ShortRead for quality assessment and data manipulation

Martin Morgan Bioconductor / Fred Hutchinson Cancer Research Center Seattle, WA, USA

8-10 June 2009

Running examples

'ChIP-seq'

- Solexa GA-II; 36mer single-end reads
- Whole-genome coverage
- Preliminary 'ELAND' alignment

'Pooled'

- Solexa GA-II; 36mer single-end reads
- Pooled sample, high coverage of three genes
- Searching for polymorphisms SNP-like

'Barcode'

- Roche / 454 barcode; two zones
- Target length 200-300bp
- ightharpoonup pprox 20 bar codes (5' 8mers)

Input and Output

▶ Diverse input types, e.g., Solexa intensity, base call, alignment; MAQ text or binary, Bowtie; SOAP; fasta / fastq; tabular

```
> chip <- readAligned("./s_1_export.txt",
+ type = "SolexaExport")
> pool <- readAligend("./s_2.map", type = "MAQMap")
> bar <- read454("./454", ".*.fna$", ".*qual$")</pre>
```

- ► Ready access to data, leveraging standard R functionality
 - > reads <- sread(chip)</pre>
 - > qualities <- quality(chip)</pre>
 - > table(strand(chip))
- Output to fasta / fastq, tabular, genome browser tracks...

QA (quality assessment): reads per lane, Solexa GA-II

e.g., 'chip' data set

► Lane 5: internal		read	filtered	aligned
control	1	8043779	0.75	0.62
► Typically 7-10M reads	2	8665770	0.77	0.66
/ lane	3	7514774	0.80	0.68
▶ 75-85% survive	4	8030556	0.79	0.68
internal filtering,	5	11781447	0.72	0.84
50-65% align	6	11671931	0.59	0.21
Lane 6: something amiss!	7	8551614	0.77	0.65
	8	8181482	0.76	0.63

QA: base calls

- Uncalled nucleotides typically < 1%
- Expected nucleotide frequency sample-dependent

```
A C G T N

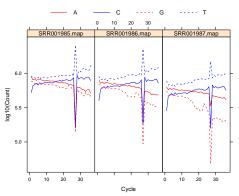
1 0.25 0.24 0.24 0.26 0.0150

2 0.26 0.25 0.25 0.24 0.0060

3 0.25 0.25 0.25 0.25 0.0061

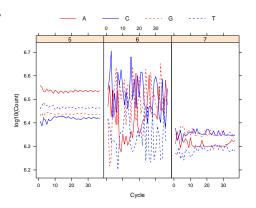
4 0.25 0.25 0.26 0.23 0.0065

5 0.29 0.22 0.23 0.25 0.0062

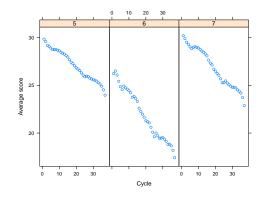

6 0.24 0.29 0.27 0.19 0.0063

7 0.24 0.26 0.26 0.23 0.0070

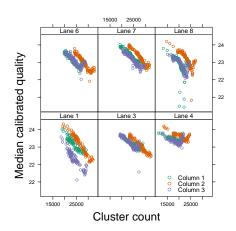
8 0.24 0.27 0.27 0.22 0.0069
```


QA: reagent exhaustion and unusual base calls

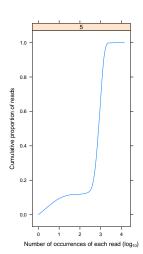
- 3' exhaustion directional trend in base call, e.g., due to reagent depletion; much less prevalent in GA-II
- Unusual base calls, e.g., due to machine malfunction
- Source: Chen et al., 2008, Cell 133: 1106-17. PMID: 18555785


QA: alphabet-by-cycle synchronicity

- ► Lane 5: control; very consistent base calls
- Lane 6: reads dominated by relatively few sequences
- Lane 7: typical sample results; early synchronicity
- ► GA-I: first 1-2 bases show strong bias

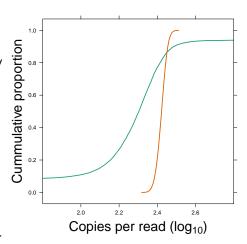

QA: tail quality

- Average base call quality (phred-like score) declines with cycle
- Sometimes abrupt changes (not illustrated)
- Often lane-specific, due to sample preparation and processing.
 Consequences for downstream analysis, e.g., 'normalization'? processing

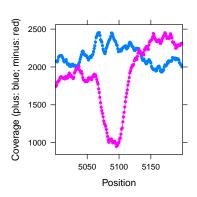

QA: quality / quantity trade-off

 Quality of base calls inversely related to quantity of reads

QA: frequent sequences


- ► Control lane, $\phi X174$ deep coverage
- ► Left: unique or nearly unique sequencing errors, 10-15%
- Right: highly repetitive, 5-10%

4 日 N 4 個 N 4 国 N 4 国 N


QA: frequent sequences

- ► Control lane, $\phi X174$ deep coverage
- ► Left: unique or nearly unique sequencing errors, 10-15%
- Right: highly repetitive, 5-10%
- Over-dispersion relative to uniform sampling: mappable genome, GC content, amplification bias, . . .

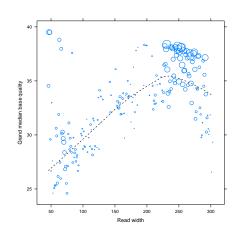
QA: alignment odditities

- pool: high coverage of small regions
- Close inspection: regions of unexpected low coverage.
 Single and double strand.
- Explanations: unmappable (e.g., repetitive sequence); primer similarity (filtered by upstream analysis); palindromes (failed sequencing PCR); poorly amplified (e.g., GC-rich)

ShortRead quality assessment report

- ▶ HTML quality assessment reports from diverse inputs
- Augments manufacturer reports
- ▶ Behind-the-scenes: the qa function distributes lane-level computations across MPI nodes, if available.

Examples


- Wang et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008 Nov 27;456(7221):470-6. PMID: 18978772
- http://cbsresource.fhcrc.org/~mtmorgan/proj/ GSE12946/qa_090502/

```
> qa <- qa("./GSE12946", ".*.gz", type = "fasta")
```

- > rpt <- report(qa)
- > browseURL(rpt)

454 QA: read length / read quality

- 'barcode' data set, one zone
- Larger symbols indicate more reads
- ▶ Length and quality variation → quality gating

Common quality assessment issues

Illumina / Solexa

- Sample preparation artifacts, especially PCR prior to GA-II
- ▶ Base quality degradation, e.g., reagent exhaustion
- Read quality / quantity trade-off
- Nucleotide / dinucleotide bias?
- Sample-specific issues

Roche / 454 (preliminary)

- ► Terminal base quality
- Length heterogeneity
- Early indels