
Sequence Alignment of Short Read Data using Biostrings

Patrick Aboyoun
Fred Hutchinson Cancer Research Center

Seattle, WA 98008

18 November 2009

Contents

1 Introduction 1

2 Setup 3

3 Pattern and PWM Matching along a Genome 4

4 Finding Possible Contaminants in the Short Reads 6

5 Aligning Bacteriophage Reads 17

6 Session Information 19

1 Introduction

While most researchers use sequence alignment software like ELAND, MAQ, and Bowtie to perform the bulk
of short read mappings to a target genome, BioConductor contains a number of string matching/pairwise
alignment tools in the Biostrings package that can be invaluable when answering complex scientific ques-
tions. These tools are naturally divided into five groups (matchPDict, vmatchPattern, pairwiseAlignment,
matchPWM, and OTHER) that contain the following functions:

matchPDict : matchPDict, countPDict, whichPDict, vmatchPDict, vcountPDict, vwhichPDict

vmatchPattern : matchPattern, countPattern, vmatchPattern, vcountPattern, neditStartingAt, nedi-
tEndingAt, isMatchingStartingAt, isMatchingEndingAt, which.isMatchingStartingAt, which.isMatchingEndingAt

pairwiseAlignment : pairwiseAlignment, stringDist

matchPWM : matchPWM, countPWM

OTHER : matchLRPatterns (finds singleton paired-end matches), trimLRPatterns (trims left and/or
right flanking patterns), matchProbePair (finds theoretical amplicons),

For detailed information on any of these functions, use help(� function name �) from within R.
Of the functions listed above, the pairwiseAlignment function stands out because it creates the most

complex output object. When producing more than just the alignment score, this output (either a Pair-
wiseAlignedXStringSet or a PairwiseAlignedFixedSubject) can be processed by a number of helper functions
including those listed in Tables 1 & 2 below.

1



Function Description
[ Extracts the specified elements of the alignment object
alphabet Extracts the allowable characters in the original strings
compareStrings Creates character string mashups of the alignments
deletion Extracts the locations of the gaps inserted into the pattern for the alignments
length Extracts the number of patterns aligned
mismatchTable Creates a table for the mismatching positions
nchar Computes the length of “gapped” substrings
nedit Computes the Levenshtein edit distance of the alignments
indel Extracts the locations of the insertion & deletion gaps in the alignments
insertion Extracts the locations of the gaps inserted into the subject for the alignments
nindel Computes the number of insertions & deletions in the alignments
nmatch Computes the number of matching characters in the alignments
nmismatch Computes the number of mismatching characters in the alignments
pattern, subject Extracts the aligned pattern/subject
pid Computes the percent sequence identity
rep Replicates the elements of the alignment object
score Extracts the pairwise sequence alignment scores
type Extracts the type of pairwise sequence alignment

Table 1: Functions for PairwiseAlignedXStringSet and PairwiseAlignmentFixedSubject objects.

Table 3 shows the relative strengths and weaknesses of the matchPDict, vmatchPattern, and pair-
wiseAlignment functional families and hints at how they can be used in tandem to answer multi-faceted
questions.

The BSgenome package provides a framework for representing and operating on whole genomes, includ-
ing methods that perform vmatchPattern, vcountPattern, matchPWM, and countPWM over all the chromo-
somes. The remaining functions mentioned above can be incorporated into bsapply looping operations (see
help("bsapply") for more details).

2



Function Description
aligned Creates an XStringSet containing either “filled-with-gaps” or degapped aligned strings
as.character Creates a character vector version of aligned
as.matrix Creates an “exploded” character matrix version of aligned
consensusMatrix Computes a consensus matrix for the alignments
consensusString Creates the string based on a 50% + 1 vote from the consensus matrix
coverage Computes the alignment coverage along the subject
mismatchSummary Summarizes the information of the mismatchTable
summary Summarizes a pairwise sequence alignment
toString Creates a concatenated string version of aligned
Views Creates an XStringViews representing the aligned region along the subject

Table 2: Additional functions for PairwiseAlignedFixedSubject objects.

matchPDict vmatchPattern pairwiseAlignment
Utilizes a fast string matching Uses a fast string matching Not practical for long strings.
algorithm for multiple patterns. algorithm for multiple subjects.
Finds all occurrences with up to Finds all occurrences with up to Returns only one of the best
the specified # of mismatches. the specified # of mismatches / scoring alignment.

edit distance.
Supports removal of repeat masked Supports removal of repeat masked Cannot handle masked genomes.
regions. regions.
Produces limited output: Produces limited output: Allows various summaries of
# of times a pattern matches and # of times a pattern matches and alignments.
where they occur. where they occur.
Does not support insertions or Supports insertions and Supports insertions and
deletions. deletions. deletions.
Uses a mismatch penalty scheme. Uses a mismatch penalty or edit Provides a flexible alignment

distance penalty scheme. framework, including quality-based
scoring.

Table 3: Comparisons of string matching/alignment methods.

2 Setup

This lab is designed as series of hands-on exercises where the students follow along with the instructor. The
first exercise is to load the required packages:

Exercise 1
Start an R session and use the library function to load the ShortRead software package and BSgenome.Mmusculus.UCSC.mm9
genome package along with its dependencies using the following commands:

> suppressMessages(library("ShortRead"))

> library("BSgenome.Mmusculus.UCSC.mm9")

Exercise 2
Use the packageDescription function to confirm that the loaded version of the BSgenome package is >=
1.14.1, the Biostrings package is >= 2.14.5 and the IRanges package is >= 1.4.6.

> packageDescription("BSgenome")$Version

3



[1] "1.14.1"

> packageDescription("Biostrings")$Version

[1] "2.14.5"

> packageDescription("IRanges")$Version

[1] "1.4.7"

Seek assistance from one of the course assistants if you need help updating any of your BioConductor packages.

This lab also requires you have access to sample data.

Exercise 3
The data for this lab is contained in the SeqBasicsTutorial package, which is a custom package prepared for
this course and not available on http://bioconductor.org . If you don’t have the package installed on
your system, notify one of the course assistants.

> library(SeqBasicsTutorial)

3 Pattern and PWM Matching along a Genome

Some ChIP-seq experiments involve finding alignment coverage relative to the locations of known motif sig-
natures or high position weight matrix scored regions. For example, if we believe our sequencing experiment
captures CTCF binding, where CTCF is a transcription factor that is a known insulator, we can use the
vcountPattern and vmatchPattern functions to count and find the locations for a candidate CTCF motif,
say "GCCACCAGGGGGCGC", in a mouse model.

> motifCounts <- vcountPattern("GCCACCAGGGGGCGC", Mmusculus)
> class(motifCounts)
[1] "data.frame"
> head(motifCounts)
seqname strand count

1 chr1 + 0
2 chr1 - 0
3 chr2 + 1
4 chr2 - 1
5 chr3 + 1
6 chr3 - 3
> sum(motifCounts[,"count"])
[1] 47
> motifLocs <- vmatchPattern("GCCACCAGGGGGCGC", Mmusculus)
> class(motifLocs)
[1] "RangedData"
attr(,"package")
[1] "IRanges"
> motifLocs
RangedData with 47 rows and 2 value columns across 35 spaces

space ranges | strand string
<character> <IRanges> | <factor> <DNAStringSet>

1 chr2 [119076727, 119076741] | + GCCACCAGGGGGCGC
2 chr2 [180082012, 180082026] | - GCGCCCCCTGGTGGC

4

http://bioconductor.org


3 chr3 [ 88049951, 88049965] | + GCCACCAGGGGGCGC
4 chr3 [ 19594062, 19594076] | - GCGCCCCCTGGTGGC
5 chr3 [ 33817880, 33817894] | - GCGCCCCCTGGTGGC
6 chr3 [ 96512487, 96512501] | - GCGCCCCCTGGTGGC
7 chr4 [ 43938863, 43938877] | + GCCACCAGGGGGCGC
8 chr4 [128256593, 128256607] | + GCCACCAGGGGGCGC
9 chr4 [101337165, 101337179] | - GCGCCCCCTGGTGGC
10 chr5 [114502306, 114502320] | + GCCACCAGGGGGCGC
...
<37 more rows>

Before proceeding lets take some time to examine the output of these two activities. The motif counts
along the genome are stored in a data.frame object. data.frame are the standard table objects within R. If you
would like to save these counts in a flat file, such as a comma-separated file, you can use the write.table
supplied in standard R. The motif locations along the genome are stored in a RangedData object. This
tabular class is defined in the IRanges package and can be exported to a UCSC bed format using the export
function from the rtracklayer package.

> write.table(motifCounts, file = "CTCFMotifCounts.csv", sep = ",")

> library(rtracklayer)

> export(motifLocs, con = "CTCFMotifLocs.bed")

More can be learned about these two classes using help(data.frame) and help(RangedData) respectively.
Returning to the analysis, we can find locations along the mouse genome based on the scoring from a

position weight matrix. The SeqBasicsTutorial package contains ctcfPWM, which is a PWM for the CTCF
transcription factor. (Note: These two operations can take 5-10 minutes.)

> data(ctcfPWM)
> pwmCounts <- countPWM(ctcfPWM, Mmusculus, min.score = "85%")
> head(pwmCounts)
seqname strand count

1 chr1 + 1333
2 chr1 - 1379
3 chr2 + 1659
4 chr2 - 1705
5 chr3 + 1052
6 chr3 - 938
> sum(pwmCounts[,"count"])
[1] 45669
> pwmLocs <- matchPWM(ctcfPWM, Mmusculus, min.score = "85%")
> pwmLocs
RangedData with 45669 rows and 2 value columns across 35 spaces

space ranges | strand string
<character> <IRanges> | <factor> <DNAStringSet>

1 chr1 [3764256, 3764275] | + GCAGCCAGGAGGAGGCTCTG
2 chr1 [4506813, 4506832] | + GTTGCCAATAGGTGGCGCTA
3 chr1 [4760136, 4760155] | + TTGGCCACCAGGGGGCAGTC
4 chr1 [5313881, 5313900] | + CAGGCCACCAGGGGTCAGCT
5 chr1 [5659199, 5659218] | + GGAGCCAACAGGGGGCAGGA
6 chr1 [5857811, 5857830] | + AAGTCCAGCAGAGGGCACAT
7 chr1 [6073714, 6073733] | + GAGACCAGAAGAGGGCACCA
8 chr1 [6152483, 6152502] | + TGTGCCAGAAGAGGGCATCA

5



9 chr1 [6372953, 6372972] | + CTCGCCAGGAGGTGGCTCTC
10 chr1 [6400345, 6400364] | + GGGGCCAGAAGAGGGCACCA
...
<45659 more rows>

Given the ambiguity in CTCF binding, it is no surprise that there are many more sights found via PWM
than using an unambiguous string.

4 Finding Possible Contaminants in the Short Reads

The raw base-called sequences that are produced by high-throughput sequencing technologies such as Solexa
(Illumina), 454 (Roche), SOLiD (Applied Biosystems), and Helicos tend to contain experiment-related
contaminants such as adapters and PCR primers as well as “phantom” sequences such as poly As. The
countPDict, vcountPattern, and pairwiseAlignment functions from the Biostrings package allow for the
discovery of these troublesome sequences.

These raw base-called sequences can be read with functions like the readXStringColumns function and
processed with functions like tables, which find the most common sequences, from the ShortRead package.
While this course will be using pre-processed data for this exercise, the code to find the top short reads looks
something like:

> library(ShortRead)

> sp <- list(experiment1 = SolexaPath(file.path("path", "to", "experiment1")),

+ experiment2 = SolexaPath(file.path("path", "to", "experiment2")))

> patSeq <- paste("s_", 1:8, "_.*_seq.txt", sep = "")

> names(patSeq) <- paste("lane", 1:8, sep = "")

> topReads <- lapply(structure(seq_len(length(sp)), names = names(sp)),

+ function(i) {

+ print(experimentPath(sp[[i]]))

+ do.call(SplitDataFrameList, lapply(structure(seq_len(length(patSeq)),

+ names = names(patSeq)), function(j, n = 1000) {

+ cat("Reading", patSeq[[j]], "...")

+ x <- tables(readXStringColumns(baseCallPath(sp[[i]]),

+ pattern = patSeq[[j]], colClasses = c(rep(list(NULL),

+ 4), list("DNAString")))[[1]], n = n)[["top"]]

+ names(x) <- chartr("-", "N", names(x))

+ cat("done.\n")

+ DataFrame(read = DNAStringSet(names(x)), count = unname(x))

+ }))

+ })

Exercise 4
Use the data function to load the topReads object from the SeqBasicsTutorial package.

> data(topReads)

Exercise 5
Use the class function to find the class of the topReads object.

> class(topReads)

[1] "list"

6



Exercise 6
The topReads object is a list of CompressedSplitDataFrameList objects. Extract the data for experiment 1,
lane 1 to find out its content.

> topReads[["experiment1"]][["lane1"]]

DataFrame with 1000 rows and 2 columns

read count

<DNAStringSet> <integer>

1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 81237

2 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA 62784

3 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT 57519

4 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGAT 16286

5 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAT 11849

6 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTATAT 10927

7 ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 8933

8 GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 7850

9 TNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6652

10 CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 6270

...

<990 more rows>

Exercise 7
Extract the most common read in each of the 8 lanes for both experiments by nesting an lapply function
call in an sapply function call.

> sapply(topReads, lapply, function(x) as.character(x[["read"]])[1])

experiment1

lane1 "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

lane2 "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

lane3 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"

lane4 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"

lane5 "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

lane6 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"

lane7 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"

lane8 "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

experiment2

lane1 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"

lane2 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"

lane3 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"

lane4 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"

lane5 "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

lane6 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"

lane7 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"

lane8 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"

The topReads pre-processed data, loaded in the previous exercise, are in a list of CompressedSplit-
DataFrameList objects that represent the read and its corresponding number of occurrences. At a high
level, the list elements represent two Solexa experiments and the CompressedSplitDataFrameList elements
representing the 8 lanes of a Solexa run. In both of these experiments, lanes {1-4, 6-8} contain mouse-related
experimental data and lane 5 contains data from bacteriophage φX174.

The sapply function call in the above example, which extracts the most prevalent sequence in each of
the lanes, shows that the top read is either GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA or all As. Given that

7



the former sequence is the 33 base pairs of Solexa’s genomic DNA/ChIP-seq adapter plus 3 As and the latter
sequence of 36 As, it would appear that As are called when there is little information about a particular
base.

Finding Poly N Sequences

When data are acquired through the ShortRead package, poly N sequences can be removed using the
polynFilter function. Since we are operating on pre-processed data, we will have to remove poly N se-
quences using more rudimentary tools.

Exercise 8
Use the following steps to find the top sequences with with at least 34 nucleotides of a single type (A, C, T,
G):

1. Extract the named vector corresponding to the top sequence counts for experiment 1, lane 1.

2. Use the alphabetFrequency function to find the alphabet frequencies of the reads.

3. Use the parallel max, pmax, function to find the maximum number of occurrences for each of the four
bases.

4. Create a DNAStringSet whose elements contain at least 34 bases of a single type.

> lane1.1TopReads <- topReads[["experiment1"]][["lane1"]]

> alphabetCounts <- alphabetFrequency(lane1.1TopReads[["read"]],

+ baseOnly = TRUE)

> lane1.1MaxLetter <- pmax(alphabetCounts[, "A"], alphabetCounts[,

+ "C"], alphabetCounts[, "G"], alphabetCounts[, "T"])

> lane1.1PolySingles <- lane1.1TopReads[["read"]][lane1.1MaxLetter >=

+ 34]

> length(lane1.1PolySingles)

[1] 115

> head(lane1.1PolySingles)

A DNAStringSet instance of length 6

width seq

[1] 36 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[2] 36 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

[3] 36 AAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAA

[4] 36 AAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAA

[5] 36 AAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAAAAAA

[6] 36 AAAAAAAAAAAAAAAAAAATAAAAAAAAAAAAAAAA

Finding Adapter-Like Sequences

While the Solexa’s adapter is known not to map to the mouse genome,

Exercise 9
Show that Solexa’s DNA/ChIP-seq adapter doesn’t map to the mouse genome by using the vcountPattern

function.

8



> adapter <- DNAString("GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG")

> adapterCounts <- vcountPattern(adapter, Mmusculus)

> head(adapterCounts)

seqname strand count

1 chr1 + 0

2 chr1 - 0

3 chr2 + 0

4 chr2 - 0

5 chr3 + 0

6 chr3 - 0

> sum(adapterCounts[, "count"])

[1] 0

repeated sequencing of the adapter is a great inefficiency within an experiment. These adapter-like sequences
can distort quality assurance of the Solexa data and removing them upstream can help prevent distortions
in downstream QA conclusions.

Exercise 10
Use the following steps to find the adapter-like sequences within the top reads:

1. Create a DNAStringSet object containing the distinct reads by first extracting the top read sequences
through nested lapply operations, then unlisting the result using the unlist function, then using the
unique function to find the distinct set of reads, and then using the sort function to sort the sequences
in alphabetical order.

2. Use the isMatchingAt function to find the adapter-like sequences.

3. Obtain the subset of adapter-like sequences.

> distinctReads <- DNAStringSet(sort(unique(unlist(lapply(topReads,

+ lapply, function(x) as.character(x[["read"]])), use.names = FALSE))))

> whichAdapters <- isMatchingAt(adapter, distinctReads, max.mismatch = 4,

+ with.indels = TRUE)

> adapterReads <- distinctReads[whichAdapters]

> length(adapterReads)

[1] 819

> head(adapterReads)

A DNAStringSet instance of length 6

width seq

[1] 36 AATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAA

[2] 36 AATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT

[3] 36 AATCGGAAGAGCTCGTATGCCGTCTTCTGCTTATAT

[4] 36 AATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA

[5] 36 AATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAT

[6] 36 AATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGTAA

As the results above show, Solexa’s 33-mer adapter is closely related to 819 distinct short reads from the
top reads lists.

9



Exercise 11
Use the following steps to find the number of distinct adapter-like reads and the total number of these reads
in each of the 8 lanes for the two experiments:

1. Use nested lapply function calls to extract the adapter-like sequences from each of the Solexa lanes.

2. Use nested sapply function calls to get the number of distinct adapter-like sequences.

3. Use nested sapply function calls to get the total number of adapter-like sequences.

> topAdapterReads <- lapply(topReads, lapply, function(x) x[x[["read"]] %in%

+ adapterReads, ])

> sapply(topAdapterReads, sapply, nrow)

experiment1 experiment2

lane1 500 226

lane2 303 235

lane3 462 323

lane4 547 305

lane5 0 0

lane6 464 275

lane7 516 284

lane8 343 206

> sapply(topAdapterReads, sapply, function(x) sum(x[["count"]]))

experiment1 experiment2

lane1 265463 158678

lane2 225519 178534

lane3 308251 303996

lane4 456932 290159

lane5 0 0

lane6 343988 255142

lane7 360014 252049

lane8 233244 177058

These adapter-like sequences are not wholely without value because they can provide some insight in
where base call errors are most likely to occur for a particular sequence.

Exercise 12
Find the distinct sequences from lane 1 of experiment 1 and their associated counts.

> lane1.1AdapterCounts <- topAdapterReads[["experiment1"]][["lane1"]][["count"]]

> lane1.1AdapterReads <- topAdapterReads[["experiment1"]][["lane1"]][["read"]]

> length(lane1.1AdapterReads)

[1] 500

> head(lane1.1AdapterReads)

A DNAStringSet instance of length 6

width seq

[1] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA

[2] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT

[3] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGAT

[4] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAT

[5] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTATAT

[6] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAA

10



Exercise 13
Use the pairwiseAlignment function to fit the pairwise alignments of the adapter-like sequences against the
adapter then summarize the results using the summary function.

> lane1.1AdapterAligns <- pairwiseAlignment(lane1.1AdapterReads,

+ adapter, type = "local-global")

> summary(lane1.1AdapterAligns, weight = lane1.1AdapterCounts)

Local-Global Fixed Subject Pairwise Alignment

Number of Alignments: 265463

Scores:

Min. 1st Qu. Median Mean 3rd Qu. Max.

27.75 57.52 57.52 59.09 65.40 65.40

Number of matches:

Min. 1st Qu. Median Mean 3rd Qu. Max.

30.00 32.00 32.00 32.27 33.00 33.00

Top 10 Mismatch Counts:

SubjectPosition Subject Pattern Count Probability

1 33 G A 106988 0.403024150

2 33 G T 41812 0.157505942

3 20 C A 12558 0.047306028

4 33 G C 7298 0.027491590

5 29 G T 5686 0.021419181

6 20 C N 2038 0.007677153

7 20 C T 1996 0.007518939

8 20 C G 1595 0.006008370

9 14 C A 1487 0.005601534

10 14 C T 902 0.003397837

Finding Over-Represented Sequences

Another potential source of data contamination is over-represented sequences. These sequences can be found
by clustering the short reads.

Exercise 14
First find the distinct sequences from lane 1 of experiment 2 and their associated counts.

> lane2.1TopCounts <- topReads[["experiment2"]][["lane1"]][["count"]]

> lane2.1TopReads <- topReads[["experiment2"]][["lane1"]][["read"]]

> length(lane2.1TopReads)

[1] 1000

> head(lane2.1TopReads)

A DNAStringSet instance of length 6

width seq

[1] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA

[2] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT

[3] 36 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

11



[4] 36 ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

[5] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAT

[6] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGAT

Exercise 15
Then use the stringDist function to generate the Levenshtein’s edit distance amongst the reads, generate
nearest-neighbor-based clustering using the hclust function, and classify the reads into clusters using the
cutree function.

> lane2.1Clust <- hclust(stringDist(lane2.1TopReads), method = "single")

> lane2.1Groups <- cutree(lane2.1Clust, h = 2)

> head(sort(table(lane2.1Groups), decreasing = TRUE))

lane2.1Groups

1 9 8 3 2 10

226 200 197 161 34 27

The example above produces four interesting short read clusters: one representing poly As, one repre-
senting Solexa’s adapter, and the remaining two coming from an unknown origin.

Exercise 16
Create a set of interesting sequences of unknown origin by using the intersect function to find intersection
of one of the interesting clusters with the reverse complement of the other interesting cluster.

> head(reverseComplement(lane2.1TopReads[lane2.1Groups == 9]))

A DNAStringSet instance of length 6

width seq

[1] 36 AAATGAGAAATACACACTTTAGGACGTGAAATATGG

[2] 36 AATGAGAAATACACACTTTAGGACGTGAAATATGGC

[3] 36 TGAAAATCACGGAAAATGAGAAATACACACTTTAGG

[4] 36 AGAAATACACACTTTAGGACGTGAAATATGGCGAGG

[5] 36 AATATGGCAAGAAAACTGAAAATCATGGAAAATGAG

[6] 36 AAAATCACGGAAAATGAGAAATACACACTTTAGGAC

> head(lane2.1TopReads[lane2.1Groups == 8])

A DNAStringSet instance of length 6

width seq

[1] 36 ACTGAAAATCACGGAAAATGAGAAATACACACTTTA

[2] 36 AAACATCCACTTGACGACTTGAAAAATGACGAAATC

[3] 36 TAGGACGTGGAATATGGCAAGAAAACTGAAAATCAT

[4] 36 GGAATATGGCAAGAAAACTGAAAATCATGGAAAATG

[5] 36 GTAGGACGTGGAATATGGCAAGAAAACTGAAAATCA

[6] 36 TGAAAATCACGGAAAATGAGAAATACACACTTTAGG

> unknownSeqs <- intersect(reverseComplement(lane2.1TopReads[lane2.1Groups ==

+ 9]), lane2.1TopReads[lane2.1Groups == 8])

> length(unknownSeqs)

[1] 155

> head(unknownSeqs)

12



A DNAStringSet instance of length 6

width seq

[1] 36 AAATGAGAAATACACACTTTAGGACGTGAAATATGG

[2] 36 AATGAGAAATACACACTTTAGGACGTGAAATATGGC

[3] 36 TGAAAATCACGGAAAATGAGAAATACACACTTTAGG

[4] 36 AGAAATACACACTTTAGGACGTGAAATATGGCGAGG

[5] 36 AATATGGCAAGAAAACTGAAAATCATGGAAAATGAG

[6] 36 AAAATCACGGAAAATGAGAAATACACACTTTAGGAC

Exercise 17
Create a set of interesting sequences and associated counts based upon the intersection created above.

> unknownCounts <- lane2.1TopCounts[match(unknownSeqs, lane2.1TopReads)] +

+ lane2.1TopCounts[match(reverseComplement(unknownSeqs), lane2.1TopReads)]

> unknownSeqs <- unknownSeqs[order(unknownCounts, decreasing = TRUE)]

> unknownCounts <- unknownCounts[order(unknownCounts, decreasing = TRUE)]

> length(unknownCounts)

[1] 155

> head(unknownCounts)

[1] 387 375 358 357 354 345

These sequences of unknown origin may be related and could potential assemble into a more informative
larger sequence. This assembly can be performed using functions from the Biostrings package by first finding
a starter, or seeding, sequences that can be grown using pairwise alignments of the starter sequences and
the remaining sequences.

Exercise 18
Use the following step to find a starter or seed sequence to use in an assembly process by finding the distinct
sequence that closest related to the set of unknown sequences:

1. Use the stringDist function to find the number of matches amongst the reads using an overlap
alignment with a scoring scheme of {match = 1, mismatch = -Inf, gapExtension = -Inf} then
convert the results into a matrix and loop over the rows to count how many times each distinct read
overlap with other distinct reads at least 24 bases in the 36 bases reads.

2. Choose the distinct sequence with the most similar distinct sequences using the metric developed in
the previous step.

> submat <- nucleotideSubstitutionMatrix(match = 1, mismatch = -Inf)

> whichStarter <- which.max(apply(as.matrix(stringDist(unknownSeqs,

+ method = "substitutionMatrix", substitutionMatrix = submat,

+ gapExtension = -Inf, type = "overlap")), 1, function(x) sum(x >=

+ 24)))

> starterSeq <- unknownSeqs[[whichStarter]]

> starterSeq

36-letter "DNAString" instance

seq: TGAAAATCACGGAAAATGAGAAATACACACTTTAGG

Exercise 19
Use the pairwiseAlignment function to generate the pairwise alignments of all sequences against the starter
sequence.

13



> starterAlign <- pairwiseAlignment(unknownSeqs, starterSeq, substitutionMatrix = submat,

+ gapExtension = -Inf, type = "overlap")

Exercise 20
Assemble a sequence by using the starter sequence created above and the set of interesting sequences you
found. The first step is to find which alignments are in the “prefix” of the starter sequence. These are the
sequences that overlap to the left of the start sequence.

> whichInPrefix <- (score(starterAlign) >= 10 & start(subject(starterAlign)) ==

+ 1 & start(pattern(starterAlign)) != 1)

> prefix <- narrow(unknownSeqs[whichInPrefix], 1, start(pattern(starterAlign[whichInPrefix])) -

+ 1)

> prefix <- DNAStringSet(paste(sapply(max(nchar(prefix)) - nchar(prefix),

+ polyn, nucleotides = "-"), as.character(prefix), sep = ""))

> consensusMatrix(prefix, baseOnly = TRUE)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

A 1 2 0 0 5 0 0 0 0 0 11 12 0

C 0 0 0 0 0 6 7 0 0 0 0 0 0

G 0 0 3 4 0 0 0 0 9 10 0 0 0

T 0 0 0 0 0 0 0 8 0 0 0 0 13

other 25 24 23 22 21 20 19 18 17 16 15 14 13

[,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]

A 14 0 0 0 0 0 20 0 22 23 24 25

C 0 0 0 0 18 0 0 0 0 0 0 0

G 0 0 16 17 0 19 0 21 0 0 0 0

T 0 15 0 0 0 0 0 0 0 0 0 0

other 12 11 10 9 8 7 6 5 4 3 2 1

[,26]

A 0

C 26

G 0

T 0

other 0

> prefixString <- consensusString(consensusMatrix(prefix, baseOnly = TRUE)[-5,

+ ])

> prefixString

[1] "AAGGACCTGGAATATGGCGAGAAAAC"

Exercise 21
The next step is to find which alignments are in the “suffix” of the starter sequence. These are the sequences
that overlap to the right of the start sequence.

> whichInSuffix <- (score(starterAlign) >= 10 & end(subject(starterAlign)) ==

+ 36 & end(pattern(starterAlign)) != 36)

> suffix <- narrow(unknownSeqs[whichInSuffix], end(pattern(starterAlign[whichInSuffix])) +

+ 1, 36)

> suffix <- DNAStringSet(paste(as.character(suffix), sapply(max(nchar(suffix)) -

+ nchar(suffix), polyn, nucleotides = "-"), sep = ""))

> consensusMatrix(suffix, baseOnly = TRUE)

14



[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]

A 26 0 0 0 0 21 20 19 0 17 0 0 0

C 0 25 0 0 0 0 0 0 0 0 0 0 0

G 0 0 24 0 22 0 0 0 0 0 0 15 14

T 0 0 0 23 0 0 0 0 18 0 16 0 0

other 0 1 2 3 4 5 6 7 8 9 10 11 12

[,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]

A 0 0 11 0 0 8 7 6 5 0 0 0

C 13 0 0 0 0 0 0 0 0 4 0 0

G 0 12 0 10 9 0 0 0 0 0 0 2

T 0 0 0 0 0 0 0 0 0 0 3 0

other 13 14 15 16 17 18 19 20 21 22 23 24

[,26]

A 1

C 0

G 0

T 0

other 25

> suffixString <- consensusString(consensusMatrix(suffix, baseOnly = TRUE)[-5,

+ ])

> suffixString

[1] "ACGTGAAATATGGCGAGGAAAACTGA"

Exercise 22
Now combine the prefix and suffix with the starter sequence.

> extendedUnknown <- DNAString(paste(prefixString, as.character(starterSeq),

+ suffixString, sep = ""))

> extendedUnknown

88-letter "DNAString" instance

seq: AAGGACCTGGAATATGGCGAGAAAACTGAAAATCAC...ACACTTTAGGACGTGAAATATGGCGAGGAAAACTGA

Exercise 23
Align the set of unknown sequences against the extended sequence.

> unknownAlign <- pairwiseAlignment(unknownSeqs, extendedUnknown,

+ substitutionMatrix = submat, gapExtension = -Inf, type = "overlap")

> table(score(unknownAlign))

0 1 2 3 4 5 6 7 8 9 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

12 26 26 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 53

Exercise 24
Use the countPDict function within nested sapply/lapply function calls to show the number of reads that
map to the unknown sequence in the 8 lanes from the 2 experiments.

> sapply(topReads, lapply, function(x) {

+ if (nrow(x) > 0) {

+ whichNoNs <- (alphabetFrequency(x[["read"]])[, "N"] ==

+ 0)

+ x <- x[whichNoNs, ]

15



+ pdict <- PDict(x[["read"]])

+ whichMapped <- (countPDict(pdict, extendedUnknown) +

+ countPDict(pdict, reverseComplement(extendedUnknown))) >

+ 0

+ sum(x[whichMapped, "count"])

+ }

+ })

experiment1 experiment2

lane1 1577 10855

lane2 4627 10482

lane3 1284 10633

lane4 2219 8400

lane5 0 0

lane6 1659 13095

lane7 1823 11099

lane8 4657 14916

Exercise 25
Use the vcountPattern function to find which chromosome the extended unknown sequence maps to.

> unknownPatternCount <- vcountPattern(extendedUnknown, Mmusculus)

> tapply(unknownPatternCount[["count"]], unknownPatternCount[["seqname"]],

+ sum)

chr1 chr2 chr3 chr4 chr5 chr6

0 1 0 0 0 0

chr7 chr8 chr9 chr10 chr11 chr12

0 0 0 0 0 0

chr13 chr14 chr15 chr16 chr17 chr18

0 0 0 0 0 0

chr19 chrX chrY chrM chr1_random chr3_random

0 0 0 0 0 0

chr4_random chr5_random chr7_random chr8_random chr9_random chr13_random

0 0 0 0 0 0

chr16_random chr17_random chrX_random chrY_random chrUn_random

0 0 0 0 0

Exercise 26
Finally use the matchPattern function to find the exact location on the chromosome that it maps to.

> mm9Chr2 <- Mmusculus[["chr2"]]

> mm9Ch2View <- matchPattern(extendedUnknown, mm9Chr2)

> mm9Ch2View

Views on a 181748087-letter DNAString subject

subject: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN...GGTTAGGTCTAGGGTTTGCGCCTGGATTACGGGT

views:

start end width

[1] 98507289 98507376 88 [AAGGACCTGGAATATGGCGAGAAA...TGAAATATGGCGAGGAAAACTGA]

16



5 Aligning Bacteriophage Reads

Solexa’s SOP includes dedicating lane 5 from a set of 8 to sequencing the bacterophage φX174 genome, a
circular single-stranded genome with 5386 base pairs and the first to be sequenced in 1978. Analyzing the
data from this lane can provide a check for a systematic failure of the sequencer.

Exercise 27
Read in one of the lane 5 export files from a Solexa run.

> sp <- SolexaPath(system.file("extdata", "ELAND", "080828_HWI-EAS88_0003",

+ package = "SeqBasicsTutorial"))

> phageReads <- readAligned(analysisPath(sp), "s_5_1_export.txt",

+ "SolexaExport")

Exercise 28
Find the distinct number of reads and number of times they occurred.

> phageReadTable <- tables(sread(phageReads), n = Inf)[["top"]]

Exercise 29
Find which distinct reads have uncalled bases and create a “clean” set of reads without any uncalled bases.

> whichNotClean <- grep("N", names(phageReadTable))

> head(phageReadTable[whichNotClean])

ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN TNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

13320 11892

CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

8978 7670

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN AANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

2308 1652

> cleanReadTable <- phageReadTable[-whichNotClean]

> head(cleanReadTable)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA GATCTTTGGCGGCACGGAGCCGCGCATCACCTGTA

70947 7561

GATCTCCCGAGCATCACCACATTACTGCGGTTATA CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

6740 2535

GATCTCCATGGCATCACCACATTACTGCGGTTATA GACGTTTGGTCAGTTCCATCAACATCATAGCCAGA

2323 439

Exercise 30
Load the phiX174Phage object and extract the New England BioLabs (NEB) version, the one used by Solexa,
of the bacterophage φX174 genome, and extend the genome 34 bases to “linearize” the circular genome.

> data(phiX174Phage)

> names(phiX174Phage)

[1] "Genbank" "RF70s" "SS78" "Bull" "G97" "NEB03"

> nebPhage <- phiX174Phage[[which(names(phiX174Phage) == "NEB03")]]

> nebPhage <- DNAString(paste(as.character(nebPhage), as.character(substr(nebPhage,

+ 1, 34)), sep = ""))

> nebPhage

17



5420-letter "DNAString" instance

seq: GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACT...CAGAGTTTTATCGCTTCCATGACGCAGAAGTTAACA

Exercise 31
Show an aligned/unaligned breakdown of the read counts in the “Hoover” Solexa QA plot. This can be
accomplished through the following steps:

1. Use the PDict function to create pattern dictionaries for the cleaned reads and their reversed comple-
ment.

2. Use the countPDict function to find which reads map at least once to the phage genome.

3. Create an indicator variable that states whether or not a distinct sequence maps to the phage genome.

> posPDict <- PDict(DNAStringSet(names(cleanReadTable)), max.mismatch = 2)

> negPDict <- PDict(reverseComplement(DNAStringSet(names(cleanReadTable))),

+ max.mismatch = 2)

> whichAlign <- rep(FALSE, length(phageReadTable))

> whichAlign[-whichNotClean] <- (countPDict(posPDict, nebPhage,

+ max.mismatch = 2) + countPDict(negPDict, nebPhage, max.mismatch = 2) >

+ 0)

Exercise 32
Count the number of distinct reads that map to the genome as well as the overall percentage of reads that
map to the genome.

> table(whichAlign)

whichAlign

FALSE TRUE

312787 196626

> round(sapply(split(phageReadTable, whichAlign), sum)/sum(phageReadTable),

+ 2)

FALSE TRUE

0.19 0.81

Exercise 33
Create a histogram, conditioned on alignment status, that shows the “Hoover” plot mentioned in the Short-
Read vignette.

> print(histogram(~log10(phageReadTable[phageReadTable > 1]) |

+ whichAlign[phageReadTable > 1], xlab = "log10(Read Counts)",

+ main = "Read Counts by IS(Aligned to Phage)"))

18



Read Counts by IS(Aligned to Phage)

log10(Read Counts)

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

40

50

60

0 1 2 3 4 5

FALSE

0 1 2 3 4 5

TRUE

Figure 1: Hoover Plot Deconstructed

> toLatex(sessionInfo())

• R version 2.10.0 Patched (2009-11-03 r50305), i386-apple-darwin9.8.0

• Locale: en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, methods, stats, utils

• Other packages: Biostrings 2.14.5, BSgenome 1.14.1, BSgenome.Mmusculus.UCSC.mm9 1.3.15,
IRanges 1.4.7, lattice 0.17-26, SeqBasicsTutorial 0.0.1, ShortRead 1.4.0

• Loaded via a namespace (and not attached): Biobase 2.6.0, grid 2.10.0, hwriter 1.1, tools 2.10.0

Table 4: The output of sessionInfo while creating this vignette.

6 Session Information

19


	Introduction
	Setup
	Pattern and PWM Matching along a Genome
	Finding Possible Contaminants in the Short Reads
	Aligning Bacteriophage Reads
	Session Information

