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Sequencing experiments used for:

v\

Sequence of
(mapped) read

e.g. genome sequencing,
SNP/mutation mapping,
genomic rearrangements,
etc.

Position of mapped

read

e.g. RNA-seq, tag-seq for
expression, ChlP-seq for
TF binding or histone
modifications, MeDIP-seq
for DNA methylation, etc.




Applications

- Differential gene expression: RNA-seq,
“Tag’-seq, etc.

 Differential enrichment: histone
modifications, other types of “enrichment”-
based sequencing e.g. ChlP-seq, MeDIP-
seq, etc.

* Analyses of changes in other tables of
counts: e.g. peptide counts from MS/MS
experiments, metagenomics experiments.
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Example:

Enrichment of subset
of the genome (e.qg.
ChlIP for histone
modifications or DNA
methylation)
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What does genome-scale count
data look like?

* e.g. RNA-seq

Tag ID
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... tens of thousands more tags ...




Statistical models for count
data




Count data

» Count data (e.g. RNA-seq) is discrete, not
continuous

 Statistical methods designed for
microarrays are not directly applicable

» Two options: /\
Transform count data Analyze using models
and apply standard for count data
methodology




Count data

 BUT we have learned much from the
analysis of microarray data

 Methods that share information over the

whole dataset generally:
— stabilize parameter estimation
— improve performance of making inferences




Poisson arises naturally from
multinomial sampling

DNA

/ population

» Take sample %& %
» Sequence DNA

Library 1




Reads for a single gene (single
library) are binomial distributed

Library 1
Y. ~ Binomial( M, A, )

Y, - observed number of reads for gene |
M - total number of sequences
A, - proportion

Large M, small A; = approximated well by Poisson( y; = MeA, )




Technical replication

w w » Take another
sample from
)iy same pool

Library 1 Library 2 'Dﬁe;'“ence




Poisson replication induces a
vuvuzela-shaped "MA"-plot

And the theory
validates that this
behaviour should
exist: Mis
essentially a log-
relative-risk

Power (to detect
changes) is higher at
higher counts
Implications for
downstream
analysis.

ng/Nk

M_=1lo
g 82 ng’/Nk'

A, = ;10g2(ng/Nk Yy /Ny ) for Yy, #0




Statistical models

* For count data, variance increases
with mean

» Starting point: Poisson model

* Poisson has simplest mean-
variance relationship




Poisson

Variance is equal to the mean

One-parameter model: mean for each
gene

Y, ~ Pois( ;)
bi=M*A
M = library size
A = relative contribution of gene |




Poisson describes technical
variance

* Marioni et al (2008) show that there is
little technical variance in RNA-seq

» Poisson model is (probably) adequate

for assessing DE when there are only
technical reps

 But this is not the end of the story ...




Biological replication

2 or more independent DNA populations from
the same experimental condition

Generally, experimenters will want biological
replication for generalizable results




Overdispersion: extra-Poisson
variation

* If there are ANY further sources of
variation, there is more variation in
data than Poisson model can account
for

* Poisson model underestimates
variation -> false positives

* Need a model that can account for
this extra variation




Overdispersion is present in real data

Mean-variance plot for slime-mould dataset hrO0 and hr24 (2 vs 2)

Gene
variance
(pooled)
(log10
scale)

- Poisson
— NB
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Gene mean expression level (log10 scale)

Comparing expression levels from Dictyostelium discoideum at hrO0 and hr24 — two biological replicates at each time point.
RNA-seq data from Parikh et al. Genome Biology 2010, 11:R35 http://genomebiology.com/2010/11/3/R35




Sources of variation: technical and
o][o]le]e][or=]

» Technical: same pool of RNA sequenced
separately (e.qg. different lanes)

* Biological: RNA from different biological

sources (e.g. individuals) under the same
experimental conditions

» Other: extra-Poisson variation also
Introduced by other processes, e.qg.
different library preparations, protocols etc.




Natural extension to Poisson:
negative binomial model

Introduce the dispersion parameter
Y, ~NB( b, ¢; )
Still have mean expression level

Mi=M ™A
M = library size, A, = “conc” of gene DNA
Variance is a quadratic function of mean:
Var(Y;) =y (1+y¢)




Coefficient of variation

Dispersion is squared coefficient of
variation

Measure of similarity/variability btw
samples

E.g. dispersion = 0.2 -> coef of var = 0.45

Interpretation: true expression levels of
genes vary by 45% btw replicates

Separate biological and technical variation




Problem: small sample size

* RNA-seq experiments will typically have
small sample sizes (e.g. n=7)

» Standard methods for estimating the
dispersion for each gene produce very
unreliable estimates

» Lesson from microarrays: share
information between genes (variance
structure) to improve inference




Common dispersion model

» One approach: use same value for
the dispersion for all genes

- Estimate using all genes in dataset
(conditional max likelihood)

* Produces a reliable estimate

* Nice biological interpretation, but can
be heavy handed




Normalization




One particularly powerful advantage of
RNA-Seq is that it can capture transcrip-
tome dynamics across different tissues or
conditions without sophisticated normali-
zation of data sets'®?*?2, RNA-Seq has been

(RPKM) (Fig. 1a,c). The RPKM measure of read density reflects
the molar concentration of a transcript in the starting sample by
normalizing for RNA length and for the total read number in the
measurement. This facilitates transparent comparison of transcript
levels both within and between samples.

But, this is not the full story.




Kidney and Liver RNA have very
different composition

logs(Liver/N, ) - logs(Kidney/Nk)

M =

housekeeping genes
unique to a sample

I
-15 -10

logo(Liver/N,) - log,(Kidney/N) A = logs(yLiver/Ny - Kidney/N)

Robinson and Oshlack (2010) Genome Biology




“Composition” of
sampled DNA can
be an important
consideration

|

« Hypothetical example:
Sequence 6 libraries to the
same depth, with varying levels
of unique-to-sample counts

Composition can induce
(sometimes significant)
differences in counts
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The adjustment to data analysis Is
straightforward

Assumption: core set of genes that do not
change in expression.

Pick a reference sample, compute trimmed
mean of M-values (TMM) to reference

LTM( [Y /M /7 [Y /M| ) estimates S,/S,
Adjustment to statistical analysis:

— Use “effective” library size (edgeR)

— Use additional offset (GLM)
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Sharing information over
entire dataset




Extending the common dispersion
model

Common dispersion offers sig.
stabilization vs. naive tagwise estimation,
esp. in small samples.

Have found common dispersion model to

give good results

Downside: not generally true that each tag
has the same dispersion.

Would like stabilized individual tagwise
dispersions




Moderated tagwise dispersions

* Moderate individual dispersions towards
common value

 Stabilize dispersion ests. by sharing
variance structure over all genes

* IDEA: ‘Squeeze’ individual dispersion ests.
towards common value---larger ests.
shrink, smaller ests. get larger




Weighted Likelihood

: e . Log-Likelihood
WL is the individual log-likelinood plus a
weighted version of the log- //
likelihood: -

likelihood

[, here is the the quantile-adjusted
conditional likelihood

Plot shows:
— Black: Likelihood for single tag

first derivative




New alternatives

* DESeq: fit an empirical mean-variance
relationship using all data [Anders and

Huber 2010]

* baySeq: use all data to form an empirical
distribution [ Tom Hardcastle]




Statistical testing for count
data




Assessing DE: a statistical problem

» Two group setting®: for each gene, estimate
A, and A, (mean level for each group) and the
dlsperS|on

ENSG0000021 5443

mmmmnm
| ENSG00000101444 | 46 | 63 | 58 | 71 | 54 | 53 | 1001 |
mmmm
I

. tens of thousands more tags

» Conduct a hypothesis test for A, and A,

» Obtain a p-value for the significance of DE
for each gene

*Generalises to n groups




Significance testing

« Simple hypothesis test
Ho: Ay = A,
VS
Hal Ay 1= A,
- Easy to state, but requires some

sophisticated statistics to test
appropriately




Multiple testing

We fit the same model to each gene
Fit the same model thousands of times

Expect some (many) genes to appear
significantly DE just by chance

Need to adjust p-values for multiple testing
(control the false discovery rate)

* Need accurate p-values to start with




Further considerations

RNA-seq experiments: very small sample-
sizes but need accurate p-values

Asymptotic tests (Score, Likelihood Ratio,

Wald) not ideal

Instead: exact tests for the Poisson and
NB models

Exact tests give accurate p-values in small
sample experiments




Exact testing

» By conditioning on the total sum of counts
for each gene we obtain conditional
distributions

« Can compute exact p-values from
conditional distributions




Binomial exact testing

Binomial distribution, n=100, p=.5

observed

|

|

o)
Q
o
v
Q
o
o
=
o

I
60

* Poisson model: sum of Poisson RVs is a Poisson RV
 Conditional distribution (on total sum for a gene) is multinomial
« Two groups: can compute exact p-value for DE from binomial
distribution




Exact test for NB distribution

 Sum of NB RVs is a NB RV, if library sizes
(means) are equal, under the null hypothesis
of no difference

Conditioning gives ‘overdispersed

multinomial’ from which we can compute
exact p-values as per binomial test

Statistical sophistication: quantile-adjustment
to equalise library sizes and enable exact test
for NB model

Size of dispersion has big effect on
significance of DE




Effect of dispersion

> d.tuchS$counts[hicom.lotgw,order(d.tuchSsamplesSgroup) ]
N8 N33 N51 T8 T33 T51

FABP4 62 62 387 0 37 2022

MMP1 68 74 11190 1883 1998 24955

TTTY15 241 1 0 46 0 0

> de.tuch.comStable[hicom.lotgw, ]
logConc 1logFC p.value

FABP4 -15.59 2.016 0.005006

MMP1 -11.59 1.865 0.008713

TTTY15 -17.90 -2.281 0.002998

> de.tuch.tgw$Stable[hicom.lotgw, ]
logConc 1logFC p.value

FABP4 -15.60 2.018 0.05040

MMP1 -11.59 1.866 0.05771

TTTY15 -17.87 -2.238 0.07857

> d.tuchScommon.dispersion

[1] 0.3325

> d.tuch$tagwise.dispersion[hicom.lotgw]
[1] 0.6694 0.6207 0.9417




Limitations of exact tests

Exact tests only implemented for pairwise
comparisons between groups

Can only be used for single-factor (one-
dimensional) experimental design

Cannot include any other factors or
covariates in our model for DE

gCML approach to estimating dispersion
also only for single-factor design




Limitations of exact testing

* E.g. cannot account for paired samples in
Tuch et al (2010) data

 Matched tumour/normal oral tissue from 3
patients (6 RNA samples)

Patient 8
Patient 33
Patient 51

Paired oral squamous cell carcinoma and healthy oral tissue samples from three patients. RNA-seq data from Tuch et al. Tumor
transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations. PLoS ONE (2010) vol.

5 (2) pp. €9317. doi:10.1371/journal.pone.0009317




Further considerations




More complicated experiments

* We would like to be able to analyse
more complicated experimental
designs

» Paired samples, time-series,
covariates, batch/day effects etc.

* Need to go beyond the qCML and
exact tests (sadly)




GLM methods for complicated
designs

Propose to use GLM (generalized linear
model) methods for more complicated

designs

Currently implementing likelihood ratio
tests

Cox-Reid approximate conditional
inference for estimating dispersion

Cutting edge...hopefully ready to go soon!




Example: Cancer dataset

* RNA-seq data from Tuch et al (2010)

« Comparing oral squamous cell carcinoma tissue to
matched healthy oral tissue

* 6 samples, paired design

healthy oral tissue from patient 8
oral tumour tissue from patient 8
healthy oral tissue from patient 33
oral tumour tissue from patient 33
healthy oral tissue from patient 51
oral tumour tissue from patient 51

*Ignore paired design for now and treat as simple comparison of healthy and tumour groups




Exact test in edgeR: tagwise disp

> de.tuch.tgw <- exactTest(d.tuch,common.disp=FALSE)
Comparison of groups: tumour - normal
> topTags(de.tuch.tgw, n=5)
Comparison of groups: tumour - normal

logConc logFC PValue
TNNC2 -16.63025 -6.439491 237545e-12
KRT36 -19.02052 -8.087423 723154e-11
ADIPOQ -19.88465 -7.30664 133512e-10
SPP1 -14.90146 6.057058 448317e-10
CA3 -15.43170 -6.462589 3.782377e-10
> top.tgw <- rownames (topTags(de.tuch.tgw, n=5)$table)
> d.tuch$counts[top.tgw,c(1,3,5,2,4,6)]

N8 N33 N51 T8 T33 T51
TNNC2 590 1627 1239 1 8 39
KRT36 711 104 70 2 1 1
ADIPOQ 111 12 575 1 1 1
SPP1 19 29 158 378 8517 1681
CA3 1859 4259 557 1 35 73

6.
1.
1.
3.

FDR
.146710e-07
.583923e-07
.946160e-07
.288116e-06
.288116e-06




TMPRSS11B
TNNC2

CKM

MAL

CRNN

PIle6
KRT36
IL1F6
MYBPC1
MUC21

GLM results

> glm.res.com[ol[1:10], ]

LRT p-val
.508e-15
.388e-13
.609e-13
.009e-13

.78le-13
.229%e-12
.513e-12
.641le-12

9
2
2
4
6.646e-13
6
2
3
3
1.376e-11

N8 N33
2601 7874
590 1627
4120 5203
2742 3977
24178 22055
231 216
711 104
367 1825
4791 4145
4161 3432

N51
3399
1239

24175
1772
12533
1950
70
809
15766
1722

H
0o

ol T
N O ONOVWL KL W




Dispersion estimation

» Estimating the dispersion appropriately for
GLMs

- Cox-Reid approximate conditional
inference




Mean-dispersion relationship

* There is evidence of that the value of the
dispersion parameter varies with the
expression level of the tag

* Noted by Anders and Huber (2010)

* Generally, dispersion is larger for low
abundance tags and decreases as
abundance increases
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Also seems true for more datasets

't Hoen myoblast Li LnCAP cell line Shaulsky D. discoideum

tagwise (prior.n=10)
x binned common
« common

Dispersion Estimate
Dispersion Estimate
Dispersion Estimate

X

tagwise (prior.n=10) XX 5
X binned common tagwise (prior.n=10)
= common X binned common
® common

T T T T T
-5 -4 -5 -4 -3

Tag Abundance (log10(conc)) Tag Abundance (log10(conc)) Tag Abundance (log10(conc))

't Hoen hippocampus Bertone neural stem cell Shaulsky D. purpureum

tagwise (priorn=10)
tagwise (prior n=10) - X binned common

X binned common * common

* common tagwise (priorn=10)

x binned common

* common

Dispersion Estimate
Dispersion Estimate
Dispersion Estimate

Tag Abundance (log10(conc)) Tag Abundance (log10(conc)) Tag Abundance (log10(conc))




Consequences

Looks like dispersion is much larger for lower
abundance tags

Including this in the model would decrease
ability to call low abundance tags DE (but
further increase power for high abundance
tags; Is perhaps more correct)

DESeq has been designed to deal with this

edgeR will soon also include an option for
allowing dispersion to vary with abundance




Concluding remarks

» Must understand and account for
biological variability (overdispersion) in
RNA-seq data

* Negative binomial model, sharing
information between genes

» Exact and multiple testing for accurate p-
values
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Analysis in R

R/Bioconductor: open-source statistical
software

Four packages currently available for DE
analysis of count data in R

DEGSeq (Poisson), edgeR, baySeq and
DESeq (NB)

For NB, variations in the implementation of
information sharing and statistical testing

We work on edgeR, so this is our favourite




Reading in data

» Read the data into R session using a
targets’ file

* The function readDGE() creates a ‘DGELIist’
object which stores our data in R

> library(edgeR)

> targets <- read.delim
(file='Targets.txt',stringsAsFactors=
FALSE)

> d <- readDGE
(targets,skip=5,comment.char="#")




> d

S$samples

files
GSM272105 GSM272105.txt
GSM272106 GSM272106.txt
GSM272318 GSM272318.txt
GSM272319 GSM272319.txt
GSM272320 GSM272320.txt
GSM272321 GSM272321.txt
GSM272322 GSM272322.txt
GSM272323 GSM272323.txt
$counts

DGEList object

An object of class "DGEList"

group
DCLK
WT
DCLK
WT
DCLK
WT
DCLK
WT

transgenic (Dclkl)

wild-type

transgenic (Dclkl)

wild-type

transgenic (Dclkl)

wild-type

transgenic (Dclkl)

wild-type

mouse
mouse
mouse
mouse
mouse
mouse
mouse

mouse

description
hippocampus
hippocampus
hippocampus
hippocampus
hippocampus
hippocampus
hippocampus
hippocampus

GSM272105 GSM272106 GSM272318 GSM272319 GSM272320

TTTTTCTTCTTTCTTTT
CAGGGACCATCTGTAGA
GTGCGTGCAGCTGAGGG
ATACACACTGTAAAGAG
AATTATAGTGCAATTGA

GSM27232

TTTTTCTTCTTTCTTTT
CAGGGACCATCTGTAGA
GTGCGTGCAGCTGAGGG
ATACACACTGTAAAGAG
AATTATAGTGCAATTGA
76546 more rows ...

3

O N N N EE N O 9 L

1
19
4

0
3

GSM272323

2
13
3
8
4

2

6
16
5
4
3

3

lib.size
2582749
3342705
3207895
3273243
2428553
358649
714498
2833329

GSM272321

0

0
1
0
0




Multi-
dimensional
scaling plot

GSM272320

» Used to assess

similarity btw
libraries - identify
outliers and
problematic samples

« Common
dispersion used as
the ‘distance metric’ | oo l

-0.5 0.0 0.5

- Libraries quite :
similar here, apart
from GSM272322

GSM272322

GSM272106
GSM272321
GSM272319

o~
S
w
c
@
E
o

> plotMDS.dge(d)



Estimating the common dispersion

* We now compute common dispersion

« Estimate of the coefficient of variation is
0.44, quite large

» Genuine biological variation so reasonable
that there is large inter-library variation

> d <- estimateCommonDisp(d)

> dScommon.dispersion

[1] 0.1964033

> sqrt(dScommon.dispersion)

[1] 0.4431741




Exact test in edgeR: common disp

> de.common <- exactTest(d)
Comparison of groups: WT - DCLK
> topTags(de.common, n=5)
Comparison of groups: WT - DCLK

logConc logFC PValue FDR
AATTTCTTCCTCTTCCT -17.25 11.671 2.803e-38 2.146e-33
TCTGTACGCAGTCAGGC -18.42 -9.633 1.116e-23 4.270e-19
CCGTCTTCTGCTTGTCG -10.70 5.290 3.524e-22 8.992e-18
AAGACTCAGGACTCATC -32.22 35.600 1.516e-20 2.901le-16
CCGTCTTCTGCTTGTAA -14.57 5.176 2.716e-20 4.158e-16
top.com <- rownames (topTags(de.common,n=5)S$table)

> dScounts[top.com,order(d$samplesS$Sgroup) ]

GSM272105 GSM272318 GSM272320 GSM272322 GSM272106 GSM272319 GSM272321 GSM272323
AATTTCTTCCTCTTCCT 1 0 0 0 44 1 76 3487
TCTGTACGCAGTCAGGC 160 101 440 33 0 1 0 0
CCGTCTTCTGCTTGTCG 106 268 601 5 1485 5156 242
AAGACTCAGGACTCATC 0 0 0 0 6 4 461
CCGTCTTCTGCTTGTAA 12 21 31 1 87 352 14

> sum(topTags(de.common,n=Inf)Stable$SFDR < 0.01)
[1] 399




Estimating the tagwise dispersions

* One function call required to estimate moderated
tagwise dispersions

* The argument ‘prior.n’ determines amount of
moderation or ‘squeezing’ towards common disp

 Larger prior.n > more squeezing
> d <- estimateTagwiseDisp(d, prior.n=10)

Using grid search to estimate tagwise
dispersion.

> summary(dStagwise.dispersion)
Min. lst Qu. Median Mean 3rd Qu. Max.
0.119 0.185 0.193 0.197 0.207 0.809




Exact test in edgeR: tagwise disp

> de.tagwise <- exactTest(d, common.disp=FALSE)
Comparison of groups: WT - DCLK
> topTags(de.tagwise, n=5)
Comparison of groups: WT - DCLK

logConc logFC Pvalue FDR
TCTGTACGCAGTCAGGC -18.42 -9.633 3.244e-19 2.483e-14
CATAAGTCACAGAGTCG -32.76 -34.508 1.995e-14 7.636e-10
AATTTCTTCCTCTTCCT -17.26 11.668 1.223e-13 3.122e-09
AAAAGAAATCACAGTTG -32.97 -34.089 6.105e-12 1.168e-07
ATACTGACATTTCGTAT -16.74 4.213 9.744e-12 1.492e-07
> top.tgw <- rownames (topTags(de.tagwise, n=5)S$table)

> d$counts[top.tgw,order(d$samples$group) ]

GSM272105 GSM272318 GSM272320 GSM272322 GSM272106 GSM272319
TCTGTACGCAGTCAGGC 160 101 440 33 0 1
CATAAGTCACAGAGTCG 67 77 58 7 0 0

AATTTCTTCCTCTTCCT 1 0 0 0 44 1
AAAAGAAATCACAGTTG 31 90 42 3 0 ]
ATACTGACATTTCGTAT ) 5 8 1
GSM272321 GSM272323
TCTGTACGCAGTCAGGC 0 0
CATAAGTCACAGAGTCG 0 0
AATTTCTTCCTCTTCCT 3487
AAAAGAAATCACAGTTG 0 0
ATACTGACATTTCGTAT 4 104
> > sum(topTags(de.tagwise,n=Inf)$table$SFDR < 0.01)
[1] 237




