing revealed a likely causative SNP in most validated
cases. In all 17 incidences where a SNP affected a splice-site region, in silico splice-site strength modeling correctly predicted
the direction of the micro-array and PCR results. In 13 other cases, we identified likely causative SNPs disrupting predicted
splicing enhancers. Using Fst and REHH analysis, we uncovered significant evidence that 2 putative causative SNPs have
undergone recent positive selection. We verified the effect of five SNPs using in vivo minigene assays. This study shows that




Schemata for SNP-associated splicing
events (Coulombe-Huntington 2009)
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Figure 2. AS type and affected splice-site for SNPs identified in
Table 2 and Table 3. The arrow indicates the splice-site affected by
the polymorphism. The genes are read from left to right, as indicated by
the intersecting arrow heads. The type of AS event and which splice-site
is affected is essential to understanding the relation between the
probeset expression change and the theoretical efficiency of splicing. In
(A,C,D), the correlation should be positive since the use of the splice-site
produces a longer transcript, while in (B,EF), an inverse relation is
expected since the use of the splice-site produces a shorter transcript.
doi:10.1371/journal.pgen.1000766.g002



Table 2. SNPs affecting splice-sites.

Gene SNP ID/new SNP AS Type' Splice-site sequence Maximum Entropy Score? Probeset Expression®
C8orf59 new SNP A aagGTaaaa 8.38 138
aagGAaaaa 0.19 12
DMKN rs4254439 C ¢ggGTgagc’ 8.18 17
aggGTgagc 7.75 11
ERAP2 1s2248374 B® atgGTaagg’ 933 69
atgGTgagg 7.61 297
MGC16169 rs12639869 C aagGTatgt’ 9.79 225
aatGTatgt 587 26
PLD2 rs3764897 A cagGTagag® 7.10 140
cggGTagag 2.04 43
SH3YL1 rs62114506 C atgGTaagt® 11.01 118
atgGTaact 6.06 22
TMEM?77 1s3762374 C gttGTgagt® 6.59 2552
gttGTgaat —4.72 394
ZNF419 rs11672136 D ccatAGgtt® 8.87 56
ccaaAGgtt 6.65 13



Summary

e Structural localization of eQTL depends on
finding them and connecting them with
relevant annotation — we will do that

* Alternative splicing analysis will not be
covered in this tutorial

e Data from Stranger et al (2007) Cheung et al
(2010) will be primary resources for assessing
cis- and trans-associated eQTL



OPEN @ ACCESS Freely available online PLOS gioLoay

Polymorphic Cis- and Trans-Regulation of Human Gene
Expression

Vivian G. Cheung'%?%*, Renuka R. Nayak®, Isabel Xiaorong Wang’, Susannah Elwyn®, Sarah M. Cousins®,
Michael Morley®, Richard S. Spielman®'

1 Howard Hughes Medical Institute, Philadelphia, Pennsylvania, United States of America, 2 Department of Pediatrics, University of Pennsylvania, The Children's Hospital
of Philadelphia, Philadelphia, Pennsylvania, United States of America, 3 Department of Genetics, University of Pennsylvania, The Children’s Hospital of Philadelphia,
Philadelphia, Pennsylvania, United States of America, 4 University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of
America, 5 Medical Scientist Training Program, University of Pennsylvania, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America

Abstract

Expression levels of human genes vary extensively among individuals. This variation facilitates analyses of expression levels
as quantitative phenotypes in genetic studies where the entire genome can be scanned for regulators without prior
knowledge of the regulatory mechanisms, thus enabling the identification of unknown regulatory relationships. Here, we
carried out such genetic analyses with a large sample size and identified cis- and trans-acting polymorphic regulators for
about 1,000 human genes. We validated the cis-acting regulators by demonstrating differential allelic expression with
sequencing of transcriptomes (RNA-Seq) and the trans-regulators by gene knockdown, metabolic assays, and chromosome
conformation capture analysis. The majority of the regulators act in trans to the target (regulated) genes. Most of these
trans-regulators were not known to play a role in gene expression regulation. The identification of these regulators enabled
the characterization of polymorphic regulation of human gene expression at a resolution that was unattainable in the past.

Citation: Cheung VG, Nayak RR, Wang IX, Elwyn S, Cousins SM, et al. (2010) Polymorphic Cis- and Trans-Regulation of Human Gene Expression. PLoS Biol 8(9):
©1000480. doi:10.1371/journal.pbio.1000480

Academic Editor: Jonathan Flint, The Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom




The digital nature of the sequence data allows us to use the
heterozygous genotypes in each transcript to determine whether
two allelic forms of a transcript are expressed in equal abundance
[31-33]. Among the 107 expression phenotypes with proximal
linkage peaks, 67 have at least one SNP where there are 2
individuals who are heterozygous at that SNP (see Methods). We
examined these heterozygous samples for evidence of DAE. For
many of these genes, we have data for multiple SNPs from an
average of 7.2 individuals (median = 6). Among the 67 genes, 43
genes (64%) showed significant evidence (#<<0.01, chi-square test)
of departure from equal expression of the two allelic forms of the
genes. For the 273 exonic SNPs in these 43 genes, we calculated
an “allelic expression ratio” a/(a+b), where a and b are the
numbers of sequence reads for the two alleles. Figure S1 shows



Cheung et al 2010: RNA-seq for
differential allelic expression

expression level (log.)
2]

CHI3L2 CRYZ
rs3934922 rs8535 rs14 75396 rs17459
G A G T
— —
| I I I
T C C c
rs3934922 51475396
’ = . *
A . { = .
- 3 - . i * 1
: [ : 71 o= (] :
= ‘ ] - i '
] —
! i a7 " :
Wy |
o i !
P | 2 s *
5 BN
i | wd .
. 53]
e I 1 T | | ]
GG GT TT cC cG cle

enatype re1TARQD

reREOE



Relative frequency of A- vs C-bearing forms of
the CHI3L2 transcript (left panel)
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Summary

e SNP associated with

— overall differential expression
— alternative splicing
— allelic imbalance

* Not reviewed: Specific to context: tissue,
disease, developmental stage ...

e Tutorial: what is a reasonable computational
environment to foster progress with these
investigations?



A collection of reads from GSE16921
(Cheung et al) around CHI3L2
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Read densities compatible with gene model (roughly)
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Seeking the gold in a band of blue
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Data structures, algorithms, and inference for
genetics of gene expression: moving targets

* ca. 2008:
— SNP chips with 1 million loci (+ CNV)

— Expression arrays with 50K (u133+2.0) to many
more (exon arrays) expression features

* Current (ambitions)
— Genome-wide or exome-wide DNA sequencing
— RNA-seq
— Platforms, protocols, required depth?



Perspectives of the tutorial

e Platforms for array-based methods for transcript
profiling and genotyping are reasonably stable;
archives of these should be easily harvested by
any interested computational biologist

* Concepts that work in this domain need some
extension for sequence-based context, but the
basic principles should carry over

e Despite 10+ years of transcript profiling with
microarrays, frameworks for establishing optimal
methods, common in biostatistical applications,
have not been established



Basic computational and interpretive
methods required

Array context

Preprocessing

— Quality assessment,
background correction, image
registration....

Normalization

— ‘Removal’ of non-biologic
sources of variation

— Establishment of between-
sample comparability

Inference

Sequencing context

* Preprocessing

— Image analysis/base-calling ...
basically proprietary

— Quality assessment, filtering

* Normalization

— ‘Removal’ of non-biologic
sources of variation

— Establishment of between-
sample comparability

* |nference



Details of computations to be
reviewed in tutorial

* Container design

— Link experiment metadata, assay results, sample
characteristics for reliable filtering, reshaping, and
analysis

— Allow a unified view even if the resources are
decomposed for computational efficiency

e Decomposable workflow

— Permit concurrent execution of embarrassingly
parallelizable tasks

* Avoid large memory footprints whenever possible
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Some abstractions for array-based
resources

* Enumerations
— Genes (or expression probes) 1, ..., G
— Samples 1, ..., N (may be clustered into families)
— Sample characteristics 1, ..., R
— SNPs on chromosome ¢, 1, ..., S

* ExpressionSet X unites
— Assay data: exprs(X) is G x N

— Sample level data: pData(X) is N x R
— MIAME: experimentData(X)

C



Containers for integrative genomics
experiments

* A SnpMatrix for a SNP panel from chromosome c
is a container for observed or imputed genotypes,
using 1 byte per locus, as a matrix of dimensions

N xS,

* An smlList collects SnpMatrix instances for a
collection of chromosomes

 An smlSet X combines an ExpressionSet with an
smlList
— As before exprs(X) is G x N
— smlList(X)[[c]] is N x S,
— pData() and experimentData() function as before



CEPH CEU GENEVAR+HapMap ph 2

P library(GGtools)

> library(GGdata)

> c17 = getSS("GGdata", "17", renameChrs="chri7")

> class(c17) # smlSet links SnpMatrix instances and expression data

[1] "smlSet"
attr(, "package")
[1] "GGBase"

> cl17

SnpMatrix-based genotype set:

number of samples: 90

number of chromosomes present: 1

annotation: illuminaHumanvl.db

Expression data dims: 47293 x 90

Phenodata: An object of class "AnnotatedDataFrame"
sampleNames: NA06985 NA06991 ... NA12892 (90 total)
varLabels: famid persid ... male (7 total)
varMetadata: labelDescription



Various views of chrl7 SNP

> dim(smList(c17)[["chrl17"11)
[1] 90 89701
> as(smList(c17)[["chr17"11[1:3.1:51].

"matrix")

rsb565733 rs1106175 rs17054921 rs8064924 rs8070440

NAOGI8S 03 02 03
NAOGI91 03 01 03
NAOGI93 03 01 03

> as(smList(c17)[["chr1/7"11[1:3.1:51.

03
03
03

" - "
numeric")

03
03
03

rsb6565733 rs1106175 rs17054921 rs8064924 rs8070440

NAOG9I85 2 1 2
(NAOG991 2 0 2
A06993 2 0 2
> as(smList{(cl1/7)[["chr1/7"11[1:3.1:51,
.11 [C.21 L[.31 L[.41 L[.5]

1.1 "B/B" "A/B" "B/B" "B/B" "B/B"

2.1 "B/B" "A/A" "B/B" "B/B" "B/B"

3.1 "B/B” "A/A" "B/B" "B/B" "B/B"

i > I—l

2
2
2

"character")

2
2
2



Compute and manage an eQTL screen
for one gene
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> unix.time(tl <- nginests(genesgm( 'CHRNE")"male., c17., chrnum("chrl/7")))
user system elapsed
0.576 0.024 0.602
> length{(p.value(tl1@.Datal[111))
[1]1 89701
> topSnps(tl.n=5)
p.val
rs16954243 2.925728e-09
rs/7214776 7.564315e-09
rs8081611 7.564315e-09
rs2302321 4.838786e-08
rs8070572 2.505861e-07
> t1@.Datal[1]11lrownames(.Last.value),]
Chi.squared Df p.value
rs16954243 35.23268 1 2.925728e-09
|rs/7214776 33.38401 1 7.564315e-09
_rs8081611 33.38401 1 7.564315e-09
rs2302321 29.78032 1 4.838/86e-08
:Mrs%070572 26.59736 1 2.505861e-07
N
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par (mfrow=c(2,2))

plot_EvG(genesym("CHRNE"),
plot_EvG(genesym("CHRNE"),
plot_EvG(genesym("CHRNE"),
plot_EvG(genesym("CHRNE"),

par (mfrow=c(1,1))

CHRNE

CHRNE

6.0 62 64 66 6.8

6.0 62 64 66 6.8

rsid("rs16954243"), c17)
rsid("rs7214776"), c17)
rsid("rs2302321"), c17)
rsid("rs8070572"), c17)

E E ) — —
—T— I I
A/A A/B NA

rs16954243

rs2302321

CHRNE

CHRNE

6.0 62 64 66 68

6.0 62 64 66 6.8

E_f_ﬁ =

| |
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rs7214776

=

| | | |
A/A° AB BB NA

rs8070572




Summary on container

e Unification of array-generated expression and
genotype data is reasonably straightforward with
R packages

* One can handle large numbers of samples with

50k probes and 1 million SNPs without special
structures

 With large SNP panels, loading and unloading
chromosome-specific images is more sensible for
interactive work; externalize()/getSS() in GGtools



Summary on single-gene test

* D. Clayton’s snpMatrix package includes
numerous facilities for import and fast analysis

of large genotype panels

e Byte-encoding of genotypes or genotype
probabilities (for imputation) saves space

e gwSnpTests connects this to the eQTL context
with flexible specification of association model



Surveying large sets of genes for eQTL

> library(ggtut)
> f1 = observedi7ceu()
> f1

eqtlTools results manager, computed Fri May 6 16:05:50 2011
gene annotation: illuminaHumanvl.db
There are 1 chromosomes analyzed.

some genes (out of 498): GI_10190685-S GI_10835020-S ... hmm23927-S hmm5188-S
some snps (out of 60967): rs6565733 rs1106175 ... rs7502145 rs4986109
> fl@call

eqtlTests(smlSet = c17, rhs = "male, targdir = "c17c", geneApply = mclapply,
genegran = 1)

The object £1 holds results of 30361566 tests for expression-genotype association. Note



Compare sizes and locations of peaks to results
when expression permuted against genotype
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Additional topics in the array context

* SNP imputation using regression or population
haplotype models

* Expression heterogeneity reduction using
surrogate variable analysis

* Details of searching for trans-associated eQTL



The sequencing context

We are concerned mainly with processing and
interpreting RNA-seq data

We assume filtering and alignment are done
well

We use the BAM format to manage all short
reads, one BAM file per sample

ldioms comparable to the X[G,S] filtering
specification for ExpressionSet instances are
available with BamViews in Rsamtools



A basic product of interest, for a
specified SNP

NAO7055 NAO6985 NA06993 NA06994 NAO7000 NAO7022 1

A 0 66 0 86 51 0
C 53 0 193 30 1 39
G 0 0 0 1 0 0
T 0 0 0 0 0 0
NA11004 NA11829 NA11830 NA11831 NA11832 NA11839 1
A 144 0 0 22 33 119
C 27 7 52 8 1 47
G 0 0 0 0 0 0
T 0 0 0 0 0 0
NA11993 NA12003 NA12004 NA12005 NA12006 NA12043 1
A 203 0 111 0 47 0
C 43 2 0 266 0 51
G 0 0 0 0 0 0
T 0 0 0 0 0

2~ 2 - WY A 4~~~ oA WY A 4 v s o~ T A 4 v oo



Conclusions

 Comprehensive eQTL search — a readily solved
problem with 50k probes vs 10 million SNP

* |Interpreting associations found in such
searches is challenging; scalable and linkable
access to result sets is essential

* Working with RNA-seq data to dissect
mechanisms by which DNA variants influence
MRNA abundance is in early stages, but
feasible with tools described here
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