Analysis of RNA-Seq data with Bioconductor

Kasper Daniel Hansen <khansen@jhsph.edu>
Department of Biostatistics
Johns Hopkins Bloomberg School of Public Health

based on material co-developed with
James Bullard (UC Berkeley)
Margaret Taub (Johns Hopkins)

FHCRC
November 18-20, 2009

mailto:khansen@jhsph.edu

Data

> require(yeastRNASeq)
> require(ShortRead)
> require(Genominator)
> data(yeastAligned)

yeastRNASeq has data from Lee et al (PLoS Gen 2009).
500,000 reads from 4 lanes.

A wild-type (wt) and a mutant (mut) strain of S. cerevisiae were
sequenced.

Reads were aligned using Bowtie

> sapply(yeastAligned, length)

mut_1_f mut_2_f wt_1_f wt_2_f
423318 420848 410349 430264

> yeastAligned[[1]]

Data

class: AlignedRead
length: 423318 reads; width: 26 cycles

chromosome: Scchr05 Scchril5 ... Scchr08 Scchri3
position: 541317 885627 ... 488228 667296
strand: - + ... - +

alignQuality: NumericQuality
alignData varLabels: similar mismatch

Annotation

There are (at least) two standard ways to obtain annotation using
Bioconductor. One uses the biomaRt package to query Ensembl and the
other uses the rtracklayer package to query UCSC.

Which annotation to use is a biological question and there is no universal
answer. There are differences between Ensembl and UCSC.

Be careful that the annotation you are using corresponds to the genome
you have used for mapping the reads.

(Cautionary tale)

biomaRt in one slide

The vignette is great, with lots of useful examples. Some important
functions include:
» listMarts(): Displays the marts (basically databases) which are
available for query
» useMart (): Sets up a connection to a particular mart
> listDatasets(): Lists the different databases available in a mart

> listAttributes(), listFilters(): Give a lists of the fields
available for query (or filter) in the database you are interested in,
providing a name (used for the query) and a brief description

> getBM() submits your query; you specify the attributes you want,
and it allows you to select subsets of the results using the filters
and values arguments

There are many more functions in biomaRt designed to ease the
execution of common searches.

Using biomaRt

Ensembl is transcript-centric. But watch out!

+V+V+++V++VIVY

require (biomaRt)

mart <- useMart("ensembl", "scerevisiae_gene_ensembl")

attributes.gene <- c("ensembl_gene_id", "chromosome_name",
"start_position", "end_position", "strand",
"gene_biotype")

attributes.tr <- c("ensembl_gene_id", "ensembl_transcript_id",
"ensembl_exon_id", "chromosome_name", "start_position",
"end_position", "strand", '"gene_biotype",
"exon_chrom_start", "exon_chrom_end", "rank")

yAnno.gene <- getBM(attributes = attributes.gene,
mart = mart)

yAnno.tr <- getBM(attributes = attributes.tr,
mart = mart)

Let us look at the objects

>

head (yAnno.gene, 2)

Using biomaRt

N

ensembl_gene_id chromosome_name start_position

YHRO55C VIII 214535

YPR161C XVI 864445
end_position strand gene_biotype
214720 -1 protein_coding
866418 -1 protein_coding

head (yAnno.tr, 2)

ensembl_gene_id ensembl_transcript_id ensembl_exon_id

1 YHRO55C YHRO55C YHRO55C. 1
2 YPR161C YPR161C YPR161C.1
chromosome_name start_position end_position strand
1 VIII 214535 214720 -1
2 XVI 864445 866418 -1

gene_biotype exon_chrom_start exon_chrom_end rank
1 protein_coding 214535 214720 1
2 protein_coding 864445 866418 1
> dim(yAnno.gene)

Using biomaRt

[1] 7124 6

> dim(yAnno.tr)

(1] 7547 11
> subset (yAnno.gene, ensembl_gene_id == "YPR098C")
ensembl_gene_id chromosome_name start_position
7 YPR0O98C XVI 728945

end_position strand gene_biotype
7 729526 -1 protein_coding

> subset (yAnno.tr, ensembl_gene_id == "YPR098C")

Using biomaRt

ensembl_gene_id ensembl_transcript_id ensembl_exon_id

7 YPR098C YPR098C YPR0O98C. 1
8 YPR098C YPR098C YPR0O98C. 2
chromosome_name start_position end_position strand
7 XVI 728945 729526 -1
8 XVI 728945 729526 -1

gene_biotype exon_chrom_start exon_chrom_end rank
7 protein_coding 729480 729526 1
8 protein_coding 728945 729383 2

> length(unique (yAnno.tr$ensembl_transcript_id))
[1] 7124
We will use yAnno.tr.

> yAnno <- yAnno.tr

Using rtracklayer

There are two (possibly relevant) tables at UCSC.

require(rtracklayer)
session <- browserSession()
genome (session) <- "sacCer2"

V VvV Vv VvV

Let us have a quick look

> head(ucsc.sgd, 1)

ucsc.sgd <- getTable(ucscTableQuery(session, "sgdGene"))
ucsc.ens <- getTable(ucscTableQuery(session, "ensGene"))

bin name chrom strand txStart txEnd cdsStart cdsEnd
1 73 YALO12W chrI + 130801 131986 130801 131986
exonCount exonStarts exonEnds proteinID
1 1 130801, 131986, P31373

> head(ucsc.ens, 1)

Using rtracklayer

bin name chrom strand txStart txEnd cdsStart cdsEnd
1 73 YALO12W chrI + 130801 131986 130801 131986
exonCount exonStarts exonEnds score name2 cdsStartStat
1 1 130801, 131986, 0 YALO12W cmpl
cdsEndStat exonFrames
1 cmpl 0,

> subset (ucsc.sgd, name == "YPR098C")

bin name chrom strand txStart txEnd cdsStart
5756 590 YPR098C chrXVI - 728944 729526 728944
cdsEnd exonCount exonStarts exonEnds
5756 729526 2 728944,729479, 729383,729526,
proteinID
5756 Q06089

> subset (ucsc.ens, name == "YPR098C")

Using rtracklayer

bin name chrom strand txStart txEnd cdsStart
6104 590 YPR098C chrXVI - 728944 729526 728944
cdsEnd exonCount exonStarts exonEnds score
6104 729526 2 728944,729479, 729383,729526, 0
name2 cdsStartStat cdsEndStat exonFrames
6104 YPR098C cmpl cmpl 2,0,

No information about which genes are “verified”, “uncharacterized” or
“dubious”. | also could not find this information in Ensembl. One might
need to obtain annotation directly from SGD (a database specific to S.
Cerevisiae) in order to retrieve this.

Computing on annotation

| have found IRanges to be very powerful and efficient when | want to
compute on annotation (overlaps, set operations etc.) Some examples of
this later.

It is quite common that some amount of post-processing of the
annotation needs to be done.

Selecting the right annotation and processing it appropriately is a
challenge. Especially for analysis of alternative splicing.

13 /48

Summarizing at the gene level

We will now try to count the number of reads starting in each genomic
region (gene). We want to get an end result like this

mut_1 mut_2 wt_1 wt_2
YHRO55C 0 0 0 0
YPR161C 38 39 35 34
YOL138C 31 33 40 26
YDR395W 55 52 a7 47
YGR129W 29 26 5 5
YPR165W 189 180 151 180

We will discuss two approaches, one using IRanges and one using
Genominator.

14 /48

Counting

The (standard) RNA-Seq assay does not retain strand information, so
strand will be ignored in the following.

We ignore (for now) the fact that in S. Cerevisiae genes often overlap
each other on different strands. We also ignore splicing (although that is
less of an issue in this organism).

We will count the number of reads whose 5" end falls within a genomic
region. This is just one way of counting. (Discuss).

Using IRanges to represent our annotation

First, we need to match the chromosome names as Ensembl uses roman
numerals and the Bowtie index used names.

> chrMap <- levels(chromosome(yeastAligned[[1]]))
> names (chrMap) <- c(as.character(as.roman(1:16)),
+ NA)

> head(chrMap)

I II III Iv v VI
"Scchr01" "Scchr02" "Scchr03" "Scchr04" "Scchr05" "Scchr06"

> yAnno$chrom <- chrMap[yAnno$chromosome]
> yAnno <- yAnno[!is.na(yAnno$chrom),]

Now, we construct a set of IRanges which represent our genes. Since the
IRanges class only includes a start, a stop and a width, we need one
IRanges object for each chromosome. We ignore strand, and create
(essentially) a list with a component for each chromsome. We end up
with a RangesList object.

16 /48

Using IRanges to represent our annotation

> annoByChr <- split(yAnno, yAnno$chrom)

> annolR <- lapply(annoByChr, function(d) {

+ IRanges (start = d$exon_chrom_start, end = d$exon_chrom_end
+ 1)

> annoIR <- do.call(RangesList, annoIR)

annoIR

v

SimpleRangesList of length 16
$Scchro1
IRanges of length 132

start end width

[1] 335 649 315
[2] 80711 81952 1242
[31] 538 792 255

[4] 101566 105873 4308
[5] 113615 114616 1002
[6] 224554 224853 300
[7] 68717 69526 810
[8] 151099 151168 70

17 /48

Using IRanges

[9]

[124]
[125]
[126]
[127]
[128]
[129]
[130]
[131]
[132]

147596
139221
181135
181205
218540
166268

99306
182516

142369
218131

to represent our annotation

151008 3413

139256
181172
181248
219136
166340

99869
182597
142470
218334

<15 more elements>

36
38
44
597
73
564
82
102
204

| could also have used the GenomicData class to represent the
annotation, but the list format will be convenient later.

19/48

Representing our reads as IRanges

Next, we convert our aligned reads into IRanges as well. We need to do
this separately for each lane of our data, so we write a function, and then
use lapply. Again, we need a separate |IRanges object for each
chromosome, and we will arrange these into a RangesList. We end up
with a 1ist (4 lanes) of RangesList (the chromosomes).

> toRangesList <- function(aln) {

+ alignedByChr <- split(aln, chromosome(aln))

+ rngs <- lapply(alignedByChr, function(alnChr) {
+ IRanges (start = position(alnChr), width = 1)
+ »

+ do.call(RangesList, rngs)

+ }

> alnAsRanges <- lapply(yeastAligned, toRangesList)

> alnAsRanges[[1]]

Representing our reads as IRanges

SimpleRangesList of length 17
$Scchro1
IRanges of length 6675

start end width

[1] 63800 63800 1
[2] 142444 142444 1
[3] 166719 166719 1
[4] 184345 184345 1
(5] 140143 140143 1
[6] 142444 142444 1
[7] 148771 148771 1
[8] 40605 40605 1
[9] 71997 71997 1
[6667] 67288 67288 1
[6668] 142388 142388 1
[6669] 126234 126234 1
[6670] 125797 125797 1
[6671] 72368 72368 1

Representing our reads as IRanges

[6672] 143587 143587
[6673] 142461 142461
[6674] 86297 86297
[6675] 64327 64327

e

<16 more elements>

Counting reads that fall in our genes

Finally, we use the as.table and findOverlaps in order to compute the
counts within each gene. Unfortunately, this operation doesn’t yet do the
right thing with names, so we have to add the names back at the end;

not elegant.
> exonNames <- split(yAnno$ensembl_exon_id, yAnno$chrom)
> oCounts <- sapply(alnAsRanges, function(aln) {
+ do.call(c, lapply(findOverlaps(annoIR, aln),
+ as.table))
+})
> rownames (oCounts) <- do.call(c, exonNames)
> head (oCounts)

mut_1_f mut_2_f wt_1_f wt_2_f
YALO69W. 1 0 0 0 0
YALO34C.1 73 69 124 140
YALO68W-A.1 0 0 0 0
YALO24C.1 16 16 15 14
YALO20C.1 27 27 38 37

YARO70C.1 0 0 0 0

Counting reads that fall in our genes

If the assay had been stranded we could have added another layer to our
lists, representing the two strands.

Note that the oCounts represents counts per exon. We could get counts
per gene by using (for example) tapply.

Genominator overview

The Genominator package has methods for dealing with genomic data,
including

» Import and manage/transform the data.

> Retrieving and summarizing data over annotation.

» Analysis tools for short read data.

In terms of short read data, we identify each read with its genomic
location (of its 5" end). A consequence of this, is that information such
as possible SNPs in the reads are discarded.

Right now, the package does not deal with paired-end data and reads
mapped to junctions.

We (and collaborators) have been using the package internally for about
one year and have completed several analyses using it.

We find it fast and flexible enough to use as a basis for custom analysis
(at some level). We have analyzed datasets of 400M+ reads.

It has been on Bioconductor for about 1 week, so we are still ironing out
some issues and adding capability.

Internally, Genominator uses an SQLite backend. This has certain
consequences. One is that disk speed is suddenly very important.

Genominator overview

The main functionality of the package is to perform operations like

f(data, annotation)

26

48

Importing data

> library(Genominator)
> chrMap <- levels(chromosome (yeastAligned[[1]]))

> chrMap

[1] "Scchro1"
[6] "Scchro6"
[11] "Scchrii"
[16] "Scchrie"

"Scchr02" "Scchr03" "Scchr04" "Scchr05"
"Scchr07" "Scchr08" "Scchr09" "Scchri0"
"Scchr12" "Scchr13" "Scchri14" "Scchrib"
"Scmito"

> eData <- importFromAlignedReads (yeastAligned,
+ chrMap = chrMap, filename = "my.db", tablename = "raw",

+ overwrite

> head(eData)

= TRUE, deletelntermediates = FALSE)

27 /48

Importing data

chr location strand mut_1_f mut_2_f wt_1_f wt_2_f

1 1 3888 1 1 NA NA NA
2 1 3970 1 NA NA 1 NA
3 1 3988 1 NA 1 NA NA
4 1 4101 -1 NA NA NA 1
5 1 4242 1 1 NA NA NA
6 1 4271 -1 1 NA NA NA
7 1 4400 1 NA NA NA 1
8 1 4428 1 1 NA NA NA
9 1 4447 1 NA NA NA 1
10 1 4553 -1 NA 1 NA NA

(last two arguments to importFromAlignedReads are usually not
needed).

Internally, chromosomes (and strands) are stored as integers. The
chrMap argument states how this conversion happens.

ExpData objects

ExpData objects are essentially a pointer to a table in a database (with a
few additional twists), which exists externally to R. They are either
created as a return value of some functions, or instantiated through their
constructor:

> eData2 <- ExpData(db = "my.db", tablename = "mut_1_f",
+ mode = "w'")
> head(eData2, 3)

chr location strand mut_1_f

1 1 3888 1 1
2 1 4242 1 1
3 1 4271 -1 1

In general, they should not be saved.

ExpData, simple examples

> getRegion(eData, chr = 1, strand = 0, start = 10000,
+ end = 12000)
chr location strand mut_1_f mut_2_f wt_1_f wt_2_f
1 1 10974 -1 1 NA NA NA
2 1 11562 1 NA 1 NA NA
> laneCounts <- summarizeExpData(eData)
> laneCounts

mut_1_f mut_2_f wt_1_f wt_2_f
423318 420848 410349 430264

> summarizeExpData(eData, fxs = "MAX")

mut_1_f mut_2_f wt_1_f wt_2_f
231 191 109 107

fxs is limited to functions understood by SQLite.

ExpData and annotation

The real interest is in combining ExpData with annotation. In order to
do so, we need to post-process the Ensembl annotation. We also drop
some columns, mainly for display reasons.

chrMap <- c(as.character(as.roman(1:16)), "MT",
"2-micron")

yAnno$chr <- match(yAnno$chromosome, chrMap)

yAnno$start <- yAnno$exon_chrom_start

yAnno$end <- yAnno$exon_chrom_end

yAnno <- yAnno[, c("ensembl_gene_id", "ensembl_exon_id",
"chr", "strand", "start", "end", "gene_biotype")]

rownames (yAnno) <- yAnno$ensembl_exon_id

head (yAnno, 2)

VV+ VVVYV + YV

ensembl_gene_id ensembl_exon_id chr strand start

YHRO55C. 1 YHRO55C YHRO55C.1 8 -1 214535

YPR161C.1 YPR161C YPR161C.1 16 -1 864445
end gene_biotype
YHRO55C.1 214720 protein_coding
YPR161C.1 866418 protein_coding

ExpData and annotation

In Genominator an annotation object has to have columns chr,
strand, start, end as well as rownames. Each row corresponds to a
genomic region (ie. a set of consecutive bases).

33/48

summarizeByAnnotation

This is a core function in Genominator.

> exonCounts <- summarizeByAnnotation(eData, yAnno,
+ ignoreStrand = TRUE)
> head(exonCounts, 3)

mut_1_f mut_2_f wt_1_f wt_2_F

YHRO55C. 1 0 0 0 0
YPR161C.1 38 39 35 34
YOL138C.1 31 33 40 26

We can do other kind of summarization (limited to SQL commands)

> head (summarizeByAnnotation(eData, yAnno, bindAnno = TRUE,
+ fxs = "COUNT"), 3)

summarizeByAnnotation

ensembl_gene_id ensembl_exon_id chr strand start

YHRO55C. 1 YHRO55C YHRO556C.1 8 -1 214535
YPR161C.1 YPR161C YPR161C.1 16 -1 864445
YOL138C.1 YOL138C YOL138C.1 15 -1 61325
end gene_biotype mut_1_f mut_2_f wt_1_f
YHRO55C.1 214720 protein_coding 0 0 0
YPR161C.1 866418 protein_coding 11 15 13
YOL138C.1 65350 protein_coding 13 15 15
wt_2_f
YHRO55C. 1 0
YPR161C.1 12
YOL138C.1 12

It is possible to aggregate exons into genes by (argument name might
change) using a “meta identifier”, which tells Genominator which regions
belong in the same group.

> geneCounts <- summarizeByAnnotation(eData, yAnno,
+ ignoreStrand = TRUE, meta.id = "ensembl_gene_id")
> head(geneCounts, 3)

summarizeByAnnotation

mut_1_f mut_2_f wt_1_f wt_2_f
HRA1 7 14 4 12
LSR1 389 401 50 60
NME1 181 170 8 6

36 /48

splitByAnnotation

The function summarizeByAnnotation lets the database handle most of
the work. That is fast, and runs in bounded memory. But it is also
inflexible.

We can also retrieve data in a convenient form using splitByAnnotation.
Beware that the return object may be quite big.

> exonSplit <- splitByAnnotation(eData, yAnno[1:100,

+], ignoreStrand = TRUE)

> exonSplit2 <- splitByAnnotation(eData, yAnno[1:100,

+], expand = TRUE, ignoreStrand = TRUE)

> exonSplit3 <- splitByAnnotation(eData, yAnno[1:100,

+], expand = TRUE, addOverStrands = TRUE, ignoreStrand = TR

expand'ing can be very convenient, but the return object is very big.

applyMapped

After you have used splitByAnnotation you might want to use a function
that depends both on the data and on the annotation (for example
involving the exon length). A use case is

> countsPerBase <- applyMapped(exonSplit, yAnno,

+ FUN = function(map, anno) {

+ colSums (map, na.rm = TRUE)/(anno$end -
+ anno$start + 1)

+ P

Here, applyMapped takes care of matching the mapped reads with the
right annotation region.

Union-intersection gene models

It is not always wise to rely directly on annotation. We have been
advocating so-call “union-intersection” (Ul) models for summarizing at
the gene level. Essentially these models consist of all bases of a gene that
are present in every transcript and not in any other gene (either strand).
For S. Cerevisia this boils down to making sure that we don’t have
overlap with another gene on either strand (this is a really issue for this
organism).

We provide a helper function for constructing these models. Because the
interface to the functionality is not yet finalized, we need to access the
function using Genominator:: :.

> yAnnoUI <- Genominator:::makeUIgenes (yAnno, gene.id = "ensembl
+ transcript.id = "ensembl_transcript_id", verbose = TRUE)
> subset (yAnnoUI, ensembl_gene_id == "YAL0OO5C")

> subset (yAnno, ensembl_gene_id == "YALOO5C")

> save(yAnnoUI, file = "data/yAnnoUI.rda")

We will use these Ul gene models in the following.

39/48

Analysis

We will now obtain the gene level counts and do a poison goodness-of-fit
analysis as has been standard in several papers.

Note here that for each of the two samples (“wt” and “mut”) we have 2
technical replicates in one lane each. “Technical” in this context means
that the exact same “content” was deposited on the two lanes.

> geneCountsUI <- summarizeByAnnotation(eData, yAnnoUI,
+ ignoreStrand = TRUE, meta.id = "ensembl_gene_id")

> plot(regionGoodnessOfFit (geneCountsUI, groups = rep(c("mut",
+ "wt"), times = c(2, 2))), chisq = TRUE)

Analysis

mut wt

§ % § 4

g . g

S g o

T © 7 T a9

g B

5 S5 w0

%] [%]

Q N Q

o o

o o -

T T T T T T T T T 1
0 5 10 15 20 0 2 4 6 8 10
theoretical quantiles theoretical quantiles

> plot(regionGoodnessOfFit (geneCountsUI, groups = rep("all",
+ 4)), chisq = TRUE)

41/48

Analysis

all

3 g
= S -
CULO
< _
O
T o |
S S |
-
(DO
U)N
£ _

o —’

I [[[I
O 5 10 15 20

theoretical quantiles

Normalization

In the literature, it is standard to compute RPKMs. This is a form of
normalization. It attempts to normalize between lanes taking the total
sequencing effort into account and it attempts to normalize between
genes taking the gene length into account.

It does not really handle the between gene normalization well (see
Oshlack 2009).

Its attempt to normalize between lanes it is a form of global
normalization: just dividing by the total number of reads (what the total
number is, differs).

We have shown that in general it is much better to use upper-quartile
normalization. This essentially uses the upper quartile of the read counts
instead of the total number of reads.

> notZero <- which(rowSums (geneCountsUI) != 0)

> upper.quartiles <- apply(geneCountsUI [notZero,

+], 2, function(x) quantile(x, 0.75))

> uq.scaled <- upper.quartiles/sum(upper.quartiles) *
+ sum(laneCounts)

> laneCounts

Normalization

mut_1_f mut_2_f wt_1_f wt_2_f
423318 420848 410349 430264

> uq.scaled

mut_1_f mut_2_fF wt_1_f wt_2_f
453755.9 449554.5 378130.0 403338.6

> sum(laneCounts)
[1] 1684779
> sum(uq.scaled)
[1] 1684779

One we have the upper quartiles, the LR statistic is pretty standard (the
call could be made faster with a bit of work)

Normalization

> groups <- factor(rep(c("mut", "wt"), times = c(2,
+ 2)))
> pvalues <- apply(geneCountsUI[notZero,], 1, function(y) {
+ fit <- glm(y ~ groups, family = poisson(),
+ offset = log(uq.scaled))

+ fit0 <- glm(y ~ 1, family = poisson(), offset = log(uq.sca
+ anova(fit0, fit, test = "Chisq")[2, 5]

+})

The p-values could now be corrected for multiple testing using for
example the mt.rawp2adjp function from the multtest package.

> library(multtest)

> adj <- mt.rawp2adjp(pvalues, proc =
> adj <- adj$adjplorder(adj$index),]
> rownames(adj) <- names(pvalues)

"BH”)

Plotting

We are working on an interface to GenomeGraphs that retrieves data
from the backend and plots it.

> annoFactory <- Genominator:::makeAnnoFactory.AnnoData (cbind (yA
feature = '"gene"), featureColumnName = "feature",
groupColumnName = NULL, idColumnName = "ensembl_gene_id",
dp = DisplayPars(plotId = TRUE, idColor = "black"))

rp <- Genominator:::makeRegionPlotter (list(mut = list(expData
what = "mut", fxs = Genominator:::makeConvolver(26),
dp = DisplayPars(lwd = 0.2, color = "red")),
wt list(expData = eData2, what = "wt", fxs = Genominator

dp = DisplayPars(lwd = 0.3, color = "blue",
type = "p"))), annoFactory = annoFactory)
rp(1, 1e+05, 102000)

V + 4+ 4+ ++V o+ o+ o+

46 /48

Plotting

100}000 lOlpOO 102@00

1 1
100500 101500

: ’ YAL025C
25 o
20

15 +

mut

10

wt
w
|
H

47 /48

Session Info

R version 2.10.0 Patched (2009-11-17 r50465),
i386-apple-darwin9.8.0

Locale:
en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8

Base packages: base, datasets, graphics, grDevices, grid, methods,

stats, utils

Other packages: Biobase 2.6.0, biomaRt 2.2.0, Biostrings 2.14.5,
BSgenome 1.14.1, DBI 0.2-4, GenomeGraphs 1.6.0,
Genominator 1.1.1, IRanges 1.4.6, lattice 0.17-26, multtest 2.2.0,
RSQLite 0.7-3, ShortRead 1.4.0, yeastRNASeq 0.0.2

Loaded via a namespace (and not attached): hwriter 1.1,
MASS 7.3-3, RCurl 1.3-0, splines 2.10.0, survival 2.35-7,
tools 2.10.0, XML 2.6-0

