Explore biological graphs and networks using graph and Rgraphviz

Florian Hahne
Fred Hutchinson Cancer Research Center

A LIFE OF SCIENCE

Overview

- Introduction to graphs
- Graphs in biology
- Bioconductor software for graphs
- How to create graphs
- Plotting graphs using the Rgraphviz package

Graphs: definition

 a graph is a collection of vertices (V) and edges (E) between the vertices

- G=(V,E) to denotes the graph G
- nodes represent entities
- edges represent relationships
 - binary or continuous (edge weights)
 - edge types
 - directed or undirected

Useful abstraction to talk about relationships/interactions

Graphs: paradigms

- social sciences: social network analysis
- communications industry: telephone networks, computer networks
- marketing: relationships between people and the magazines they read, TV they watch, items they buy
- biology: pathways, co-citation, Gene Ontology, transcription factor, protein interactions

Graphs: applications

- knowledge representation: pathways, GO
- exploratory data analysis: mapping of gene expression data to a pathway graph
- statistical inference: comparing experimental measurements vs. true state of nature, random graphs, graph permutations

Uncertainty in biological graphs

- to date, the study of graphs has been primarily a mathematical study
- distinguish between the true, underlying property that you want to measure and the actual result of the measurement:
 - 1. False positive edges
 - 2. False negative edges
 - 3. Untested

Uncertainty is not usually considered in mainstream graph theory, but cannot be ignored in bioinformatics applications.

Graphs representations

node and edge list

from-to matrix

adjacency matrix

"c"

[1]

• Performance and convenience considerations

Coercion between representations

Graph types: pathways

Graphs types: multigraph

- in some situations we have a single set of nodes
 - genes in an organism
 - people of interest
 - airports
- and multiple relationships between them
 - co-regulated by transcription factors
 - flight connections
- these can be represented as multigraphs

Graphs types: bipartite graphs

- A bipartite graph is a graph where the set of graph vertices can be decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent.
 - genes to papers
 - proteins to protein complexes
 - proteins/genes to pathways

Graphs types: directed bipartite graphs

- one can also have directed edges in a bipartite graph
- such a graph may be very useful for representing chemical reactions, or metabolic reactions
- it can represent sequential aspects of a set of relationships

Graphs types: hypergraphs

- sometime we want to represent many to many relationships
- this can be handled by considering hypergraphs
- set of nodes and set of hyperedges (which again is a set of nodes)
- e.g., protein complex interactions

Graphs types: directed acyclic graph (DAG)

Useful for presenting hierarchies and partial orderings
 (e.g., in time, from general to special, from cause to effect)

GeneOntology:

Graph Software in BioConductor

- graph: basic class definitions, coercion, basic operations (union, subgraph, etc.)
- RBGL: an interface to the BOOST graph library of algorithms (L. Long, ETH Lusanne)
- Rgraphviz: an interface to Graphviz for graph layout algorithms
- Many packages using this infrastrucutre

The graph package

- graph classes:
 - graph; clusterGraph, distGraph, (hyperGraph)
- operations:
 - nodes; edges; subgraph
 - random graph generation
 - serialization; GXL, tulip etc
- representations:
 - node and edgeList
 - adjacency matrix (sparse matrix)
 - node sets/edge sets
- generation of random graphs
 - various algorithms

Interacting with graphs


```
> nodes(g)
[1] "s" "p" "q" "r"
> edges(g)
$s
[1]
   "p" "q"
$p
[1]
    "p" "q"
$q
[1]
    "p" "r"
$r
[1]
    "s"
> degree(g)
$inDegree
1 3 2 1
$outDegree
spqr
2 2 2 1
```


Interacting with graphs


```
> adj(g, c("b", "c"))
$b
[1] "b" "c"
$c
[1] "b" "d"
> acc(g, c("b", "c"))
$b
acd
3 1 2
$c
a b d
```


Graph manipulation


```
> g1 <- addNode("e", g)
> g2 <- removeNode("d", g)</pre>
> ## addEdge(from, to, graph, weights)
> g3 <- addEdge("e", "a", g1, pi/2)</pre>
> ## removeEdge(from, to, graph)
> g4 <- removeEdge("e", "a", g3)
> identical(g4, g1)
[1] TRUE
```

Intersection

- for any two graphs,
 - G_1 =(V, E_1) and
 - $-G_2=(V, E_2)$

defined on the same set of nodes (or vertices)

define the *intersection* of G₁ and G₂ to be the graph, G = (V, E), where e is in E if and only if e is in E₁ and in E₂

Complement and Union

- for any graph G=(V,E), define the complement of the graph to be those edges in the complete graph defined on V that are not in E
- for any two graphs $G_1=(V,E_1)$ and $G_2=(V,E_2)$, defined on the same set of nodes, define their union to be G=(V,E), where e is in E if e is in either E_1 or E_2 .

The RBGL package

- based on the BOOST graph library
- algorithms include:
 - shortest path (Dijkstra, Bellman-Ford etc.)
 - DFS and BFS
 - max-flow/min-cut algorithms
 - orderings
 - many more can be added

The RBGL package: connected components

Connected components

```
cc = connComp(rg)
table(listLen(cc))
1  2  3  4  15  18
36  7  3  2  1  1
```

Choose the largest component

```
wh = which.max(listLen(cc))
sg = subGraph(cc[[wh]], rg)
```

Depth first search

```
dfsres = dfs(sg, node = "N14")
nodes(sg)[dfsres$discovered]
[1] "N14" "N94" "N40" "N69" "N02" "N67" "N45" "N53" [9] "N28"
"N46
"
"N51" "N64" "N07" "N19" "N37" "N35" [17] "N48" "N09"
```

```
rg
```

The RBGL package: shortest paths


```
set.seed(123)
rg2 = randomEGraph (nodeNames, edges = 100)
fromNode = "N43"
toNode = "N81"
sp = sp.between(rg2,
   fromNode, toNode)
sp[[1]]$path
[1] "N43" "N08" "N88"
[4] "N73" "N50" "N89"
[7] "N64" "N93" "N32"
[10] "N12" "N81"
sp[[1]]$length
[1] 10
```


The Rgraphviz package

- an interface to Graphviz (<u>www.graphviz.org</u>)
- different layout algorithms
- graph rendering
- can handle multiple node shapes, edge designs, subgraphs

Creating graphs: manual


```
> library("graph")
> myNodes = c("s", "p", "q", "r")
> myEdges = list(
s = list(edges = c("p", "q")),
p = list(edges = c("p", "q")),
q = list(edges = c("p", "r")),
r = list(edges = c("s")))
> g = new("graphNEL", nodes = myNodes,
      edgeL = myEdges, edgemode =
      "directed")
```

Creating graphs: GO

goGraph function in the GOstats package

> tfG = GOGraph("GO:0003700", GOMFPARENTS)

Creating graphs: KEGG

KEGGgraph package:

- parsing of KEGG XML files (locally or from the KEGG webpage)
- KEGG-specific graph operations (merging, subsetting, identifier mapping
- visualization using Rgraphviz

Creating graphs: molecular interaction data

RpsiXML package:

- Retrieve data from molecular interaction databases (PSI-MI XML2.5)
- Convert into R graph objects
- bait-to-prey information: separateXMLDataByExpt()
 →list of graph objects
- protein complex data: buildPCHypergraph()
 →list of hypergraphs
- transform interaction graphs from one species to another using the Inparanoid database: graphConverter()

- Plotting of graphs is a two-step process:
 - 1) layout ← Graphviz library
 - 2) rendering

 R's plotting facilities
- The two steps are implemented in independent functions:
 - layoutGraph()
 - renderGraph()

A main title...

... and a subtitle

A main title...

... and a subtitle

Acknowledgements

- Seth Falcon
- Tony Chiang
- Vincent Carey
- Robert Gentleman
- Jeff Gentry
- Kasper Daniel Hansen
- Deepayan Sarkar

- Denise Scholtens
- Duncan Temple Lang
- David Zhang
- Elizabeth Whalen
- Li Long
- Wolfgang Huber
- Bioconductor developers