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Classical ChIP-chip

Diverse biological context

I ‘Punctuations’, e.g., <200bp; transcription factor finding
sites, e.g., associated with CTCF

I Broad, e.g., RNA polymerase II binding to promoters, but also
over body of actively transcribed regions

I Histone marks and chromatin domains

Overall approach

I Cross-link chromatin, e.g., formaldehyde

I Immunoprecipitate with specific antibodies → enriched DNA
fragments of desired length, e.g., 500bp

I Quantify enrichment by hybridization to tiling microarrays



ChIP-seq

Overall approach

1. Chromatin immunoprecipitation

2. Sequence
I Process ChIP’ed DNA, e.g., size selection, adapter ligation
I Perform whole-genome alignment

3. Characterize areas of high coverage – ‘peaks’

4. Compare across experimental conditions

Useful reference: Park (2009).



densities, shifting the strands relative to each other by increasing

distance. All of the examined data sets exhibit a clear peak in the

strand cross-correlation profile, corresponding to the predominant

size of the protected region (Fig. 1d and Supplementary Fig. 1

online). The magnitude of the peak reflects the fraction of tags in

the data set that appears in accordance with the expected binding tag

pattern. In an ideal case, when all of the sequenced tags participate in

such binding patterns, the correlation magnitude reaches a maximum

value. Conversely, the magnitude decreases as tag positions are

randomized (Supplementary Fig. 2 online).

Using variable-quality tag alignments

Although some tags align perfectly with the reference genome, others

align only partially, with gaps or mismatches. Poorly aligned tags may

result from experimental problems such as sample contamination,

correspond to polymorphic or unassembled regions of the genome,

or reflect sequencing errors. For the Solexa platform, the sequencing

errors are more abundant toward the 3¢ ends of the sequenced

fragments, frequently resulting in partial alignments that include

only the portions of the tags near the 5¢ ends. We estimate that this

increase in mismatch frequencies towards 3¢ termini accounts for

41–75% of all observed mismatches in the examined data sets

(Supplementary Fig. 3 online). As it is not unusual to have

450% of the total tags result in only partial

alignment, inclusion of tags that are par-

tially aligned but still informative is impor-

tant for optimizing use of any data set11,12.

We therefore chose to use the length of the

match and the number of nucleotides cov-

ered by mismatches and gaps to classify the

quality of tag alignment (Table 1 and Sup-

plementary Table 2 online).

Given a classification of tags by quality of

alignment, we propose to use the strand

cross-correlation profile to determine

whether a particular class of tags should be

included in further analysis. A set of tags informative about the

binding positions should increase cross-correlation magnitude,

whereas a randomly mapped set of tags should decrease it (Supple-

mentary Fig. 2). Using this approach for the NRSF data set (Fig. 2),

we found that alignments with matches spanning at least 18 bp and

zero mismatches improved the cross-correlation profile. However,

only full-length (25 bp) matches should be considered for tags with

two mismatches. Using this criterion to accept tags increased their

number over the set of perfectly aligned tags by 27% for the NRSF

data set, 30% for the CTCF data set and 36% for the STAT1 data set

(Supplementary Fig. 4 online). The incorporation of these tags

improved sensitivity and accuracy of the identified binding positions

(Supplementary Fig. 5 online).

Controlling for background tag distribution

The statistical significance of the tag clustering observed for a putative

protein binding position depends on the expected background pat-

tern. The simplest model assumes that the background tag density is

distributed uniformly along the genome and independently between

the strands11. In addition to the NRSF ChIP sample, Johnson et al.2

have sequenced a control input sample, providing an experimental

assessment of the background tag distribution. We found that the

background tag distribution exhibits a degree of clustering that is
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Figure 1 Protein-binding detection from ChIP-seq data. (a) Main steps of the proposed ChIP-seq processing pipeline. (b) Schematic illustration of ChIP-seq

measurements. DNA is fragmented or digested, and fragments cross-linked to the protein of interest are selected with immunoprecipitation. The 5¢ ends

(squares) of the selected fragments are sequenced, typically forming groups of positive- and negative-strand tags on the two sides of the protected region.

The dashed red line illustrates a fragment generated from a long cross-link that may account for the tag patterns observed in CTCF and STAT1 data sets.

(c) Tag distribution around a stable NRSF binding position. Vertical lines show the number of tags (right axis) whose 5¢ position maps to a given location on

positive (red) or negative (blue) strands. Positive and negative values on the y-axis are used to illustrate tags mapping to positive and negative strands,

respectively. The solid curves show tag density for each strand (left axis, based on Gaussian kernel with s ¼ 15 bp). (d) Strand cross-correlation for the

NRSF data. The y-axis shows Pearson linear correlation coefficient between genome-wide profiles of tag density of positive and negative strands, shifted

relative to each other by a distance specified on the x-axis. The peak position (red vertical line) indicates a typical distance separating positive- and

negative-strand peaks associated with the stable binding positions.

Table 1 Classification of tag alignments based on the length of the match and the number

of mismatches

16 17 18 19 20 21 22 23 24 25

0 63,388 50,613 34,707 21,230 16,775 14,453 11,068 6,556 54,455 1,234,829

1 16,625 25,991 24,715 23,431 17,540 12,705 31,416 192,975

2 295 3436 7,939 6,042 6,379 16,495

The table gives the number of NRSF data set tags whose best alignment falls within each class, as defined by the

length of alignment (columns) and the number of mismatches (rows). The tags from the NRSF data set were aligned

using BLAT. The number of mismatches includes the number of nucleotides covered by gaps.
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Criteria for success

I Broad range in number of mapped reads required for
‘success’: 2-20M (Pepke et al., 2009)

I Target properties
I Number and size of occupied sites
I Signal intensities

I Library properties
I Enrichment relative to background
I Each read from a different founder molecule in the ChIP library

I Trade-offs: specificity (unique reads) vs. sensitivity (multiple
reads)



Sample characteristics

I Majority (60-90%?) are ‘background’ (Pepke et al., 2009)
I Not as bad as it sounds – 40% of reads distributed over 99.9%

of the genome, vs 60% over 0.1%.

I Unmappable genome
I Repeat regions: reads align to multiple locations; hard to know

how to incorporate into read counts
I Underrepresentation in regions of extreme base composition

I Artifacts of (ChIP) sample preparation
I E.g., PCR amplification



Analysis using the chipseq package

Biological background: CTCF

I Insulator protein, blocking enhancer / promoter interactions
(e.g., IGF-2); zinc finger protein

I 15,000 binding sites in human genome

Source: Chen et al. (2008)

I Mouse embryonic stem cells transcription factor binding sites

I GFP: negative control; no peaks anticipated



Aligned reads

Issues

I Reads aligning to multiple genomic locations? Technology
sequence bias?

I Genomic coordinates where multiple reads align?

Decisions

I Ignore reads aligned to multiple genomic locations, because
alternative not clear; ignore sequence bias.

I Select a maximum of one read starting at each position –
concern is that multiple identically aligned reads reflect PCR
artifact during sample preparation



Aligned reads

Psuedo-code

> filter <- compose(

+ strandFilter(strandLevels=c("-", "+")),

+ chromosomeFilter(regex = "chr[0-9}+$"),

+ alignQualityFilter(1),

+ uniqueFilter(withSread = FALSE))

> aln <- readAligned(aFile, type="MAQMap", filter=filter)



Read extension

What is sequenced?

I 5’ end of size-selected ChIP-enriched regions

I Upstream of actual binding site on plus strand, downstream
on minus strand

I Strand-specific distribution reflects size-selected fragment
lengths – e.g., left-skewed on plus strand

Consequence: extend reads in 3’ direction



Read extension

Several possibile approaches (e.g., Kharchenko et al., 2008)
I XSET

I Extend reads by expected DNA fragment length
I Binding regions occur where high numbers of fragments

overlap

I Strand-specific shift, e.g., based on fragment length, or
estimated from high-quality binding sites

I Strand cross-correlation
I Shift to maximize correlation between 5’ to 3’ counts on the

plus and minus strands

Implemented as estimate.mean.fraglen in chipseq



Coverage and islands

Coverage

I Number of (extended) reads aligning over each nucleotide
position

Islands

I Contiguous regions of non-zero coverage

I Characterize islands: area under the coverage curve, i.e.,
number of reads in the island



Coverage and islands

Psuedo-code

> cvg <- coverage(aln, extend=150L)

> islandReadSummary <- function(chr, islandDepth)

+ {

+ s <- slice(chr, lower=islandDepth)

+ tab <- table(viewSums(s) / 150L)

+ data.frame(nread=as.numeric(names(tab)),

+ count=as.numeric(tab))

+ }

> islands <- gdapply(cvg, islandReadSummary, islandDepth=1L)



Coverage and islands
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Differential peaks: Background versus signal

Null model P(K = k) = pk−1(1− p)

I Random sample of reads from mappable genome

I Coverage K , with probability p that a read starts at a given
position

I Estimate p by assuming islands of depth 1 or 2 derive from
the null

Background threshold

I Data usually show strong evidence of departure from null at
k >= 5; we use k >= 8 below

I Model-based and adaptive algorithms areas of active research

> islands <- gdapply(cvg, islandReadSummary, islandDepth=8L)



Differential peaks: case versus control

Challenges

I Between-lane variation in number of reads: artifact of sample
preparation, or biologically relevant?

I What is a peak – present in one or both samples?

Possible solutions

I Combine lanes and identify peaks

I Compare contributions of each lane, relative to combined
lane. diffPeakSummary in chipseq

I Estimate scaling constant c from robust regression of
y = cx → log y = log c + log x



Differential peaks: case versus control
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Differential peaks: designed experiments

Summarized read counts

I Matrix of islands × samples, values as read counts

I Possible to normalize (e.g., VSN)

I Extend modeling in standard ways, e.g., covariates such as
local GC content

Statistical issues

I ‘Peaks’ are estimated, not defined a priori

I Data is count-based, not continuous

I Error model is not simply Poisson; see edgeR, DESeq for
possible solutions



Additional analysis

I Motif exploration with Biostrings matchPWM

I Record multiple alignments with Biostrings matchPDict

I contextDistribution: overlap between discovered peaks
and genomic features

I Export to genome browsers or otherwise visualize, e.g., using
rtracklayer , hilbertViz , etc.,

> export(as(cvg[["chr10"]], "RangedData"), "chr10.wig")



Summary: a ChIP-seq work flow

I Identify appropriate reads, e.g., uniquely aligned singletons

I Calculate coverage, e.g., with extended reads

I Identify islands

I Restrict to islands above background

I Estimate differential representation

I Analyze designed experiments with linear models appropriate
for count-based data

R and Bioconductor tools

I chipseq

I ChIPseqR – nucleosome marks; ChIPsim – simulation

I ChIPpeakAnno – e.g., nearby transcription start sites,
enriched GO terms, . . .

I . . .
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