Sequence Alignment of Short Read Data using Biostrings

Patrick Aboyoun
Fred Hutchinson Cancer Research Center
Seattle, WA 98008

27 July 2009

Contents

(1__Introduction| 1
2
|3 Finding Possible Contaminants in the Short Reads| 3
4 Aligning Bacteriophage Reads| 16
(5 Session Informationl 18

1 Introduction

While most researchers use sequence alignment software like ELAND, MAQ, and Bowtie to perform the bulk
of short read mappings to a target genome, BioConductor contains a number of string matching/pairwise
alignment tools in the Biostrings package that can be invaluable in answering complex scientific questions.
These tools are naturally divided into four groups (matchPDict, vmatchPattern, pairwiseAlignment, and
OTHER) that contain the following functions:

matchPDict : matchPDict, countPDict, whichPDict, vmatchPDict, vcountPDict, vwhichPDict

vmatchPattern : matchPattern, countPattern, vmatchPattern, vcountPattern, neditStartingAt, nedi-
tEndingAt, isMatchingStartingAt, isMatchingEndingAt

pairwiseAlignment : pairwiseAlignment, stringDist

OTHER : matchLRPatterns (finds singleton paired-end matches), trimLRPatterns (trims left and/or
right flanking patterns), matchProbePair (finds theoretical amplicons), matchPWM (matches using a
position weight matrix)

For detailed information on any of these functions, use help(< function name >>) from within R.

Of the functions listed above, the pairwiseAlignment function stands out for its production of the
most complex output object. When producing more than just the alignment score, this output (either
a PairwiseAlignedXStringSet or a PairwiseAlignedFizedSubject) can be processed by a number of helper
functions including those listed in Tables 1 & 2 below.

Table 3 shows the relative strenghts and weaknesses of the three main functional families and hints at
how they can be used sequentially to find answers to multi-faceted questions.

Function Description

L Extracts the specified elements of the alignment object

alphabet Extracts the allowable characters in the original strings

compareStrings Creates character string mashups of the alignments

deletion Extracts the locations of the gaps inserted into the pattern for the alignments
length Extracts the number of patterns aligned

mismatchTable Creates a table for the mismatching positions

nchar Computes the length of “gapped” substrings

nedit Computes the Levenshtein edit distance of the alignments

indel Extracts the locations of the insertion & deletion gaps in the alignments
insertion Extracts the locations of the gaps inserted into the subject for the alignments
nindel Computes the number of insertions & deletions in the alignments

nmatch Computes the number of matching characters in the alignments

nmismatch Computes the number of mismatching characters in the alignments

pattern, subject | Extracts the aligned pattern/subject

pid Computes the percent sequence identity

rep Replicates the elements of the alignment object

score Extracts the pairwise sequence alignment scores

type Extracts the type of pairwise sequence alignment

Table 1: Functions for PairwiseAlignedXStringSet and PairwiseAlignmentFizedSubject objects.

2 Setup

This lab is designed as series of hands-on exercises where the students follow along with the instructor. The
first exercise is to load the required packages:

Exercise 1
Start an R session and use the 1ibrary function to load the ShortRead software package and BSgenome.Mmusculus.UCSC.mm9
genome package along with its dependencies using the following commands:

> suppressMessages (1ibrary ("ShortRead"))
> library("BSgenome.Mmusculus.UCSC.mm9")

Exercise 2
Use the packageDescription function to confirm that the loaded version of the Biostrings package is >=
2.13.28 and the IRanges package is >= 1.3.44.

> packageDescription("Biostrings")$Version

[1] "2.13.29"

> packageDescription("IRanges")$Version

[1] "1.3.44"

Seek assistance from one of the course assistants if you need help updating any of your BioConductor packages.
This lab also requires you have access to sample data.

Exercise 3
Copy the data from the distribution media to your local hard drive. Change the working directory in R to
point to the data location.

> setwd(file.path("path", "to", "data"))

Function Description

aligned
as.character
as.matrix
consensusMatrix
consensusString
coverage
mismatchSummary
summary
toString

Views

Creates an XStringSet containing either “filled-with-gaps” or degapped aligned strings
Creates a character vector version of aligned
Creates an “exploded” character matrix version of aligned
Computes a consensus matrix for the alignments
Creates the string based on a 50% + 1 vote from the consensus matrix
Computes the alignment coverage along the subject
Summarizes the information of the mismatchTable
Summarizes a pairwise sequence alignment

Creates a concatenated string version of aligned
Creates an XStringViews representing the aligned region along the subject

Table 2: Additional functions for PairwiseAlignedFizedSubject objects.

matchPDict

vmatchPattern

pairwiseAlignment

Utilizes a fast string matching
algorithm for multiple patterns.

Uses a fast string matching
algorithm for multiple subjects.

Not practical for long strings.

Finds all occurrences with up to
the specified # of mismatches.

Finds all occurrences with up to
the specified # of mismatches /
edit distance.

Returns only one of the best
scoring alignment.

Supports removal of repeat masked
regions.

Supports removal of repeat masked
regions.

Cannot handle masked genomes.

Produces limited output:
of times a pattern matches and
where they occur.

Produces limited output:
of times a pattern matches and
where they occur.

Allows various summaries of
alignments.

Does not support insertions or
deletions.

Supports insertions and
deletions.

Supports insertions and
deletions.

Uses a mismatch penalty scheme.

Uses a mismatch penalty or edit
distance penalty scheme.

Provides a flexible alignment
framework, including quality-based
scoring.

Table 3: Comparisons of string matching/alignment methods.

3 Finding Possible Contaminants in the Short Reads

The raw base-called sequences that are produced by high-throughput sequencing technologies like Solexa
(Illumina), 454 (Roche), SOLiD (Applied Biosystems), and Helicos tend to contain experiment-related con-

taminants like adapters and PCR primers as well as “phantom” sequences like poly As.

Functions like

countPDict, vcountPattern, and pairwiseAlignment from the Biostrings package allow for the discovery
of these troublesome sequences.

These raw base-called sequences can be read with functions like the readXStringColumns function and
processed with functions like tables, which find the most common sequences, from the ShortRead package.
While this course will be using pre-processed data for this exercise, the code to find the top short reads looks

something like:

> library(ShortRead)
> sp <- list(experimentl = SolexaPath(file.path("path", "to", "experimentl1")),
+ experiment2 = SolexaPath(file.path("path", "to", "experiment2")))

> patSeq <- paste("s_", 1:8, "_.*_seq.txt", sep = "")
> names (patSeq) <- paste("lane", 1:8, sep = "")
> topReads <- lapply(structure(seq_len(length(sp)), names = names(sp)),
+ function(i) {
print (experimentPath(sp[[i]]))
do.call(SplitDataFrameList, lapply(structure(seq_len(length(patSeq)),
names = names (patSeq)), function(j, n = 1000) {
cat ("Reading", patSeq[[jl], "...")
x <- tables(readXStringColumns(baseCallPath(sp[[i]]),
pattern = patSeql[[j]], colClasses = c(rep(list(NULL),
4), 1list("DNAString")))[[1]], n = n)[["top"]]
names (x) <- chartr("-", "N", names(x))
cat("done.\n")
DataFrame(read = DNAStringSet(names(x)), count = unname (x))

»)
»

+ + + + + + + 4+ + + + 4+

Exercise 4
Use the load function to load the pre-processed top short reads object from the data directory into your R
session.

> load(file.path("data", "topReads.rda"))

Exercise 5
Use the class function to find the class of the topReads object and then print out the object.

> class(topReads)
[1] "list"
> topReads

$experimentl
SimpleSplitDataFrameList: 8 elements
names(8): lanel lane2 lane3 lane4 lane5 lane6 lane7 lane8

$experiment2
SimpleSplitDataFramelList: 8 elements
names(8): lanel lane2 lane3 lane4 lane5 lane6 lane7 lane8

Exercise 6
The topReads object is a list of SimpleSplitDataFrameList objects. Extract the data for experiment 1, lane
1 to find out its content.

> topReads[["experiment1"]][["lanel"]]

DataFrame: 1000 rows and 2 columns
colnames (2): read count

> head(topReads[["experiment1"]][["lane1"]][["read"]])

A DNAStringSet instance of length 6
width seq
[1] 36 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[21 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA
[31 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT
[4]1 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGAT
[5] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAT
[61 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTATAT

> head(topReads[["experiment1"]][["lane1"]][["count"]])

[1] 81237 62784 57519 16286 11849 10927

Exercise 7
Extract the most common read in each of the 8 lanes for both experiments by nesting an lapply function
call in an sapply function call.

> sapply(topReads, lapply, function(x) as.character(x[["read"]1]1[[1]1))

experimentl
lanel "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
lane2 "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
lane3 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"
lane4 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"
laneb5 "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
lane6 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"
lane7 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"
lane8 "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"

experiment2
lanel "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"
lane2 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"
lane3 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"
lane4 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"
lane5 "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
lane6 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"
lane7 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"
lane8 "GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA"

The pre-processed data, topReads, loaded in the previous exercise, are in a list of SimpleSplitDataFrameList
objects that represent the read and it corresponding number of occurrences. At a high level, the list elements
represent two Solexa experiments and the SimpleSplitDataFrameList elements representing the 8 lanes of a
Solexa run. In both of these experiments, lanes {1-4, 6-8} contain mouse-related experimental data and lane
5 contains data from bacteriophage ¢X174.

The sapply function call in the above example, which extracts the most prevalent sequence in each of
the lanes, shows that the top read is either GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA or all As. Given that
the former sequence is the 33 base pairs of Solexa’s genomic DNA /ChIP-seq adapter plus 3 As and the latter
sequence of 36 As, it would appear that As are called when there is little information about a particular
base.

Finding Poly N Sequences

When data are acquired through the ShortRead package, poly N sequences can be removed using the polyn-
Filter function. Since we are operating on pre-processed data, we will have to remove poly N sequences
using more rudimentary tools.

Exercise 8
Use the following steps to find the top sequences with with at least 34 nucleotides of a single type (A, C, T,
G):

1. Extract the named vector corresponding to the top sequence counts for experiment 1, lane 1.
2. Use the alphabetFrequency function to find the alphabet frequencies of the reads.

3. Use the parallel max, pmax, function to find the maximum number of occurrences for each of the four
bases.

4. Create a DNAStringSet whose elements contain at least 34 bases of a single type.

lanel.1TopReads <- topReads[["experiment1"]][["lanel"]]

alphabetCounts <- alphabetFrequency(lanel.l1TopReads[["read"]],
baseOnly = TRUE)

lanel.1MaxLetter <- pmax(alphabetCounts[, "A"], alphabetCounts/[,
"Cc"], alphabetCounts[, "G"], alphabetCounts[, "T"])

lanel.1PolySingles <- lanel.l1TopReads[["read"]][lanel.1MaxLetter >=
34]

length(lanel.1PolySingles)

VvV + VvV + V + VvV

[1] 115
> head(lanel.1PolySingles)

A DNAStringSet instance of length 6
width seq
[1] 36 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
[2] 36 CCcceceeccecceccecceccecceeccecceeccee
[31 36 AAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAA
[41 36 AAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAA
[s51 36 AAAAAAAAAAAAAAAAAAAGAAAAAAAAAAAAAAAA
[61 36 AAAAAAAAAAAAAAAAAAATAAAAAAAAAAAAAAAA

Finding Adapter-Like Sequences

While the Solexa’s adapter is known not to map to the mouse genome,

Exercise 9
Show that Solexa’s DNA /ChIP-seq adapter doesn’t map to the mouse genome.

> adapter <- DNAString("GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG")

Search the Mmusculus genome by first setting up a BSParams parameter object that utilizes the countPat-
tern function and then using the bsapply function to loop over the chromosomes. For more information,
type help ("BSParams") and help("bsapply").

> bsParams <- new("BSParams", X = Mmusculus, FUN = countPattern,
+ simplify = TRUE)
> bsapply(bsParams, pattern = adapter)

chril chr2 chr3 chr4 chr5 chré6
0 0 0 0 0 0
chr7 chr8 chr9 chrio chril chri2

0 0 0 0 0 0

chri3 chri4 chrib chri6é chri7 chri8

0 0 0 0 0 0

chri9 chrX chrY chrM chrl_random chr3_random

0 0 0 0 0 0

chr4_random chr5_random chr7_random chr8_random chr9_random chrl3_random

0 0 0 0 0 0
chr16_random chrl17_random chrX_random chrY_random chrUn_random
0 0 0 0 0

repeated sequencing of the adapter is a great inefficiency within an experiment. These adapter-like sequences
can distort quality assurance of the Solexa data and removing them upstream can help prevent distortions
in downstream QA conclusions.

Exercise 10
Use the following steps to find the adapter-like sequences within the top reads:

1. Create a DNAStringSet object containing the distinct reads by first extracting the top read sequences
through nested lapply operations, then removing the names of the experiments using the unname
function, then using the unique function to find the distinct set of reads, and then using the sort
function to sort the sequences in alphabetical order.

2. Use the isMatchingAt function to find the adapter-like sequences.

3. Obtain the subset of adapter-like sequences.

> distinctReads <- DNAStringSet (sort(unique (unname (unlist (lapply (topReads,
+ lapply, function(x) as.character(x[["read"]1)))))))

> whichAdapters <- isMatchingAt(adapter, distinctReads, max.mismatch = 4,
+ with.indels = TRUE)

> adapterReads <- distinctReads[whichAdapters]

> length(adapterReads)

[1] 819

> head(adapterReads)

A DNAStringSet instance of length 6
width seq
[1] 36 AATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAA
[2]1 36 AATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT
[3]1 36 AATCGGAAGAGCTCGTATGCCGTCTTCTGCTTATAT
[41 36 AATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA
[5]1 36 AATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAT
[6] 36 AATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGTAA

As the results above show, Solexa’s 33-mer adapter is closely related to 819 distinct short reads from the
top reads lists.

Exercise 11
Use the following steps to find the number of distinct adapter-like reads and the total number of these reads
in each of the 8 lanes for the two experiments:

1. Use nested lapply function calls to extract the adapter-like sequences from each of the Solexa lanes.

2. Use nested sapply function calls to get the number of distinct adapter-like sequences.

3. Use nested sapply function calls to get the total number of adapter-like sequences.
> topAdapterReads <- lapply(topReads, lapply, function(x) x[x[["read"]] 7in}
+ adapterReads,])
> sapply(topAdapterReads, sapply, nrow)

experimentl experiment2

lanel 500 226
lane2 303 235
lane3 462 323
lane4 547 305
laneb 0 0
laneé6 464 275
lane7 516 284
lane8 343 206

> sapply(topAdapterReads, sapply, function(x) sum(x[["count"]]))

experimentl experiment2

lanel 265463 158678
lane2 225519 178534
lane3 308251 303996
lane4 456932 290159
laneb 0 0
laneé6 343988 255142
lane7 360014 252049
lane8 233244 177058

These adapter-like sequences are not wholely without value because they can provide some insight in
where base call errors are most likely to occur for a particular sequence.

Exercise 12
Find the distinct sequences from lane 1 of experiment 1 and their associated counts.

> lanel.1lAdapterCounts <- topAdapterReads[["experiment1"]][["lanel1"]][["count"]]
> lanel.1lAdapterReads <- topAdapterReads[["experiment1"]][["lanel"]][["read"]]
> length(lanel.1AdapterReads)

[1] 500
> head(lanel.1AdapterReads)

A DNAStringSet instance of length 6
width seq
[1]1 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA
[2] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT
[31 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGAT
[4]1 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAT
[5]1 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTATAT
[61 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAA

Exercise 13
Use the pairwiseAlignment function to fit the pairwise alignments of the adapter-like sequences against the
adapter then summarize the results using the summary function.

> lanel.1lAdapterAligns <- pairwiseAlignment (lanel.1AdapterReads,
+ adapter, type = "local-global")
> summary(lanel.lAdapterAligns, weight = lanel.lAdapterCounts)

Local-Global Fixed Subject Pairwise Alignment
Number of Alignments: 265463

Scores:
Min. 1st Qu. Median Mean 3rd Qu. Max.
27.75 57.52 57.52 59.09 65.40 65.40

Number of matches:
Min. 1st Qu. Median Mean 3rd Qu. Max.
30.00 32.00 32.00 32.27 33.00 33.00

Top 10 Mismatch Counts:
SubjectPosition Subject Pattern Count Probability

1 33 G A 106988 0.403024150
2 33 G T 41812 0.157505942
3 20 (o A 12558 0.047306028
4 33 G C 7298 0.027491590
5 29 G T 5686 0.021419181
6 20 (o N 2038 0.007677153
7 20 (o T 1996 0.007518939
8 20 (o G 1595 0.006008370
9 14 (o A 1487 0.005601534
10 14 (o T 902 0.003397837

Finding Over-Represented Sequences

Another potential source of data contamination is over-represented sequences. These sequences can be found
by clustering the short reads.

Exercise 14
First find the distinct sequences from lane 1 of experiment 2 and their associated counts.

> lane2.1TopCounts <- topReads[["experiment2"]][["lane1"]][["count"]]
> lane2.1TopReads <- topReads[["experiment2"]][["lane1"]][["read"]]
> length(lane2.1TopReads)

[1] 1000
> head(lane2.1TopReads)

A DNAStringSet instance of length 6
width seq
[1] 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA
[2]1 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGAT
[31 36 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Cluster Dendrogram

15
|

—J

-

10
|

Height

[
i
g
i

stringDist(lane2.1TopReads)
hclust (*, "single")

Figure 1: Clustering of Top Reads

[4]1 36 ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
[51 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGGAT
[61 36 GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGAT

Exercise 15

Then use the stringDist function to generate the Levenshtein’s edit distance amongst the reads, generate
nearest-neighbor-based clustering using the hclust function, and classify the reads into clusters using the
cutree function.

> lane2.1Clust <- hclust(stringDist(lane2.1TopReads), method = "single")
> plot(lane2.1Clust)

> lane2.1Groups <- cutree(lane2.1Clust, h = 2)

> head(sort(table(lane2.1Groups), decreasing = TRUE))

lane2. 1Groups
i 9 8 3 2 10
226 200 197 161 34 27

The example above produces four interesting short read clusters: one representing poly As, one repre-
senting Solexa’s adapter, and the remaining two coming from an unknown origin.

Exercise 16
Create a set of interesting sequences of unknown origin by using the intersect function to find intersection
of one of the interesting clusters with the reverse complement of the other interesting cluster.

> reverseComplement (lane2.1TopReads[lane2.1Groups == 9])

A DNAStringSet instance of length 200
width seq

10

[1] 36 AAATGAGAAATACACACTTTAGGACGTGAAATATGG
2] 36 AATGAGAAATACACACTTTAGGACGTGAAATATGGC
[3] 36 TGAAAATCACGGAAAATGAGAAATACACACTTTAGG
[4] 36 AGAAATACACACTTTAGGACGTGAAATATGGCGAGG
[5] 36 AATATGGCAAGAAAACTGAAAATCATGGAAAATGAG
(6] 36 AAAATCACGGAAAATGAGAAATACACACTTTAGGAC
[71 36 AGAAAACTGAAAATCACGGAAAATGAGAAATACACA
[8i 36 AGGACGTGGAATATGGCAAGAAAACTGAAAATCATG
[9] 36 AAAATGAGAAATACACACTTTAGGACGTGAAATATG

[192] 36 CTGAAAAAGGTGGAAAATTTAGAAATGTCCACTGTA
[193] 36 AATGGAAAATGAGAAACATCCACTTGACGACTTGAA
[194] 36 GAGAGAAAACTGAAAATCACGGAAAATGAGAAATAC
[195] 36 AAAATAATGGAAAATGAGAAACATCCACTTGACGAC
[196] 36 AGTGAAATATGGCGAGGAAAACTGAAAAAGGTGGAA
[197] 36 AAAACTGAAAATCATGGAAAATGAGAAACATCCACT
[198] 36 GGCGAGGAAAACTGAAAAAGGTGGAAAATTTAGAAA
[199] 36 AGAGAAACATCCACTTGACGACTTGAAAAATGACGA
[200] 36 AGGAAAATGAGAAATACACACTTTAGGACGTGAAAT

> lane2.1TopReads[lane2.1Groups == 8]

A DNAStringSet instance of length 197
width seq

[1] 36 ACTGAAAATCACGGAAAATGAGAAATACACACTTTA
[2] 36 AAACATCCACTTGACGACTTGAAAAATGACGAAATC
[31 36 TAGGACGTGGAATATGGCAAGAAAACTGAAAATCAT
[4] 36 GGAATATGGCAAGAAAACTGAAAATCATGGAAAATG
[5] 36 GTAGGACGTGGAATATGGCAAGAAAACTGAAAATCA
[6] 36 TGAAAATCACGGAAAATGAGAAATACACACTTTAGG
[71] 36 CGTGAAATATGGCGAGGAAAACTGAAAAAGGTGGAA
(8l 36 GAATATGGCAAGAAAACTGAAAATCATGGAAAATGA
(91 36 GAAAATCACGGAAAATGAGAAATACACACTTTAGGA

[189] 36 ATCATGGAAAATGAGAAACATCCACTTGACGACTTG
[190] 36 ATTTAGAAATGTCCACTGTAGGACGTGGAATATGGC
[191] 36 TAGAAATGTCCACTGTAGGACGTGGAATATGGCAAG
[192] 36 TCCACTTGACGACTTGAAAAATGACGAAATCACTAA
[193] 36 TTAGAAATGTCCACTGTAGGACGTGGAATATGGCAA
[194] 36 AATTTAGAAATGTCCACTGTAGGACGTGGAATATGG
[195] 36 CGAAATCACTAAAAAACGTGAAAAATGAGAAATGCA
[196] 36 GAAATATGGCGAGGAAAACTGAAAAAGGTGGAAAAT
[197] 36 TGTCCACTGTAGGACGTGGAATATGGCAAGAAAACT

> unknownSeqs <- intersect (reverseComplement (1ane2.1TopReads[lane2.1Groups ==
+ 9]), lane2.1TopReads[lane2.1Groups == 8])

> length (unknownSegqs)

[1] 155

> head (unknownSeqs)

11

A DNAStringSet instance of length 6
width seq
[1] 36 AAATGAGAAATACACACTTTAGGACGTGAAATATGG
[2] 36 AATGAGAAATACACACTTTAGGACGTGAAATATGGC
[3] 36 TGAAAATCACGGAAAATGAGAAATACACACTTTAGG
[4]1 36 AGAAATACACACTTTAGGACGTGAAATATGGCGAGG
[5]1 36 AATATGGCAAGAAAACTGAAAATCATGGAAAATGAG
[61 36 AAAATCACGGAAAATGAGAAATACACACTTTAGGAC

Exercise 17
Create a set of interesting sequences and associated counts based upon the intersection created above.

> unknownCounts <- lane2.1TopCounts[match(unknownSeqs, lane2.1TopReads)] +
+ lane2. 1TopCounts [match(reverseComplement (unknownSeqs), lane2.1TopReads)]
> unknownSeqs <- unknownSeqs [order (unknownCounts, decreasing = TRUE)]

> unknownCounts <- unknownCounts [order (unknownCounts, decreasing = TRUE)]

> length (unknownCounts)

[1] 155
> head (unknownCounts)
[1] 387 375 358 357 354 345

These sequences of unknown origin may be related and could potential assemble into a more informative
larger sequence. This assembly can be performed using functions from the Biostrings package by first finding
a starter, or seeding, sequences that can be grown using pairwise alignments of the starter sequences and
the remaining sequences.

Exercise 18
Use the following step to find a starter or seed sequence to use in an assembly process by finding the distinct
sequence that closest related to the set of unknown sequences:

1. Use the stringDist function to find the number of matches amongst the reads using an overlap
alignment with a scoring scheme of {match = 1, mismatch = -Inf, gapExtension = -Inf} then
convert the results into a matriz and loop over the rows to count how many times each distinct read
overlap with other distinct reads at least 24 bases in the 36 bases reads.

2. Choose the distinct sequence with the most similar distinct sequences using the metric developed in
the previous step.

> submat <- nucleotideSubstitutionMatrix(match = 1, mismatch = -Inf)

> whichStarter <- which.max(apply(as.matrix(stringDist (unknownSeqs,

+ method = "substitutionMatrix'", substitutionMatrix = submat,

+ gapExtension = -Inf, type = "overlap")), 1, function(x) sum(x >=
+ 24)))

> starterSeq <- unknownSegqs[[whichStarter]]

> starterSeq

36-letter "DNAString" instance
seq: TGAAAATCACGGAAAATGAGAAATACACACTTTAGG

Exercise 19

Use the pairwiseAlignment function to generate the pairwise alignments of all sequences against the starter
sequence.

12

> starterAlign <- pairwiseAlignment (unknownSeqs, starterSeq, substitutionMatrix = submat,
+ gapExtension = -Inf, type = "overlap")

Exercise 20

Assemble a sequence by using the starter sequence created above and the set of interesting sequences you
found. The first step in this assembly is to create a function that generates a sequeunce through unanimous
vote in a concensus matrix.

> unanimousChars <- function(x) {
+ letters <_ C(”A" “C" HGH "T”)

+ mat <- consensusMatrix(x)[letters, , drop = FALSE]
+ paste(apply(mat, 2, function(y) {

+ z <- which(y != 0)

+ ifelse(length(z) == 1, letters[z], "7")

+ }), collapse = "")

+

}

Exercise 21

The next step is to find which alignments are in the “prefix” of the starter sequence. These are the sequences
that overlap to the left of the start sequence.

> whichInPrefix <- (score(starterAlign) >= 10 & start(subject(starterAlign)) ==
+ 1 & start(pattern(starterAlign)) != 1)

> prefix <- narrow(unknownSeqs[whichInPrefix], 1, start(pattern(starterAlign[whichInPrefix])) -
+ 1)

> prefix <- DNAStringSet (paste (sapply (max(nchar(prefix)) - nchar(prefix),

+ polyn, nucleotides = "-"), as.character(prefix), sep = ""))

> consensusMatrix(prefix, baseOnly = TRUE)

[,11 [,27 [,3] [,41 [,5] [,6]1 [,7]1 [,8] [,91 [,10] [,11]1 [,12] [,13]

A 1 2 0 0 5 0 0 0 0 0 11 12 0
C 0 0 0 0 0 6 7 0 0 0 0 0 0
G 0 0 3 4 0 0 0 0 9 10 0 0 0
T 0 0 0 0 0 0 0 8 0 0 0 0 13

other 25 24 23 22 21 20 19 18 17 16 15 14 13
[,141 [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]

A 14 0 0 0 0 0 20 0 22 23 24 25

C 0 0 0 0 18 0 0 0 0 0 0 0

G 0 0 16 17 0 19 0 21 0 0 0 0

T 0 15 0 0 0 0 0 0 0 0 0 0

other 12 11 10 9 8 7 6 5 4 3 2 1
[,26]

A 0

c 26

G 0

T 0

other 0

> unanimousChars (prefix)
[1] "AAGGACCTGGAATATGGCGAGAAAAC"

Exercise 22

The corresponding step is to find which alignments are in the “suffix” of the starter sequence. These are the
sequences that overlap to the right of the start sequence.

13

whichInSuffix <- (score(starterAlign) >= 10 & end(subject(starterAlign)) ==
36 & end(pattern(starterAlign)) != 36)

suffix <- narrow(unknownSeqs[whichInSuffix], end(pattern(starterAlign[whichInSuffix])) +
1, 36)

suffix <- DNAStringSet (paste(as.character(suffix), sapply(max(nchar(suffix)) -
nchar(suffix), polyn, nucleotides = "-"), sep = ""))

consensusMatrix(suffix, baseOnly = TRUE)

vV + VvV + Vv + V

[,11 [,2] [,31 [,41 [,51 [,6]1 [,71 [,8] [,9] [,10] [,11] [,12] [,13]

A 26 0 0 0 0o 21 20 19 0 17 0 0 0

c 0 25 0 0 0 0 0 0 0 0 0 0 0

G 0 0 24 0 22 0 0 0 0 0 0 15 14

T 0 0 0 23 0 0 0 0 18 0 16 0 0

other 0 1 2 3 4 5 6 7 8 9 10 11 12
[,14] [,15] [,16] [,17] [,181 [,19] [,20] [,21] [,22] [,23] [,24] [,25]

A 0 0 11 0 0 8 7 6 5 0 0 0

c 13 0 0 0 0 0 0 0 0 4 0 0

G 0 12 0 10 9 0 0 0 0 0 0 2

T 0 0 0 0 0 0 0 0 0 0 3 0

other 13 14 15 16 17 18 19 20 21 22 23 24
[,26]

A 1

o 0

G 0

T 0

other 25

> unanimousChars (suffix)

[1] "ACGTGAAATATGGCGAGGAAAACTGA"

Exercise 23
Combine the prefix and suffix with the starter sequence.

> extendedUnknown <- DNAString(paste(unanimousChars(prefix), as.character(starterSeq),
+ unanimousChars (suffix), sep = ""))
> extendedUnknown

88-letter "DNAString" instance
seq: AAGGACCTGGAATATGGCGAGAAAACTGAAAATCAC. ..ACACTTTAGGACGTGAAATATGGCGAGGAAAACTGA

Exercise 24
Align the set of unknown sequences against the extended sequence.

> unknownAlign <- pairwiseAlignment (unknownSeqs, extendedUnknown,

+ substitutionMatrix = submat, gapExtension = -Inf, type = "overlap")
> table(score(unknownAlign))

24 2

30 31 32 33 34 35 36

0 1 2 3 4 5 6 7 8 921222
11 1 1 1 1 2 2 2 2 2 253

3 24 28 29 30
12 26 26 2 2 2 2 2 2 2
Exercise 25
Use the countPDict function within nested sapply/lapply function calls to show the number of reads that

map to the unknown sequence in the 8 lanes from the 2 experiments.

14

sapply (topReads, lapply, function(x) {
whichNoNs <- (alphabetFrequency(x[["read"]])[, "N"] == 0)

x <- x[whichNoNs,]

whichMapped <- (countPDict(pdict,

extendedUnknown) + countPDict(pdict,

reverseComplement (extendedUnknown))) > 0

>

+

+

+ pdict <- PDict(x[["read"]])
+

+

+ sum (x [whichMapped, "count"])
+

»

experimentl experiment2

lanel 1577 10855
lane2 4627 10482
lane3 1284 10633
lane4 2219 8400
laneb5 0 0

lane6 1659 13095
lane7 1823 11099
lane8 4657 14916

Exercise 26

Use the countPattern function within a bsapply loop to find to which chromosome the extended unknown

sequence maps.

> params <- new("BSParams", X = Mmusculus, FUN = countPattern,

+ simplify = TRUE)

> unknownCountPattern <- bsapply(params, pattern =

> unknownCountPattern

chril chr2 chr3

0 1 0

chr7 chr8 chr9

0 0 0

chri3 chri4 chrib

0 0 0

chri9 chrX chrY

0 0 0
chr4_random chr5_random chr7_random
0 0 0
chr16_random chrl17_random chrX_random
0 0 0

Exercise 27

Finally use the matchPattern function to find the exact location on chromosome that it maps to.

> mm9Chr2 <- Mmusculus[["chr2"]]

extendedUnknown)
chr4 chrb chré
0 0 0
chri0 chriil chri2
0 0 0
chri6 chri7 chri8
0 0 0
chrM chrl_random chr3_random
0 0 0
chr8_random chr9_random chr13_random
0 0 0
chrY_random chrUn_random
0 0

> mm9Ch2View <- matchPattern(extendedUnknown, mm9Chr2)

> mm9Ch2View

Views on a 181748087-letter DNAString subject

subject: NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN...GGTTAGGTCTAGGGTTTGCGCCTGGATTACGGGT

views:
start end width
[1] 98507289 98507376

88 [AAGGACCTGGAATATGGCGAGAAA. ..TGAAATATGGCGAGGAAAACTGA]

15

4 Aligning Bacteriophage Reads

Solexa’s SOP includes dedicating lane 5 from a set of 8 to sequencing the bacterophage ¢X174 genome, a
circular single-stranded genome with 5386 base pairs and the first to be sequenced in 1978. Analyzing the
data from this lane can provide a check for a systematic failure of the sequencer.

Exercise 28
Read in one of the lane 5 export files from a Solexa run.

> sp <- SolexaPath(file.path("extdata", "ELAND", "080828_HWI-EAS88_0003"))
> phageReads <- readAligned(analysisPath(sp), "s_5_1_export.txt",
+ "SolexaExport")

Exercise 29
Find the distinct number of reads and number of times they occurred.

> phageReadTable <- tables(sread(phageReads), n = Inf)[["top"]]

Exercise 30
Find which distinct reads have uncalled bases and create a “clean” set of reads without any uncalled bases.

> whichNotClean <- grep("N", names(phageReadTable))
> head(phageReadTable[whichNotClean])

ANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN TNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
13320 11892
CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN GNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
8978 7670
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN AANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
2308 1652

> cleanReadTable <- phageReadTable[-whichNotClean]
> head(cleanReadTable)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA GATCTTTGGCGGCACGGAGCCGCGCATCACCTGTA
70947 7561
GATCTCCCGAGCATCACCACATTACTGCGGTTATA CCCCCCCCCccccececceeeeeeeeecececceceece
6740 2535
GATCTCCATGGCATCACCACATTACTGCGGTTATA GACGTTTGGTCAGTTCCATCAACATCATAGCCAGA
2323 439

Exercise 31
Load the phiX174Phage object and extract the New England BioLabs (NEB) version, the one used by Solexa,
of the bacterophage ¢ X174 genome, and extend the genome 34 bases to “linearize” the circular genome.

> data(phiX174Phage)
> names (phiX174Phage)

[1] "Genbank" "RF70s" "SS78" "Bull" "GoT" "NEBO3"

> nebPhage <- phiX174Phage[[which(names(phiX174Phage) == "NEB03")]]

> nebPhage <- DNAString(paste(as.character (nebPhage), as.character (substr(nebPhage,
+ 1, 34)), sep = ""))

> nebPhage

16

5420-1letter "DNAString" instance
seq: GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACT...CAGAGTTTTATCGCTTCCATGACGCAGAAGTTAACA

Exercise 32
Show an aligned/unaligned breakdown of the read counts in the “Hoover” Solexa QA plot. This can be
accomplished through the following steps:

1. Use the PDict function to create pattern dictionaries for the cleaned reads and their reversed comple-
ment.

2. Use the countPDict function to find which reads map at least once to the phage genome.

3. Create an indicator variable that states whether or not a distinct sequence maps to the phage genome.

posPDict <- PDict(DNAStringSet (names (cleanReadTable)), max.mismatch = 2)

negPDict <- PDict(reverseComplement (DNAStringSet (names (cleanReadTable))),
max.mismatch = 2)

whichAlign <- rep(FALSE, length(phageReadTable))

whichAlign[-whichNotClean] <- (countPDict(posPDict, nebPhage,
max.mismatch = 2) + countPDict(negPDict, nebPhage, max.mismatch = 2) >
0)

+ + VvV + VvV

Exercise 33
Count the number of distinct reads that map to the genome as well as the overall percentage of reads that
map to the genome.

> table(whichAlign)

whichAlign
FALSE TRUE
312787 196626

> round (sapply (split(phageReadTable, whichAlign), sum)/sum(phageReadTable),
+ 2)

FALSE TRUE
0.19 0.81

Exercise 34
Create a histogram, conditioned on alignment status, that shows the “Hoover” plot mentioned in the Short-
Read vignette.

> print (histogram(~log10(phageReadTable [phageReadTable > 1]) |
+ whichAlign[phageReadTable > 1], xlab = "loglO(Read Counts)",
+ main = "Read Counts by IS(Aligned to Phage)"))

17

Read Counts by IS(Aligned to Phage)

1 1 1

I I
FALSE
60 -

50 — -

40 =

30 -

Percent of Total

20 +

10 -

T T T T T T T T T T T
0 1 2 3 4 5

log10(Read Counts)

Figure 2: Hoover Plot Deconstructed

> toLatex(sessionInfo())

e R version 2.10.0 Under development (unstable) (2009-07-25 r48998), i386-apple-darwin9.7.0
e Locale: en_US.UTF-8/en_US.UTF-8/C/C/en_US.UTF-8/en_US.UTF-8

e Base packages: base, datasets, graphics, grDevices, methods, stats, utils

Other packages: Biostrings 2.13.29, BSgenome 1.13.10, BSgenome.Mmusculus.UCSC.mm9 1.3.11,
TRanges 1.3.44, lattice 0.17-25, ShortRead 1.3.22

Loaded via a namespace (and not attached): Biobase 2.5.5, grid 2.10.0, hwriter 1.1, tools 2.10.0

Table 4: The output of sessionInfo while creating this vignette.

5 Session Information

18

	Introduction
	Setup
	Finding Possible Contaminants in the Short Reads
	Aligning Bacteriophage Reads
	Session Information

