Intervals and Data on Intervals in BioC
The IRanges Package

November 18, 2009

@ Introduction

Overview
Main Take Away

® Intervals with Data
Background
Naive Approach in R
RangedData Representation
Interval Operations

© Positional Piecewise Constant Measures
Background
RLEs

O Views

Introduction

Outline

® Introduction

Introduction
°

Overview

NGS perspective on IRanges package

e Representation of information on chromosomes/contigs

e Intervals with or without associated data
e Piecewise constant measures (e.g. coverage)

e Vector and interval operations for these representations
o Interval overlap calculations
o Coverage area within peak regions

e Metadata scheme for self-documenting objects

Introduction
.

Main Take Away

Two most important classes in IRanges

e RangedData - intervals and associated data on
chromosomes/contigs. It can be conceptualized as a data
table that is sorted by the chromosomes/contigs indicator
column.

e RleList - coverage (or other piecewise constant measures) on
chromosomes/contigs. RLE is an initialism for run length
encoding, a standard compression method in signal processing.

Intervals with Data

Outline

® Intervals with Data

Intervals with Data
.

Background

Intervals with corresponding data row

e Genomic coordinates consist of chromosome, position, and
potentially strand information

e Each coordinate or set of coordinates may have additional
values associated with it, such as GC content or alignment
coverage

e A collection of intervals with data are commonly called tracks
in genome browsers

Intervals with Data
[1}

Naive Approach in R

Naive representation of intervals with data row (1/2)

e Tables in R are commonly stored in data.frame objects.

data.frame approach

chr <- c("chrl", '"chr2", '"chri")

strand <- c("+", "+",6 "-1)

start <- c(3L, 4L, 1L)

end <- c(7L, 5L, 3L)

naiveTable <- data.frame(chr = chr,
strand = strand, start = start,
end = end)

naiveTable

V + + VvV VvV Vv Vv Vv

chr strand start end
chri + & 7
2 chr2 + 4 5
3 chril - 1 &

[y

Intervals with Data
oe

Naive Approach in R

Naive representation of intervals with data row (2/2)

e data.frame objects are poorly suited for this data because
operations are constantly performed within
chromosome/contig.

Using by to loop over data.frame

> by(naiveTable, naiveTable[["chr"]],

+ function(x) range(x[c("start",
+ "end")]))
naiveTable[["chr"]]: chrl

(11 1 7

naiveTable[["chr"]]: chr2
[1] 4 5

Intervals with Data
®000

RangedData Representation

RangedData construction

e Instances are created using the RangedData constructor.

e Interval starts and ends are wrapped in an /Ranges
constructor.

e Chromosome/contig information is supplied to space
argument.

> rdTable <- RangedData(ranges = IRanges(start = start,
+ end = end), strand = strand, space = chr)

Intervals with Data
0®00

RangedData Representation

RangedData display

e The RangedData class sacrifices table row order flexibility for
faster computational timings.

> rdTable
RangedData with 3 rows and 1 value column across 2 spaces
space ranges | strand
<character> <IRanges> | <character>
1 chri (3, 71 | +
2 chri (1, 31 | -
I

3 chr2 [4, 5] +

Intervals with Data
feeX Yol

RangedData Representation

RangedData computation

Simplified looping
> range (ranges (rdTable))

CompressedIRangesList of length 2
$chri
IRanges of length 1
start end width
[1] 1 7 7

$chr2

IRanges of length 1
start end width

[1] 4 5 2

Intervals with Data
oooe

RangedData Representation

RangedData class decomposition

e RangedData

e RangesList - intervals on chromosomes/contigs. Extracted
using the ranges function.

® Ranges - intervals for a specific chromosome/contig. Most
common subclass is IRanges.

o SplitDataFramelList - data on chromosomes/contigs.
Extracted using the values function.

e DataFrame - data for a specific chromosome/contig.

Intervals with Data
®000000000000U

Interval Operations

Interval operations

Intra-interval : flank, narrow, reflect, resize, restrict,

shift
Inter-interval | : disjoin, gaps, reduce, range
Inter-interval Il : coverage
Between two interval sets | : intersect, setdiff, union
Between two interval sets Il : findOverlaps, %in%, match

Low level : start, end, width, space, universe

Intervals with Data
0®00000000000U

Interval Operations

Creating a new RangedData object

New object to use in interval operations

> ir <- IRanges(c(1, 8, 14, 15, 19, 34,
+ 40), width = c(12, 6, 6, 15, 6,

+ 2, 7))

> strand <- rep(c("+", "-"), c(4, 3))
> rd <- RangedData(ranges = ir, strand
+ space = "chrl")

ranges(rd)[["chr1"]]

0 10 20 30 40

= strand,

Intervals with Data
0O®0000000000U

Interval Operations

Low level data access

Accessors
> start (rd)

[1] 1 8 14 15 19 34 40
> end(rd)

[1] 12 13 19 29 24 35 46
> width(rd)

[1] 12 6 615 6 2 7

Intervals with Data
000®000000000U

Interval Operations

RangedData subsetting

> rd[1:5,]

RangedData with 5 rows and 1 value column across 1 space
space ranges | strand

<character> <IRanges> | <character>
1 chr1 [1, 12] | +
2 chri [8, 13] | +
3 chri [14, 19] | +
4 chri [15, 29] | +
5 chri [19, 24] | -

Intervals with Data
0000®00000000U

Interval Operations

Shifting intervals

e If your interval bounds are off by 1, you can shift them.

> rd2 <- rd
> ranges(rd2) <- shift(ranges(rd2), 1)
> rd2

RangedData with 7 rows and 1 value column across 1 space
space ranges | strand

chrli [20, 25]
chri [35, 36]
chri [41, 47]

<character> <IRanges> | <character>
chri [2, 13] | +
chri [9, 14] | +
chri [15, 20] | +
chrli [16, 30] | +
I
I
I

~N O O WN

Intervals with Data
00000®0000000U

Interval Operations

Resizing intervals (1/2)

e One common operation in ChlP-seq experiments is to “grow”
and alignment interval to an estimated fragment length.

> rd3 <- rd

> pos <- values(rd3)[, "strand"] == "+"

> ranges (rd3) [pos] <- resize(ranges(rd) [pos],
+ 120)

> ranges(rd3) [!pos] <- resize(ranges(rd)[!pos],
+ 120, start = FALSE)

Intervals with Data
0000008000000

Interval Operations

Resizing intervals (2/2)

chrl [-95, 24]
chrl [-84, 35]
chrl [-73, 46]

> rd3
RangedData with 7 rows and 1 value column across 1 space
space ranges | strand
<character> <IRanges> | <character>
chri [1, 120] | +
chri [8, 127] | +
chri [14, 133] | +
chri [15, 134] | +
I
I
I

~N O O W N

Intervals with Data
0000000@00000U

Interval Operations

Restricting interval bounds

e The previous operation created some negative start values.
We can “clip” those negative values.

> ranges(rd3) <- restrict(ranges(zrd3),

+ 1)
> rd3
RangedData with 7 rows and 1 value column across 1 space
space ranges strand
<character> <IRanges> <character>
chrl [1, 120] +

|

|

|
chri [8, 127] | +
chr1l [14, 133] | +
chrl [15, 134] | +
chri [1, 24] |
chri [1, 35] |
chri [1, 46] |

~N O O WN

Intervals with Data
0000000080000

Interval Operations

Normalizing intervals

e Ranges can represent a set of integers

e NormallRanges formalizes this, with a compact, normalized
representation

e reduce normalizes ranges

> reduce(ranges(rd)) \

Intervals with Data
0000000080000

Interval Operations

Normalizing intervals

> reduce (ranges (rd))

ranges(rd)[["chr1"]]
I
I
I . H N
T T T

0 10 20 30 40

reduce(ranges(rd))[[‘chr1"]]

94
[T
o
N
o
w _|
o
s
S

Intervals with Data
000000000 e000U

Interval Operations

Set operations

e Ranges as set of integers: intersect, union, gaps, setdiff

e Each range as integer set, in parallel: pintersect, punion,
pgap, psetdiff

Example: gaps
> gaps (ranges (rd))

Intervals with Data
000000000 e000U

Interval Operations

Set operations

Example: gaps

> gaps(ranges(rd))

ranges(rd)[["chr1"]]

Intervals with Data
0000000000800

Interval Operations

Disjoining intervals

¢ Disjoint ranges are non-overlapping

e disjoin returns the widest ranges where the overlapping
ranges are the same

> disjoin(ranges (rd)) \

Intervals with Data
0000000000800

Interval Operations

Disjoining intervals

> disjoin(ranges (rd))

ranges(rd)[["chr1"]]

0 10 20 30 40

0 10 20 30 40

Intervals with Data
0000000000080

Interval Operations

Overlap detection

e overlap detects overlaps between two Ranges objects

e Uses interval tree for efficiency

> o0l <- findOverlaps (ranges(rd), reduce(ranges(rd)))
> as.matrix(ol)
query subject
[1,] 1 1
[2,] 2 1
(3,] 3 1
[4,] 4 1
[5,] 5 1
(6,] 6 2
(7,1 7 &

Intervals with Data
0000000000008

Interval Operations

Counting overlapping intervals

coverage counts number of ranges over each position

> cover <- coverage (ranges (rd))

ranges(rd)[["chr1"]]

¥ -

Intervals with Data
0000000000000

Interval Operations

Finding nearest neighbors

e nearest finds the nearest neighbor ranges (overlapping is
zero distance)

e precede, follow find non-overlapping nearest neighbors on
specific side

Positional Piecewise Constant Measures

Outline

© Positional Piecewise Constant Measures

Positional Piecewise Constant Measures
1o}

Background

Positional piecewise constant measures

e The number of genomic positions in a genome is often in the
billons for higher organisms, making it challenging to
represent in memory.

e Some data across a genome tend to be sparse (i.e. large
stretches of “no information”)

e The IRanges packages solves the set of problems for positional
measures that tend to have consecutively repeating values.

e The /Ranges package does not address the more general
problem of positional measures that constantly fluxuate, such
as conservation scores.

Positional Piecewise Constant Measures
o] }

Background

Example sequence

0 50 100 150

Index

RLEs

Positional Piecewise Constant Measures
[I}

Run-Length Encodings (RLEs)

Our example has many repeated values:

> sum(diff(s) == 0)

[1] 133

Good candidate for compression by run-length encoding:

> sRle <- Rle(s)
> sRle

'numeric' Rle of length 156 with 23 runs
Lengths: 40123123123 ...
Values : 0123456789 ...)

Compression reduces size from 156 to 46.

Positional Piecewise Constant Measures
oce

RLEs

Rle operations

The Rle object shares many method interfaces with vector:

Basic

> sRle > 0 | rev(sRle) > 0

'logical' Rle of length 156 with 3 runms
Lengths: 40 76 40
Values : FALSE TRUE FALSE

| A\

Summary
> sum(sRle > 0)

[1] 66

Statistics
> cor(sRle, rev(sRle))

[1] 0.5142557

A\

Outline

O Views

e Associates a Ranges object with a sequence

e Sequences can be Rle or (in Biostrings) XString

e Extends Ranges, so supports the same operations

Slicing a Sequence into Views

Goal: find regions above cutoff of 3

10
|

Index

Slicing a Sequence into Views

Goal: find regions above cutoff of 3

Using Rle

> Views(sRle, as(sRle > 3, "IRanges"))

Views on a 156-length Rle subject

views:

start end width
[1] 47 67 21 [4 5 5 6 6 6 ...]
[2] 86 100 15 [655555555 ...]

Convenience

> sViews <- slice(sRle, 4)
> gViewsList <- RleViewsList(slice(sRle,
+ 4), slice(rev(sRle), 4))

Summarizing windows

e Could sapply over each window
e Native functions available for common tasks: viewMins,
viewMaxs, viewSums, ...

> viewSums (sViews)

[1] 150 72

> viewSums (sViewsList)

SimpleNumericList of length 2
[[1]1] 150 72
[[2]1] 72 150

> viewMaxs (sViews)

[1] 10 5

Sy ol anciVimesa (F @S el S e)

	Outline
	Introduction
	Overview
	Main Take Away

	Intervals with Data
	Background
	Naive Approach in R
	RangedData Representation
	Interval Operations

	Positional Piecewise Constant Measures
	Background
	RLEs

	Views

