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Why do you need
normalisation?



From: lymphoma
dataset

vsn package

Alizadeh et al.,
Nature 2000
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Scatterplot, colored by PCR-plate
Two RZPD Unigene II filters (cDNA nylon membranes)

PCR plates



PCR plates



PCR plates: boxplots



print-tip effects
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spotting pin quality decline

after delivery of 3x105 spots

after delivery of 5x105 spots

H. Sueltmann DKFZ/MGA



spatial effects

R    Rb R-Rb
color scale by rank

spotted cDNA arrays, Stanford-type

another
array:

print-tip

color
scale ~
log(G)

color
scale ~
rank(G)
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Batches: array to array differences dij = madk(hik -hjk)

arrays i=1…63; roughly sorted by time



A complex measurement process lies between
mRNA concentrations and intensities

o other array
manufacturing-
related issues

o hybridization
efficiency and
specificity

o DNA-support
binding

o reverse
transcription
efficiency

o ‘background’
correction

o spotting
efficiency

o amplification
efficiency

o signal
quantification

o PCR yield,
contamination

o RNA
degradation

o image
segmentation

o clone
identification and
mapping

o tissue
contamination

The problem is less that these
steps are ‘not perfect’; it is that
they vary from array to array,
experiment to experiment.



Why do you need
statistics?



 Which genes are differentially transcribed?

same-same tumor-normal

log-ratio



Statistics 101:
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Basic dogma of data analysis

Can always increase
sensitivity on the
cost of specificity,

or vice versa,

the art is to
- optimize both
- then find the best trade-off.
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 ratios and fold changes

Fold changes are useful to describe
continuous changes in expression
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But what if the gene is “off” (below
detection limit) in one condition?



 ratios and fold changes
The idea of the log-ratio (base 2)

0: no change
 +1: up by factor of 21 = 2
 +2: up by factor of 22 = 4
 -1: down by factor of 2-1 = 1/2
 -2: down by factor of 2-2 = ¼

What about a change from 0 to 500?
- conceptually
- noise, measurement precision

A unit for measuring changes in expression: assumes that
a change from 1000 to 2000 units has a similar biological
meaning to one from 5000 to 10000.



♦ How to compare microarray
intensities with each other?

♦ How to address measurement
uncertainty (“variance”)?

♦ How to calibrate (“normalize”) for
biases between samples?

 Questions



 Sources of variation
amount of RNA in the biopsy
efficiencies of
-RNA extraction
-reverse transcription
-labeling
-fluorescent detection

probe purity and length 
distribution
spotting efficiency, spot size
cross-/unspecific hybridization
stray signal

Calibration Error model

Systematic
o similar effect on many
measurements
o corrections can be
estimated from data

Stochastic
o too random to be ex-
plicitely accounted for
o remain as “noise”



 Error models

describe the possible outcomes of a set of
measurements

Outcomes depend on:
-true value of the measured quantity
(abundances of specific molecules in biological sample)

-measurement apparatus
(cascade of biochemical reactions, optical detection
system with laser scanner or CCD camera)



 Error models

Purpose:

1. Data compression: summary statistic instead of
full empirical distribution

2. Quality control

3. Statistical inference: appropriate parametric
methods have better power than non-parametric
(this has practical, financial, and ethical
aspects)
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 The two component model

measured intensity  =  offset  +       gain   × true abundance



 The two-component model

raw scale log scale

“additive” noise

“multiplicative” noise

B. Durbin, D. Rocke, JCB 2001



 Parameterization

(1 )y a b x

y a b x e!

" !

"

= + + # # +

= + + # #

two practically
equivalent forms

(η<<1)

iid per arrayiid in whole
experiment

η random gain
fluctuations

per array x color x
print-tip group

per array x colorb systematic gain
factor

iid per arrayiid in whole
experiment

ε random
background

per array x color x
print-tip group

same for all probes
(per array x color)

a systematic
background



 Important issues for model fitting

Parameterization
variance vs bias

"Heteroskedasticity" (unequal variances)
⇒ weighted regression or variance stabilizing

transformation

Outliers
⇒ use a robust method

Algorithm
If likelihood is not quadratic, need non-linear

optimization. Local minima / concavity of
likelihood?



 Models are never correct, but some are useful

True relationship:
! != " + �

1 2 2

2
(0, 0.15 )y x x N

Model: linear dependence Model: quadratic dependence



 variance stabilizing transformations

Xu a family of random variables with
EXu=u, VarXu=v(u). Define

⇒ var f(Xu ) ≈ independent of u

1
( )

v( )

x

f x du
u

= !

derivation: linear approximation
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 variance stabilizing transformations
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 the “glog” transformation

- - - f(x) = log(x)

——— hs(x) = asinh(x/s)

( )
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2arsinh( ) log 1

arsinh log log 2 0lim
x

x x x

x x
!"

= + +

# # =

P. Munson, 2001

D. Rocke & B. Durbin,
ISMB 2002

W. Huber et al., ISMB
2002



raw scale log glog

difference

log-ratio

generalized

log-ratio

constant part
variance:

proportional part

 glog



Parameter estimation
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o maximum likelihood estimator: straightforward –
but sensitive to deviations from normality

o model holds for genes that are unchanged;
differentially transcribed genes act as outliers.

o robust variant of ML estimator, à la Least
Trimmed Sum of Squares regression.

o works well as long as <50% of genes are
differentially transcribed (and may still work otherwise)

iik ik ika a L != + +

ai per-sample offset

Lik local background 
provided by image 
analysis

!ik ~ N(0, bi
2s1

2)

“additive noise”

bi per-sample
normalization factor

bk sequence-wise
labeling efficiency

"ik ~ N(0,s2
2)

“multiplicative noise”

exp( )iik k ikb b b "=

ik ik ik iky a b x= +

measured intensity  =  offset  +    gain   *   true abundance



Least trimmed sum of squares regression
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minimize

- least sum of squares
- least trimmed sum of squares

P. Rousseeuw, 1980s



“usual” log-ratio
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(generalized
log-ratio)
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c1, c2 are experiment specific parameters (~level
of background noise)



 Variance Bias Trade-Off
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 Variance-bias trade-off and shrinkage estimators

Shrinkage estimators:
pay a small price in bias for a large decrease of variance, so
overall the mean-squared-error (MSE) is reduced.

Particularly useful if you have few replicates.

Generalized log-ratio:
= a shrinkage estimator for fold change

There are many possible choices, we chose “variance-
stabilization”:
+ interpretable even in cases where genes are off in some
conditions
+ can subsequently use standard statistical methods
(hypothesis testing, ANOVA, clustering, classification…)
with less worries about heteroskedasticity than with many
alternative methods



evaluation: effects of different data transformations
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 Normality: QQ-plot



 “Single color normalization”

n red-green arrays (R1, G1, R2, G2,… Rn, Gn)

within/between slides
for (i=1:n)

calculate Mi= log(Ri/Gi), Ai= ½ log(Ri*Gi)
normalize Mi vs Ai

normalize M1…Mn

all at once
normalize the matrix of (R, G)

 then calculate log-ratios or any other 
contrast you like



 What about non-linear effects
o Microarrays can be operated in a linear regime,
where fluorescence intensity increases proportionally
to target abundance (see e.g. Affymetrix dilution
series)

Two reasons for non-linearity:

o At the high intensity end: saturation/quenching. This
can and should be avoided experimentally -  loss of
data!

o At the low intensity end: background offsets, instead
of y=k·x we have y=k·x+x0, and in the log-log plot this
can look curvilinear. But this is an affine-linear effect
and can be correct by affine normalization. Non-
parametric methods (e.g. loess) risk overfitting and
loss of power.



 Non-linear or affine linear?



 Definitions

linear affine linear genuinely
non-linear
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