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Biological Motivation

« Chromatin-immunopreciptation followed by
sequencing (ChlP-seq) is a powerful tool for:
epigenetics
- histone modifications
- methylation

locating transcription factor (TF) DNA
iInteractions

- HTS technologies have made a number of
experiments possible

* my interest is in somewhat complex ones
(time-course; multi-factor experiments)
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Experimental Design
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‘ Sonicate or digest chromatin
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CZC’I 2 Immunopreclpltate reverse crosslinking, purify DNA

Myotubes

Chromatin IP with
anti-Myod antisera
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Computational Challenges

- we are studying MyoD, a member of the
bHLH family of TFs, and CTCF
« MYOD bind to an EBOX; CANNTG
there are lots of potential binding sites
14 million in mice; 16 million in humans
do different members have different sequence
specificity

» CTCF: 11 zinc finger protein long
binding site
Long complex PWM
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Computational Challenges

* what role do co-factors play

* experiments with them ko-d or
silenced

* time course
» other data
methylation
Histone modifications
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Workflow

* Preprocessing

fragment length estimation; finding the most
likely binding site

estimate background; do you need a control
lane? Which peaks represent binding?

did we sequence deeply enough?

* tools to perform these tasks are in the
chipseq package

« comparison of complex experiments is on
going research

» adding genomic context: IRanges/
rtracklayer etc
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Observed Data

we exclude (but ultimately won’t) reads that
map to more than one location

we exclude reads that map to the same start
location and orientation (since in our setting
we believe that these are likely due to PCR
bias)

this forces us to think a bit about the
mappable genome: that part of the genome
we could have mapped to

so for 36nt reads we want to know how much of
the genome is unique
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Observed Data

» each fragment contributes a read, of some
length (36mers for much of our data), but
the real fragment of DNA was likely longer
and the protein DNA interaction was
somewhere on that longer fragment

single end reads: we read a short sequence from
one end

paired end reads: we get a short sequence from
both ends

« XSET: eXtended single-end tags

how much should they be extended
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Notation

» Island: a contiguous section covered by
reads

* singleton: an island covered by 1 read
_—_b —
 island size: number of reads in the island

* Island depth: maximum number of reads
that overlap

* Inter-island gap: the number of nt between
two islands
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Estimating Fragment length

* there are several methods in the literature
for estimating the mean fragment length
Kharchenko et al is quite good
Jothi et al is quite bad

* our method:

choose a lower bound, w, for the mean fragment
length; extend all reads by w

shift each negative strand read by an amount u

compute the total number of bases covered by
any read

find the value u,,;, of u for which the number of
bases covered is a minimum

estimate the mean length by w + u,..

HUTCHINSON
CENTER

A LIFE OF SCIENCE




Estimating the fragment length

* mean fragment length is not such a good thing

something more like the 90%-ile of the
distribution is likely to be more useful

with the xSet method we want to extend and
cover the binding site

« when you have a known TF you can (and probably
should) make use of its known PWM to find
putatitive binding sites

 then for each read that maps to the genome you
can find the nearest potential binding site, and from
this we get a set of truncated estimates for L

- and then we can estimate percentiles of that
distribution
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Comparison of Methods

CTCF_all CTCF_1 CTCF_2 CTCF_3 fibroblast myotube
MLE- ] 3 & ¥ o+ ]
MLE+ i ’ & & o L D
Correlation | 1 ] ] b )
Coverage | v ] L i -+
SISSR L) * » - L]
GFP_all GFP_1 GFP_2 GFP_3 GFP_4 myo_control
MLE-
MLE+
Correlation | =% Tpr= " "lefaa - T o, " Y
Coverage |* == LI I [ TR . L R L]
SISSR L | i | + 4 2 »

r o1 1 11 T 111111 1 1. 1 1 1111 1T 1 Ttr 1T 1 T T 17 17T T T T1
50100 200 300 50100 200 3060100 200 3060100 200 3060100 200 3060100 200 300

Estimated mean fragment length in observed data

FRED
CANCER RESEARCH




Foreground vs Background

we observe both reads that correspond to

foreground: they represents or some kind of
affinity (not necessarily just what we want)

background:low density reads from throughout
the genome

we want to separate these two types of signal

the background varies within a genome and
between individuals

finding foreground is not the same problem as
finding the most likely binding site

some peaks cover multiple binding sites
some peaks cover no TF binding sites
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Background Varies
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Null model

null model: assume reads are distributed
uniformly along the genome (Lander and
Waterman, 1988)

if all XSETs are of length L and let a. denote the
probability of a new XSET starting at any base

then we can easily show that the number of
reads in an island follows a Geometric
distribution P(N=k) = p¥1(1-p)

where p =1 - (1- a)-

but we should only use background reads!

we propose estimating p by using islands of
size 1 or 2; and this gives us an estimate of a
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Peak Discovery

given the Poisson model for background,
and a, we can develop criteria for peak
heights

we can then select a cut-off based on the
probability that a peak of height k is unlikely
given the background rate

for de novo peak detection there are some
problems, since the data also determine the
peaks

we did some simulation to show the effect is
not so large, and we can use the simple
Poisson model
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Estimation of the background
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Did we sequence deeply enough?

* we can divide the genome into three
categories

foreground, background, empty

» foreground is not informative about

whether you have sequenced deeply
enough

» background is informative
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Deep Enough?

partition the data into k groups

add each group sequentially, and after it is
added compute proportion covered by
foreground (peak >=I); background
(covered by reads, count < |); empty (not
covered)

for the next group we can estimate the
expected number of reads that will cover
each of these regions

If we have undiscovered foreground, then
we will see that the number of reads that
map to background is larger than expected.
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Deep Enough?

Chromosome: chr1

= estimate=G_mappable * alpha/n

3 estimate=proportion of reads in background at cutoff=9
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adjusted fg reads / total reads
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Where did the TF bind?

‘we should get reads from both the + and - strand

‘the reads on the - strand should be upstream of
the binding site

those on the + strand should be downstream

single

binding
site This is the likely/

binding site

multiple

b.inding now things are
sites less clear
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