Basic ChIP-Seq Data Analyis

June 6, 2009
Contents
1 Introduction 1
1.1 Example data 1
1.2 The mouse EeNOME v v v v et e e e e e e e e e e e e e 2
2 Coverage, islands, and depth 2
2.1 Processing multiple lanes 4
2.2 Peaks . . . Lo e 6
3 Version information 9

1 Introduction

Our goal in this section of the course is to describe the use of Bioconductor software to perform some basic
tasks in the analysis of ChIP-Seq data. We will use tools from the lranges and ShortRead packages, and also
use the lattice package for visualization. The next release of Bioconductor is set to include a new package called
chipseq that will provide a more high-level interface to common tasks relevant for ChIP-Seq data analysis.

> library("ShortRead")
> library("lattice")

1.1 Example data

The data folder contains two data files, each containing data for three chromosomes from one Solexa lane, one
from a CTCF mouse ChIP-Seq, and one from a GFP mouse ChIP-Seq (a background control). The raw reads
were aligned to the reference genome (mouse in this case) using an external program (MAQ), and the results
read in using the readAligned function in the ShortRead package. All duplicate reads were removed and a
quality score cutoff of 5 was used.

> load("../data/ctcf.rda")
> load("../data/gfp.rda")

ctcf and gfp are objects of class AlignedRead.

> ctcf

class: AlignedRead
length: 484957 reads; width: 24 cycles

chromosome: chrl10 chrl0 ... chril2 chri2
position: 3011944 3012936 ... 121253739 121255103
strand: - + ... + +

alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24

> gip

class: AlignedRead
length: 316176 reads; width: 24 cycles

chromosome: chri10 chrl0 ... chril2 chri2
position: 3002512 3008979 ... 121255999 121256287
strand: + - ... + +

alignQuality: IntegerQuality
alignData varLabels: nMismatchBestHit mismatchQuality nExactMatch24 nOneMismatch24

Further information on each alignment can be obtained using various accessor functions whose names are hinted
at in the summarized display. For example,

> table(strand(ctcf))

- + *
240633 244324 0

> table(chromosome (gfp))

chr10 chrll <chri2
104970 120707 90499

1.2 The mouse genome

The data we have refer to alignments to a genome, and only makes sense in that context. Bioconductor has
genome packages containing the full sequences of several genomes. The one relevant for us is

> library("BSgenome.Mmusculus.UCSC.mm9")
> mouse.chromlens <- seqlengths(Mmusculus)
> head(mouse.chromlens)

chri chr2 chr3 chrd chrb chr6
197195432 181748087 159599783 155630120 152537259 149517037

We will only make use of the chromosome lengths, but the actual sequence will be needed for motif finding, etc.

2 Coverage, islands, and depth

Extending reads Solexa gives us the first few (24 in this example) bases of each fragment it sequences, but
the actual fragment is longer. By design, the sites of interest (transcription factor binding sites) should be
somewhere in the fragment, but not necessarily in its initial part. Although the actual lengths of fragments
vary, extending the alignment of the short read by a fixed amount in the appropriate direction, depending on
whether the alignment was to the positive or negative strand, makes it more likely that we cover the actual site
of interest. We will extend the aligned regions to a length of 150 bases.

The extended regions can be summarized by their coverage, that is, how many times each base in the genome
was covered by one of them.

> cov.ctcf <- coverage(ctcf, width = mouse.chromlens, extend = 126L)
> cov.ctcf

A GenomeData instance
chromosomes(3): chri10 chrill chri2

> cov.ctcf$chrio

'integer' Rle instance of length 126975352 with 310771 runs
Lengths: 150 882 86 53 3 26 8 4 ...
Values : 1012345678 ...

For efficiency, the result is stored in a run-length encoded (Rle) form.
The regions of interest are contiguous segments of non-zero coverage, also known as islands. Islands can be
identified by slicing the coverage at a depth of 1:

> islands <- slice(cov.ctcf$chriO, lower = 1)
> islands

Views on a 126975352-1length Rle subject

views:
start end width
[1] 1 150 150 1111111111111 111111...]
[2] 1033 1403 371 1111111111111 111111...]
[3] 6647 6796 150 [1111111111111111111...]
[4] 8949 9098 150 1111111111111 111111...]
[5] 11202 11351 150 1111111111111 111111...]
[6] 11423 11677 255 1111111111111 111111...]
[7] 20769 20918 150 1111111111111 111111...]
[8] 25704 25853 150 1111111111111 111111...]
[9] 26560 26709 150 1111111111111 111111...]
[99715] 126961408 126961640 233 [1122222222222222222...]
[99716] 126963046 126963195 150 1111111111111 111111...]
[99717] 126963758 126963907 150 1111111111111 111111...]
[99718] 126966852 126967001 150 1111111111111 111111...]
[99719] 126967442 126967704 263 [1111111111111111111...]
[99720] 126968486 126968635 150 1111111111111 111111...]
[99721] 126970140 126970289 150 1111111111111 111111...]
[99722] 126970563 126970712 150 1111111111111 111111...]
[99723] 126975203 126975352 150 1111111111111 111111...]

For each island, we can compute its area, i. e. the sum of the coverage values within the island, and the maximum
coverage value (here, we use the function head to display results only for the first few islands).

> viewSums (head(islands))

[1] 150 2100 150 150 150 300
> viewMaxs (head(islands))

[1] 113 1 1 1 2

> nread.tab <- table(viewSums(islands) / 150L)
> depth.tab <- table(viewMaxs(islands))
> head(aread.tab, 10)

1 2 3 4 5 6 7 8 9 10
80172 13548 2756 797 324 209 185 119 116 93

> head(depth.tab, 10)

1 2 3 4 5 6 7 8 9 10
80230 14750 2124 472 240 184 153 121 115 107

Exercise 1
Repeat these steps for the gfp dataset.

2.1 Processing multiple lanes

Although data from one chromosome within one lane is often the natural unit to work with, we typically want to
apply any procedure to the data from all chromosomes and from all lanes. We can recursively apply a summary
function to all chromosomes using the lapply function. Here is a simple summary function that computes the
frequency distribution of the number of reads per island.

> islandReadSummary <- function(cov)

+ {

+ s <- slice(cov, lower = 1)

+ tab <- table(viewSums(s) / 150)

+ ans <- data.frame(nread = as.numeric (names(tab)),
+ count = as.numeric(tab))

+ ans

+

}
Applying it to our test-case, we get
> head(islandReadSummary (cov.ctcf$chri0))

nread count
1 80172
2 13548
3 2756
4 797
5 324
6 209

O WN -

We can now use it to summarize the full dataset.

> nread.islands <- lapply(cov.ctcf, islandReadSummary)
> nread.islands <- do.call(make.groups, nread.islands)
> head(nread. islands)

nread count which

chr10.1 1 80172 chri0
chr10.2 2 13548 chri10
chr10.3 3 2756 chril0
chr10.4 4 797 chri0
chr10.5 5 324 chri0
chr10.6 6 209 chri10

Note the use of the make.groups function from the lattice package, which combines several data frames into
a single data frame that includes a further column which indicating which of the data frames each row came
from.

> xyplot(log(count) ~ nread | which, data = nread.islands,
+ subset = (nread <= 20), pch = 16, type = c("p", "g"))

5 10 15 20
| | | | | | | | | | | |
chrl0 chril chrl2
— 104 - -
§ .
o 8- . . L
o . .
4 - ,.......... e °®°® 0000 'o'-..ou... . F
T T T T T T T T T T T
5 10 15 20 5 10 15 20
nread

If reads were sampled randomly from the genome, then the null distribution of the number of reads per
island would have a geometric distribution; that is,
P(X

k) =p"'(1-p)

where p is the probability a randomly drawn read starts within a given interval of length 150. In other words,
log P(X = k) is linear in k. Although our samples are not random, we can estimate p if we assume that the

islands with just one or two reads are representative of the null distribution.

> xyplot(log(count) ~ nread | which, data = nread.islands,
+ subset = (nread <= 20),
+ pch = 16,
+ panel = function(x, y, ...) {
+ panel.grid(h = -1, v = -1)
+ panel.lmline(x[1:2], y[1:2], col = "black")
+ panel.xyplot(x, y, ...)
+ 3
5 10 15 20
| | | | | | | | | | | |
chrl0 chrll chrl2
10
€
g -
& . \ ¢
8 6 <, . 1 . .
4 --.......‘... e L eeee .'.-........ ;i
T T T T T T T T T T T T
5 10 15 20 5 10 15 20
nread

We can create a similar plot of the distribution of depths.

> islandDepthSummary <- function(cov)

+1{

+ s <- slice(cov, lower = 1)

+ tab <- table(viewMaxs(s))

+ ans <- data.frame(depth = as.numeric(names(tab)), count =
+ ans

+ }

as.numeric(tab))

> depth.islands <- lapply(cov.ctcf, islandDepthSummary)
> depth.islands <- do.call(make.groups, depth.islands)
> xyplot(log(count) ~ depth | which, depth.islands,

+ subset = (depth <= 20), pch = 16,

+ panel = function(x, y, ...) {

+ panel.gridth = -1, v = -1)

+ lambda <- 2 * exp(y[2]) / exp(y[1])

+ null.est <- function(xx) {

+ xx * log(lambda) - lambda - lgamma(xx + 1)
+ }

+ log.N.hat <- null.est(1) - y[1]

+ panel.lines(1:10, -log.N.hat + null.est(1:10), col = "black")
+ panel.xyplot(x, y, ...)

+ P

This assumes that the null distribution of depths has a Poisson distribution, which is not strictly true, but seems
to give a reasonble fit.

5 10 15 20
| | | | | | | | | | | |
chrl0 chrll chrl2
_ 10+ -
g
g 87 B
L .
4 | L[] e g0 0 . —etd . e o 4 . L'} L Y ' . ® .. 1 [
T T T T 1 T T T T T T T
5 10 15 20 5 10 15 20
depth

Exercise 2

Produce similar plots for the gfp dataset. What qualitatitve differences do you see? Based on your findings,
what would be a reasonbale cutoff for deciding that the depth of an island is too high to be explained by chance,
and hence is likely to contain a C'T'CF binding site?

2.2 Peaks

Going back to our example of chrl0 of the first sample, let us define “peaks” to be contiguous regions of the
genome where coverage is 8 or more. (More sophisticated, model-based or adaptive algorithms exist, and we
refer to the literature in this active area of research).

> peaks <- slice(cov.ctcf$chri0, lower = 8)
> peaks

Views on a 126975352-length Rle subject

views:
start end width
[1] 1146 1287 142 [8 8 8 8 9 10 11 11 11 11 11 11 11 ...]
[2] 222982 223074 93 [8 8 8 8 8 8 8 8 8 8 8 8 8 ...]
[3] 258257 258261 5 [8 8 8 8 8]
[4] 258266 258443 178 [8 8 8 8 8 9 9 9 9 9 910 11 ...]

[5]
[6]
[7]
[8]
[9]
[1746]
[1747]
[1748]
[1749]
[1750]
[1751]
[1752]
[1753]
[1754]

265866
449049
606027
639945
1298612

125974702
125974827
125974835
126047124
126518227
126521514
126653571
126654948
126738854

265999
449111
606130
640155
1298858

125974806
125974830
125974835
126047135
126518373
126521564
126653753
126655088
126738991

134
63
104
211
247
105
4

1
12
147
51
183
141
138

8 8 8 8 8 8 8 8 8 8 9 ..
8 8 8 8 8 8 8 8 8 8 8 ...
8 8 8 8 9 9 9 9 9 9 9

10 10 10 12 12 12 12 12 12 12 12 ...

9 10 10 10 11 11 11 11 11 11 12 ...

e e W e W e W |
0 00 0 0 00
© 00 00 0

[68888888888888888889...]
[8 8 8 8]

(8l

[8 8888
[8 8

[68 88838
[8 8 8

[6 8888
[8 8 8

8 8 8]
8 8 9
8 88 8 8 8 ..
8 910 10 11 11 11 ...]
8 8 88
9 9

8 8
8
8 8
8
8 8
8

8
8

8 8
9

0 00 00 0 0
0 00 00 0 0

Interesting properties of peaks are their maximum depth and area under the peak (a relative measure of how
localized the peak is).

> peak.depths <- viewMaxs (peaks)
> peak.areas <- viewSums (peaks)

> xyplot(peak.areas ~

10000

8000

peak.areas

4000

2000

6000

peak.depths)

oo

Exercise 3
Produce a similar plot for the gfp dataset. What differences do you see, particularly in terms of the number of
peaks and the distribution of depths?

T T T T
30 40 50 60

peak.depths

We can order the peaks by depth

> wpeaks <- tail(order(peak.depths), 4)
> peaks [wpeaks]

Views on a 126975352-1length Rle subject

views:
start end width
[1] 72283211 72283502 292 [8 8 8 8 8 8 8 8 810 10 10 10 11 ...]
[2] 123344361 123344655 206 [8 8 8 8 8 8 8 10 10 10 10 11 11 11 ...]
[3] 74863897 74864200 304 [8 8 9 9 9 9 10 10 11 10 10 10 10 10 ...]
[4] 77738717 77739014 208 [8 8 8 8 8 8 9 10 11 12 13 13 13 13 ...]
and plot individual peaks using this function:
> coverageplot <- function (peaks, xlab = "Position", ylab = "Coverage", ...)
+1{
+ posl <- seq(start(peaks[1]), end(peaks[1]))
+ covl <- as.integer(peaks[[1]])
+ posl <- c(head(posl, 1), posl, tail(posl, 1))
+ covl <- ¢(0, covl, 0)
+ xyplot(covl ~ posl, ..., panel = panel.polygon,
+ col = "lightgrey", xlab = xlab, ylab = ylab)
+
+ F
> coverageplot (peaks [wpeaks[1]])
| | | | | | |
60 -
50 -
40 -
o
g
5 307 =
>3
o
]
20 =
10 o
O — —
T T T T T T T
72283200 72283250 72283300 72283350 72283400 72283450 72283500

Position

Exercise 4

How does the amount by which each read is extended affect the analysis? In calls to coverage, we have used
extend=126L to get a total length of 150 for each read. Try lengths of 100 and 200 and see how the results
change.

3 Version information

R version 2.9.0 (2009-04-17), x86_64-unknown-1linux-gnu

Locale: LC_CTYPE=it_IT.UTF-8;LC_NUMERIC=C;LC_TIME=it_IT.UTF-8;LC_COLLATE=it_IT.UTF-8;LC_MONETARY=C;LC.
8;LC_PAPER=1t_IT.UTF-8;LC_NAME=C;LC_ADDRESS=C; LC_TELEPHONE=C; LC_MEASUREMENT=it_IT.UTF-8;LC_IDENTIFIC

Base packages: base, datasets, graphics, grDevices, methods, stats, utils

Other packages: Biostrings 2.12.5, BSgenome 1.12.2, BSgenome.Mmusculus.UCSC.mm9 1.3.11, fortunes 1.3-
6, IRanges 1.2.2, lattice 0.17-25, ShortRead 1.2.1

Loaded via a namespace (and not attached): Biobase 2.4.1, grid 2.9.0, hwriter 1.1

	Introduction
	Example data
	The mouse genome

	Coverage, islands, and depth
	Processing multiple lanes
	Peaks

	Version information

