Biostrings and BSgenome basics

Hervé Pages and Patrick Aboyoun
Fred Hutchinson Cancer Research Center
Seattle, WA

November 18, 2009

1 Lab overview

Learn the basics of Biostrings and the BSgenome data packages.
For this lab you need:

e A laptop with R 2.10.0 (the current release version).

e The following packages: Biostrings, hgu95av2probe, BSgenome, BSgenome.Celegans.UCSC.ce2
BSgenome.Hsapiens.UCSC.hg18, SNPlocs.Hsapiens.dbSNP.20080617, GenomicFea-
tures, GenomicFeatures.Hsapiens.UCSC.hg18.

2 Check your installation

Exercise 1
1. Start R and load the BSgenome.Hsapiens.UCSC.hgl8 package.

2. Display chromosome 1.

3 Basic string containers

3.1 DNAString objects

The DNAString class is the basic container for storing a large nucleotide se-
quence. Unlike a standard character vector in R that can store an arbitrary
number of strings, a DNAString object can only contain 1 sequence. Like for
most classes defined in Biostrings, DNAString is also the name of the constructor
function for DNAString objects.

Exercise 2
1. Load the BSgenome.Celegans.UCSC.ce2 package and display chromosome
I. Use the class function on this chromosome to see the type of container
used for its storage.

2. Use length and alphabetFrequency on it.
3. Extract an arbitrary subsequence with subsegq.

4. Get the reverse complement of this subsequence.

3.2 DNAStringSet objects

The DNAStringSet class is the basic container for storing an arbitrary number
of nucleotide sequences. The length of a DNAStringSet object is the number
of sequences in it. The [operator can be used to subset it i.e. to select some
of the sequences. The [[operator can be used to extract an arbitrary sequence
as a DNAString object.

Exercise 3
1. The hgu95av2probe package contains the probe sequence for the hgu95av2
array from Affymetrix. Load this package and display the first 5 probe
sequences stored in the hgu95av2probe object.

2. Use the DNAStringSet constructor to store all the probe sequences into a
DNAStringSet object. Let’s call this object dictO.

Use length and width on dictO.
Use subsetting operator [to remove its 2nd element.

Invert the order of its elements.

ISR S

Use subsetting operator [[to extract its 1st element as a DNAString
object.

7. Use the DNAStringSet constructor (i) to remove the last 2 nucleotides of
each element, then (ii) to keep only the last 10 nucleotides.

8. Call alphabetFrequency on dict0O and on its reverse complement. Try
again with collapse=TRUE.

9. How many probes have a GC content of 80% or more?

10. What’s the GC content for the entire microarray?

3.3 XStringViews objects

An XStringViews object contains a set of views on the same sequence called
the subject (for example this can be a DNAString object). Each view is defined
by its start and end locations: both are integers such that start <= end. The
Views function can be used to create an XStringViews object given a subject
and a set of start and end locations. length, width, [and [[are supported for
XString Views objects, just like for DNAStringSet objects. In addition, subject,
start, end and gaps methods are also provided for XStringViews objects.

Exercise 4
1. Use the Views function to create an XStringViews object on Worm chro-
mosome I. Make it such that some views are overlapping but also that the
set of views doesn’t cover the subject entirely.

2. Try subject, start, end and gaps on this object.
3. Try alphabetFrequency on it.

4. Turn it into a DNAStringSet object with the DNAStringSet constructor.

3.4 MaskedDNAString objects

A MaskedDNAString object contains a masked DNA sequence, that is, a DNAS-
tring object plus a set of masks. The purpose of these masks is to allow the
user to mask the regions that need to be ignored during some computations.

You can use the unmasked accessor to turn a Masked DNAString object into a
DNAString object (the masks will be lost), or use the masks accessor to extract
the masks (the sequence that is masked will be lost).

Exercise 5
1. Load the BSgenome.Hsapiens.UCSC.hg18 package and display chromosome
2.

2. Get rid of the masks defined on this chromosome.

Each mask on a sequence can be active or not. Masks can be activated
individually with:

> chr2 <- Hsapiens$chr2
> active(masks(chr2)) ["TRF"] <- TRUE # activate Tandem Repeats Finder mask

or all together with:
> active(masks(chr2)) <- TRUE # activate all the masks

Some functions in Biostrings (like alphabetFrequency or some of the string
matching functions) will skip the masked region when walking along a sequence
with active masks.

Exercise 6
1. What percentage of Human chromosome Y is made of assembly gaps?

2. Can you confirm this by checking the alphabet frequency of unmasked
chromosome Y.

3. Try as(chrY , "Views") and gaps(as(chrY , "Views")) on masked
chromosome Y. What are the lengths of the assembly gaps?

In addition to the built-in masks, the user can put its own mask on a se-
quence. Two types of user-controlled masking are supported: by content or by
position. The maskMotif function will mask the regions of a sequence that con-
tain a motif specified by the user. The Mask constructor will return the mask
made of the regions defined by the start/end locations specified by the user (like
with the Views function).

4 BSgenome data packages

You've already used the BSgenome data packages for Worm and Human. The
Bioconductor project provides BSgenome data packages for the commonly stud-
ied organism. Use the available.genomes () function from the BSgenome soft-
ware package to see all the packages available.

The name of a BSgenome data package is made of 4 parts separated by a
dot (e.g. BSgenome.Celegans.UCSC.ce2):

e The 1st part is always BSgenome.
e The 2nd part is the name of the organism (abbreviated).
e The 3rd part is the name of the organisation who assembled the genome.

e The 4th part is the release string or number used by this organisation for
this assembly of the genome.

All BSgenome data package contain a single top level object whose name
matches the second part of the package name.

Exercise 7
1. Get the list of all available BSgenome data packages.

2. After you’ve loaded a BSgenome data package, use 7<name-of-the-package>
to see useful information about the package and some examples on how to
use it.

3. What’s the quick and easy way to get the lengths of all the sequences
stored in a BSgenome data package?

In a given BSgenome data package, either all DNA sequences are masked or
none is. In the former case, the sequences are always masked with 4 built-in
masks:

e the masks of assembly gaps, aka “the AGAPS masks”;
e the masks of intra-contig ambiguities, aka “the AMB masks”;

e the masks of repeat regions that were determined by the RepeatMasker
software, aka “the RM masks”;

e the masks of repeat regions that were determined by the Tandem Repeats
Finder software (where only repeats with period less than or equal to 12
were kept), aka “the TRF masks”.

If there is no BSgenome data package for your organism, then you can make
your own package. This process is described in the BSgenomeForge vignette
from the BSgenome software package.

5 String matching

5.1 The matchPattern function

This function finds all the occurences (aka matches or hits) of a given pattern
in a reference sequence called the subject.

Exercise 8
1. Find all the matches of a short pattern (invent one) in Worm chromosome
I. Don’t choose the pattern too short or too long.

2. In fact, if we don’t take any special action, we only get the hits in the plus
strand of the chromosome. Find the matches in the minus strand too.
(Note: the cost of taking the reverse complement of an entire chromosome
sequence can be high in terms of memory usage. Try to do something
better.)

3. Use the max.mismatch argument to find all the matches in chromosome I
that have at most 1 mismatching nucleotide.

4. Use the max.mismatch argument together with the with.indels argu-
ment to find all the matches in chromosome I that are at an edit distance
<= 2 from the pattern.

5.2 The vmatchPattern function

This function finds all the matches of a given pattern in a set of reference
sequences.

Exercise 9
1. Load the upstream1000 object from Hsapiens and find all the matches of
a short arbitrary pattern in it.

2. The value returned by vmatchPattern is an MIndex object containing the
match coordinates for each reference sequence. You can use the startIn-
dex and endIndex accessors on it to extract the match starting and ending
positions as lists (one list element per reference sequence). [[extracts the
matches of a given reference sequence as an MIndex object. countIndex
extract the match counts as an integer vector (one element per reference
sequence).

5.3 Ambiguities

TUPAC extended letters can be used to express ambiguities in the pattern or
in the subject of a search with matchPattern. This is controlled via the fixed
argument of the function. If fixed is TRUE (the default), all letters in the pattern
and the subject are interpreted litterally. If fixed is FALSE, IUPAC extended
letters in the pattern and in the subject are interpreted as ambiguities e.g. M will
match A or C and N will match any letter (the ITUPAC_CODE_MAP named character
vector gives the mapping between IUPAC letters and the set of nucleotides that
they stand for). The most common use of this feature is to introduce wildcards
in the pattern by replacing some of its letters with Ns.

Exercise 10
1. Search pattern GAACTTTGCCAC in Celegans chromosome I.

2. Repeat but this time allow the 3 Ts in the pattern to match anything.

5.4 Finding the hits of a large set of short motifs

Our own competitor to other fast alignment tools like MAQ or bowtie is the
matchPDict function. Its speed is comparable to the speed of MAQ but it
uses more memory than MAQ to align the same set of reads against the same
genome. Here are some important differences between matchPDict and MAQ
(or bowtie):

1. matchPDict ignores the quality scores,
2. it finds all the matches,

3. it fully supports 2 or 3 (or more) mismatching nucleotides anywhere in
the reads (performance will decrease significantly though if the reads are
not long enough),

4. it supports masking (masked regions are skipped),

5. it supports TUPAC ambiguities in the subject (useful for SNP detection).
The workflow with matchPDict is the following:

1. Preprocess the set of short reads with the PDict constructor.

2. Call matchPDict on it.

3. Query the MIndex object returned by matchPDict.

Exercise 11
1. Preprocess dictO (containing the probe sequences from Affymetrix hgu95av2
chip, see exercise 3) with the PDict constructor.

2. Use this PDict object to find the (exact) hits of dict0 in unmasked Human
chromosome 1.

3. Use countIndex on the MIndex object returned by matchPDict to extract
the nb of hits per probe.

4. Which probe has the highest number of hits? Display those hits as an
XString Views object. Check this result with a call to matchPattern.

5. You only got the hits that belong to the + strand. How would you get
the hits that belong to the - strand?

6. Redo this analysis using inexact matching: now we want to allow up to 2
mismatching nucleotides per probe in the last 12 nucleotides of the probe.

6 Extracting the transcriptome from a BSgenome
data package

The GenomicFeatures.Hsapiens.UCSC.hgl8 package contains information about
known Human transcripts (see the geneHuman function). In particular, for each
transcript, it contains the chromosome, the strand and the exon start/end lo-
cations with respect to the hgl8 genome. This information together with the
BSgenome.Hsapiens.UCSC.hgl8 package can be used to extract the known tran-
scriptome in a (big) DNAStringSet object. This is what the extractTran-
scriptsFromGenome function in the GenomicFeatures software package does.

Exercise 12
1. See 7extractTranscriptsFromGenome in GenomicFeatures and run the
example to build the transcripts object.

2. Compare the nucleotide frequencies in transcripts with those of the
genome.

3. Try to match some of the probes in hgu95av2probe against this transcrip-
tome using vmatchPattern.

4. Use the transcriptLocs2refLocs in Biostrings to convert the transcript-
based locations of some of the hits into reference-based locations.

7 SNP injection

In addition to the sequencing errors inherent to the HTS technology, another
cause of mismatches between the reads and the reference genome are the SNPs
that are present in the individual that was sequenced. They are of 2 kinds:
known SNPs (e.g. SNPs registered in dbSNP) and unknown SNPs.

During the alignment process, the mismatches due to known SNPs in the
individual can be avoided by injecting all the known SNPs in the reference
genome in the form of IUPAC ambiguity letters, that is, by replacing the non-
ambiguous letter by an IUPAC ambiguity letter at each SNP location in the
reference genome.

Then, when matchPattern or matchPDict are used on this modified genome
and with fixed=FALSE, hits that span known SNPs will be found too. Note that,
in addition to make the read alignment process smoother and more accurate,
this is also a way of detecting known SNPs in the individual.

Bioconductor provides the SNPlocs data packages, i.e. packages that contain
the locations of all known SNPs for a given organism together with the alleles
information (represented as an IUPAC ambiguity letter for each SNP). For now
only Human is supported but other organisms can easily be added if needed. A
SNPlocs data package is associated with a BSgenome data package and is aimed
to be used in conjonction with it. For example SNPlocs.Hsapiens.dbSNP.20080617
is associated with BSgenome.Hsapiens.UCSC.hgl8 (more on this below).

Use available.SNPs (from the BSgenome software package) to get the list of
SNPlocs packages that are currently available on the Bioconductor repositories
for your version of R. Use installed.SNPs to get the list of packages that are
already installed.

Use injectSNPs to inject SNPs in the reference genome:

> library(BSgenome.Hsapiens.UCSC.hgl8)
> library(SNPlocs.Hsapiens.dbSNP.20080617)
> hg18snp <- injectSNPs(Hsapiens, 'SNPlocs.Hsapiens.dbSNP.20080617')

The resulting hg18snp object is a modified version of the original genome (the
Hsapiens object) where TUPAC ambiguity letters have been injected in the
chromosome sequences at the SNP locations. You can display and use hg18snp
exactly in the same way that you use Hsapiens (both are BSgenome objects).

Exercise 13

For this exercise, we first need to rebuild the PDict object obtained by pre-
processing the probe sequences of the hgu95av2probe package but with algo-
rithm="ACtree" in the call to PDict. This is because a PDict object built with
algorithm="ACtree2" (the default) cannot yet be used when countPDict (or
matchPDict) is called with fixed="pattern" (see below). This is a temporary
situation that will be addressed ASAP.

1. Inject the SNPs from SNPlocs.Hsapiens.dbSNP.20080617 in the hg18 genome
and display the resulting BSgenome object (note the additional line "with
SNPs injected from...").

2. Load the modified sequence for chromosome 1 and look at its alphabet
frequency (compare with the original chromosome 1).

3. Mask the assembly gaps in this modified chromosome 1 and look at its
alphabet frequency again.

4. Use countPDict with fixed="pattern" to count the nb of hits for all the
hgu95av2 probes.

5. Try to “see” some hits with SNPs.

Exercise 14
1. Run extractTranscriptsFromGenome on the Human genome that con-
tains the SNPs.

2. How many SNPs are in the transcriptome?

	Lab overview
	Check your installation
	Basic string containers
	DNAString objects
	DNAStringSet objects
	XStringViews objects
	MaskedDNAString objects

	BSgenome data packages
	String matching
	The matchPattern function
	The vmatchPattern function
	Ambiguities
	Finding the hits of a large set of short motifs

	Extracting the transcriptome from a BSgenome data package
	SNP injection

