Simple RNA-seq Expression Measures

Patrick Aboyoun

Fred Hutchinson Cancer Research Center

January 29, 2010

Simple RNA-seq Expression Measures

1 / 26

- **2** Data Preparation
- **3** Coverage Summaries
- Alignment Overlaps
- **5** Session Information

(Introduction)

- 2 Data Preparation
- 3 Coverage Summaries
- Alignment Overlaps
- **5** Session Information

Motivation

RNA-seq is now a standard assay technology for measuring gene expression. This lab will show how to create simple measures of gene expression for RNA-seq experiments.

(Introduction)

Expression Measurement Categories

The lab develops two approaches for aggregating alignments in RNA-seq experiments:

- Summarizing coverage values within gene (or transcript) regions.
- Counting the number of alignments that fall in or near gene (or transcript) regions.

For alternative approaches visit http://bioconductor.org/ packages/release/HighThroughputSequencing.html.

Functions Used in Lab

Sequence Views : Views, viewMax, viewMean Alignment : chromosome, position, strand, width Interval Ops. : IRanges, resize, findOverlaps, subjectHits Library/File : library, data Vector Ops. : is.na, sort, table Matrix Ops. : cbind Integer Vec. : L (e.g. 1L), as.integer, round String Ops. : paste, as.roman Logical Ops. : !, ==, != Object Reshape : split, unlist Subscripting : [, [[, head, tail Summary : mean, summary, pmin Metadata : levels, names

(Introduction)

Data Classes Used in Lab

AlignedRead : imported alignments (verbose)

- RleList : genome coverage vectors
- RleViewsList : genome coverage vectors combined with intervals of interest, e.g. genes

RangedData : genomic features represented as a data table

RangesList : intervals across a genome

Alignment Overlaps

Session Information

Coverage Summaries

- Alignment Overlaps
- **5** Session Information

Loading Saved Work

The previous three labs added alignment, coverage, and gene annotation objects to the day3 package that we need for this lab.

Introduction

Fixing Chromosome Name Mismatches

Using Roman numerals in chromosome names

```
> head(levels(chromosome(aln)), 4)
```

```
[1] "chrI" "chrII" "chrIII" "chrIV"
```

```
> head(names(combSmoothCover), 4)
```

```
[1] "chrI" "chrIII" "chrIII" "chrIV"
```

```
> head(names(yeastGenes), 4)
```

[1] "1" "10" "11" "12"

> names(yeastGenes) <-</pre> paste("chr", as.roman(names(yeastGenes)), sep="") + > head(names(yeastGenes), 4)

[1] "chrI" "chrX" "chrXI" "chrXII"

Reordering the Chromosomes

Coordinating	element	order	in	the	objects
--------------	---------	-------	----	-----	---------

```
> head(names(combSmoothCover), 4)
```

[1] "chrI" "chrII" "chrIII" "chrIV"

```
> head(names(yeastGenes), 4)
```

- [1] "chrI" "chrX" "chrXI" "chrXII"
- > yeastGenes <- yeastGenes[names(combSmoothCover)]</pre> > head(names(yeastGenes), 4)
- [1] "chrI" "chrII" "chrIII" "chrIV"

> geneNames <- veastGenes[["systematic_name"]]</pre>

Alignment Overlaps

Session Information

- 2 Data Preparation
- **3** Coverage Summaries
- Alignment Overlaps
- **5** Session Information

Summarizing Coverage Vectors

- This approach involves summarizing coverage vectors within regions of interest (e.g. genes/transcripts) so each region is assigned 1 number.
- Common statistical summaries are maximum, mean, and sum.

Views on Coverage

Constructing views

> geneViews <- Views(combSmoothCover, ranges(yeastGenes))</pre>

> geneViews

```
SimpleRleViewsList of length 16
$chrI
Views on a 230208-length Rle subject
```

views:

	start	end	width														
[1]	151467	151584	118	[0]	0	0	0	0	0	0	0	0	0	0	0	0]
[2]	99306	99869	564	[0]	0	0	0	1	1	1	1	1	1	1	1	1]
[3]	147596	151168	3573	[0	0	0	0	0	0	0	0	0	0	0	0	0]
[4]	143709	147533	3825	[1	1	1	1	1	1	1	1	1	1	1	1	1]
[5]	142176	143162	987	[6	6	6	6	6	6	6	7	7	7	7	7	7]
[6]	139505	141433	1929	[36	5 3	36	36	3 3	36	36	3 3	37	37	7 3	37	37	′]
[7]	137700	138347	648	[0]	0	0	0	0	0	0	0	0	0	0	0	0]
۲۵J	126016	127510	507	Г∩	Λ	Λ	\cap	Λ	Λ	∩ Sim			^		A	A	1 Measures

Maximum Coverage Within Genes

viewMaxs

- > maxCover <- viewMaxs(geneViews)</pre>
- > maxCover <- unlist(maxCover, use.names=FALSE)</pre>
- > names(maxCover) <- geneNames</pre>
- > tail(sort(maxCover), 4)

RDN25-1 RDN37-1 RDN25-2 RDN37-2 8200 8200 8230 8230

```
> mean(maxCover == 0)
```

[1] 0.18

> summary(maxCover)

Min. 1st	Qu.	Median	Mean 3rd	Qu.	Max.
0	1	2	14	3	8230

Mean Coverage Within Genes

viewMeans

- > meanCover <- round(viewMeans(geneViews))</pre>
- > meanCover <- unlist(meanCover, use.names=FALSE)</pre>
- > names(meanCover) <- geneNames</pre>
- > tail(sort(meanCover), 4)

YLR154C-G RDN25-2 RDN25-1 YLR154W-A 4373 4474 4485 5965

> summary(meanCover)

Min.	1st	Qu.	Median	Mean	3rd	Qu.	Max.
0.0		0.0	0.0	6.6		1.0	5960.0

(Alignment Overlaps)

Session Information

- 2 Data Preparation
- 3 Coverage Summaries
- Alignment Overlaps
- **5** Session Information

Counting Alignments That Overlap Features

- This approach involves creating a tally of the number of alignments that overlap each genomic feature of interest.
- As with the coverage calculations we will perform this tally on each strand separately and then reconcile the differences.

Generate Alignment Ranges

Once again we will extend the alignments to a fixed fragment length of 150 bp.

```
Construction of stranded alignments
> posStr <- strand(aln) == "+"
> alnRanges <- IRanges(position(aln), width = width(aln))
> posRanges <- split(alnRanges[posStr],
+ chromosome(aln)[posStr])
> posRanges <- resize(posRanges, width = 150L)
> negRanges <- split(alnRanges[!posStr],
+ chromosome(aln)[!posStr])
> negRanges <- resize(negRanges, width = 150L, start=FALSE)</pre>
```

Positive Strand Alignment Overlaps

Count along the positive strand

- > posCounts <-
- + table(subjectHits(findOverlaps(posRanges, yeastGenes)))
- > i <- as.integer(names(posCounts))</pre>
- > names(posCounts) <- geneNames[i]</pre>
- > posCounts <- posCounts[geneNames]</pre>
- > names(posCounts) <- geneNames</pre>
- > posCounts[is.na(posCounts)] <- 0L</pre>

Negative Strand Alignment Overlaps

Count along the negative strand

- > negCounts <-
- + table(subjectHits(findOverlaps(negRanges, yeastGenes)))
- > i <- as.integer(names(negCounts))</pre>
- > names(negCounts) <- geneNames[i]</pre>
- > negCounts <- negCounts[geneNames]</pre>
- > names(negCounts) <- geneNames</pre>
- > negCounts[is.na(negCounts)] <- 0L</pre>

Parallel Minimum Combined Overlaps

Creating the combined overlaps

- > combOverlaps <- cbind(pos = posCounts, neg = negCounts)</pre>
- > head(combOverlaps, 2)

```
pos neg
CEN1
      0
          0
HRA1
      7 7
```

> overlapCounts <- pmin(combOverlaps[,1], combOverlaps[,2])</pre> > tail(sort(overlapCounts), 4)

RDN25-2 RDN25-1 RDN37-2 RDN37-1 106369 107531 118972 120266

```
> summary(overlapCounts)
```

Min. 1st	Qu.	Median	Mean 3rd	l Qu.	Max.
0	2	6	88	15	120000

- Get the gene names for the top 50 largest in each of the three measures (gene maximums, gene averages, overlap counts).
- 2 How many of the genes are in all three top 50 lists?

Answers

- > topMaxs <-
- + head(names(sort(maxCover, decreasing=TRUE)), 50)
- > topMeans <-
- + head(names(sort(meanCover, decreasing=TRUE)), 50)
- > topOverlaps <-</pre>
- + head(names(sort(overlapCounts, decreasing=TRUE)), 50)
- > length(intersect(topMaxs, intersect(topMeans, topOverlaps)))

[1] 29

Alignment Overlaps

Session Information

- 2 Data Preparation
- 3 Coverage Summaries
- Alignment Overlaps
- **5** Session Information

Session Information

- R version 2.10.1 Patched (2010-01-28 r51060), x86_64-unknown-linux-gnu
- Locale: LC CTYPE=en US.UTF-8. LC NUMERIC=C. LC_TIME=en_US.UTF-8, LC_COLLATE=en_US.UTF-8, LC_MONETARY=C, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
- Base packages: base, datasets, graphics, grDevices, methods, stats, tools. utils
- Other packages: AnnotationDbi 1.8.1, Biobase 2.6.1, biomaRt 2.2.0, Biostrings 2.14.8, bitops 1.0-4.1, BSgenome 1.14.2, BSgenome.Scerevisiae.UCSC.sacCer2 1.3.16, day3 0.0.3, DBI 0.2-4, IRanges 1.4.9, lattice 0.17-26, org.Sc.sgd.db 2.3.5, RCurl 1.3-0, RSQLite 0.7-3, rtracklayer 1.6.0, ShortRead 1.4.0

• Loaded via a namespace (and not attached): grid 2.10.1, 11 1 1 1 0 0 0