
Preprocessing Affymetrix Data

Educational Materials
©2005 R. Irizarry and R. Gentleman

1



Introduction

� This lecture is based on Chapter 2, Preprocessing High-density
Oligonucleotide Arrays by B. M. Bolstad, R. A. Irizarry, L.
Gautier,Z. Wu

� It describes some of the basic preprocessing steps and includes
code for carrying out some of these tasks.

2



Importing Data

� to import CEL file data use ReadAffy:

> library("affy")

> Data <- ReadAffy()

� the functions list.celfiles can be used to list the CEL files in
the current working directory, and you can specify which ones
to use in the call to ReadAffy.

� the data are stored in an AffyBatch object, which can be used
as input to other processing functions.

3



Importing Data

� data from CEL files represent fairly raw data, they are one
observation per spot

� the mapping from the spot location to the probeset and
ultimately to the identity of the gene being probed is handled
by the CDF file.

� the affy package will automatically find and load the correct
CDF package (if one is available).

4



Examining probe-level data
� We first load some example data.

> library("affydata")

Loading required package: affy

Loading required package: Biobase

Attaching package: 'Biobase'

The following object(s) are masked _by_ .GlobalEnv :

cache

Loading required package: affyio

> data(Dilution)

� Two functions, pm and mm, provide access to the probe level
data.
> pm(Dilution, "1001_at")[1:3, ]

20A 20B 10A 10B

5



1001_at1 128.8 93.8 129.5 73.8

1001_at2 223.0 129.0 174.0 112.8

1001_at3 194.0 146.8 155.0 93.0

6



Probe intensity plots

We can plot probe intensities using the following commands.

> matplot(pm(Dilution, "1001_at"), type = "l", xlab = "Probe No.",

+ ylab = "PM Probe intensity")

> matplot(t(pm(Dilution, "1001_at")), type = "l", xlab = "Array No.",

+ ylab = "PM Probe intensity")

Notice the large probe effects. The variability between probes is
larger than the variability between arrays.

7



5 10 15

10
0

20
0

30
0

40
0

Probe No.

P
M

 P
ro

be
in

te
ns

ity

10
0

20
0

30
0

40
0

Array No.

P
M

 P
ro

be
in

te
ns

ity

1 2 3 4

a) b)

Figure 1: Examining the probe response pattern for a particular
probeset a) across probe or b) across arrays.

8



Phenotypic data

� the phenoData slot is where phenotypic data is stored.

� the function pData can be used to access this information.
> pData(Dilution)

liver sn19 scanner

20A 20 0 1

20B 20 0 2

10A 10 0 1

10B 10 0 2

� phenotypic data consists of the concentrations of RNA from
two different samples, obtained from liver and central nervous
system total RNA, along with the ID of the scanner

9



Probe Intensity Behavior

� To examine probe intensity behavior for a number of different
arrays we can use the hist and boxplot methods.

� these boxplots are useful for identifying differences in the level
of raw probe-intensities between arrays

� differences between arrays in the shape or center of the
distribution often highlight the need for normalization

> hist(Dilution)

> boxplot(Dilution)

10



6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

log intensity

de
ns

ity

X20A X20B X10A X10B

6
8

10
12

14

Small part of dilution study

a) b)

Figure 2: a) Density estimates of data from the dilution experiment.
The x-axis is on a logarithmic scale (base 2). b) Box-plots.

11



MA-Plots

� The MA-plot of two vectors, Y1 and Y2, is a 45 degree rotation
and axis scaling of their scatter plot.

� instead of Y2,j versus Y1,j for j = 1, . . . , J we plot
Mj = Y2,j − Y1,j versus Aj = (Y2,j + Y1,j)/2.

� if Y1 and Y2 are logarithmic expression values, then Mj will
represent the log fold change for gene j

� and Aj will represent average log intensity for that gene

12



6 8 10 12 14
−

2
0

2
4

6

20A vs pseudo−median reference chip

A

M

Median: 0.458
IQR: 0.206

6 8 10 12 14

−
1.

0
0.

0
1.

0
2.

0

20B vs pseudo−median reference chip

A

M

Median: −0.125
IQR: 0.121

6 8 10 12 14

0
1

2
3

10A vs pseudo−median reference chip

A

M

Median: 0.125
IQR: 0.122

6 8 10 12 14
−

1
0

1
2

3
4

10B vs pseudo−median reference chip

A

M

Median: −0.535
IQR: 0.207

Figure 3: A MA pairs plot for the Dilution data. Scatterplots were
computed using the smoothScatter function.

13



MA Plots

� if most genes are not differentially expressed the loess curves
should be close to the horizontal line M = 0

� non-linearity in the loess curve indicates a relationship between
M and A; or in being differentially expressed and the average
intensity

� the plots are rotated versions of the usual scatter plot, the
rotation is helpful since we are better able to detect patterns
from horizontal lines than from angled lines

14



Background adjustment and normalization

� Preprocessing Affymetrix expression arrays usually involves
three steps:

1. background adjustment

2. normalization

3. summarization

� Bioconductor software implements a wide variety of methods
for each of these steps.

� Self-contained routines for background correction and
normalization usually take an AffyBatch as input and return a
processed AffyBatch.

� Routines for summarization produce exprSet objects containing
expression summary values.

15



Background adjustment

� RMA convolution

� MAS 5.0 background

� Ideal Mismatch

16



RMA convolution

� when developing RMA the authors found the MM probes
problematic and proposed a method that used only the PM
probes.

� the PM values are corrected, array by array, using a model for
the probe intensities motivated by the empirical distribution of
probe intensities.

� the observed PM probes are modeled as the sum of a noise
component, B ∼ N(µ, σ2) and a signal component,
S ∼ Exp(α).

� To avoid the possibility of negatives expression values, the
Normal distribution is truncated at zero.

17



� Letting Y denote the observed intensity:

E (S|Y = y) = a + b
φ

(
a
b

)
− φ

(
y−a

b

)
Φ

(
a
b

)
+ Φ

(
y−a

b

)
− 1

, (1)

where a = y − µ− σ2α and b = σ. Note that φ and Φ are the
standard Normal density and distribution functions,
respectively.

� To produce a background adjusted AffyBatch for the Dilution
dataset the following code can be used.
> Dilution.bg.rma <- bg.correct(Dilution, method = "rma")

18



MAS 5.0 background

� Proposed in the Statistical Algorithms Description Document
and used in the MAS 5.0 software.

� The chip is divided into a grid of k (default k = 16) rectangular
regions.

� For each region the lowest 2% of probe intensities are used to
compute a background value for that grid.

� Then each probe intensity is adjusted based upon a weighted
average of each of the background values.

19



MAS 5.0 background con’t

� The weights are dependent on the distance between the probe
and the centroid of the grid. In particular, the weights are:

wk (x, y) =
1

d2
k (x, y) + s0

where dk (x, y) is the Euclidean distance from location (x, y) to
the centroid of region k. The default value for the smoothing
coefficient s0 is 100.

� Special care is taken to avoid negative values or other
numerical problems for low intensity regions.

� this method corrects both PM and MM probes.

� a background adjusted AffyBatch could be produced using the
following code:
> Dilution.bg.mas <- bg.correct(Dilution, method = "mas")

20



Ideal Mismatch

� the suggested purpose of the MM probes was that they could
be used to adjust the PM probes for probe-specific non-specific
binding by subtracting the intensity of the MM probe from the
intensity of the corresponding PM probe.

� this becomes problematic because, for data from a typical
array, as many as 30% of MM probes have intensities higher
than their corresponding PM probes

� thus, when raw MM intensities are subtracted from the PM
intensities many negative expression values result, which makes
little sense since

� to remedy the negative impact of using raw MM values,
Affymetrix introduced the concept of an Ideal Mismatch (IM);
which was guaranteed, by design, to be smaller than the
corresponding PM intensity.

21



Ideal Mismatch

� the goal is to use MM when it is physically possible and a
quantity smaller than the PM in other cases.

� If i is the probe and k is the probeset then for the probe pair
indexed by i and k the ideal mismatch IM is given by

IM
(k)
i =


MM

(k)
i when MM

(k)
i < PM

(k)
i

PM
(k)
i

2SBk
when MM

(k)
i ≥ PM

(k)
i and SBk > τc

PM
(k)
i

2τc/(1+(τc−SBk)/τs) when MM
(k)
i ij ≥ PM

(k)
i and SBi ≤ τc

where τc and τs are tuning constants, referred to as the
contrast τ (with a default value of 0.03) and the scaling τ (with
a default value of 10), respectively.

22



Ideal Mismatch

� the adjusted PM intensity is obtained by subtracting the
corresponding IM from the observed PM intensity

� to use this background correction you will either need to write
your own code (for use with functions in the affy package) or
use the threestep function from the affyPLM package.

23



Normalization

� normalization refers to the task of manipulating data to make
measurements from different arrays comparable, some are
linear and some non-linear

� scale normalization (linear)

� non-linear normalization such as: cross-validated splines
(Schadt et al 2001), running median lines (Li and Wong.
Genome Biology 2001), loess smoothers (Bolstad et al)

� quantile normalization, which imposes the same empirical
distribution of intensities to each array.

� to perform a normalization procedure on an AffyBatch the
generic function normalize may be used

24



Scale Normalization

Pick a column of X to serve as baseline array, say column j.
Compute the (trimmed) mean of column j. Call this X̃j .
for i = 1 to n, i 6= j do

Compute the (trimmed) mean of column i. Call this X̃i.
Compute βi = X̃j/X̃i.
Multiply elements of column i by βi.

end for

An AffyBatch can be scale normalized using the following code:

> Dilution.norm.scale <- normalize(Dilution, method = "constant")

25



Non-linear methods

Pick a column of X to serve as the baseline array, say column j.
for i = 1 to n, i 6= j do

Fit a smooth non-linear relationship mapping column i to the
baseline j. Call this f̂i

Normalized values for column j are given by f̂i (Xj)
end for

Non-linear normalization can be performed using the code below.

> Dilution.norm.nonlinear <- normalize(Dilution, method = "invariantset")

26



Quantile Normalization

Given n vectors of length p, form X, of dimension p× n, where
each array is a column.
Sort each column of X separately to give Xs.
Take the mean, across rows, of Xs and create X ′

s, an array of the
same dimension as X, but where all values in each row are equal
to the row means of Xs.
Get Xn by rearranging each column of X ′

s to have the same
ordering as the corresponding input vector.

To apply this procedure use the code below.

> Dilution.norm.quantile <- normalize(Dilution, method = "quantiles")

27



Cyclic loess

Let X be a p× n matrix with columns representing arrays and rows probes or probesets.

log transform the data: X ← log X

repeat

for i = 1 to n− 1 do

for j = i + 1 to n do

for k = 1 to p do

Compute Mk = xki − xkj and Ak = 1
2

`
xki + xkj

´
end for

fit a loess curve for M on A. Call this f̂ .

for k = 1 to p do

M̂k = f̂(AK)

set ak = (Mk − M̂k)/n

xki = xki + ak and xkj = xki − ak

end for

end for

end for

until convergence or the maximum number of iterations is reached

Revert to the original scale X ← exp(X)

28



Cyclic Loess

This procedure can be carried out using the affy package by specify
the method to be loess in the call to the normalize function.

> Dilution.norm.loess <- normalize(Dilution, method = "loess")

29



Variance Stabilizing Normalization (vsn)

� the vsn method combines background correction and
normalization into one single procedure

� a possible advantage of the combined approach is that
information across arrays can be shared to estimate the
background correction parameters, which are otherwise
estimated separately for each array.

� for a data matrix xki, with k counting over the probes and i

over the arrays, it fits a normalization transformation

xki 7→ hi(xki) = glog
(

xki − ai

bi

)
, (2)

where bi is the scale parameter for array i, ai is a background
offset, and glog is the so-called generalized logarithm or
attenuated logarithm

30



VSN

� one of the nice properties of the glog function is that with
appropriate values of ai and bi, the data from the different
arrays are not just adjusted to each other, but also the
variances across replicates are approximately independent of
the mean.

� software for fitting the model and applying the transformation
is provided in the vsn package. We can use the following code
to normalize an AffyBatch.
> library("vsn")

> Dil.vsn <- normalize(Dilution, method = "vsn")

� the transformation parameters are returned in the
preprocessing slot of the description slot of the returned
AffyBatch object

31



Summarization

� summarization is the final stage in preprocessing Affymetrix
GeneChip data

� it is the process of combining the multiple probe intensities for
each probeset to produce an expression value

� Bioconductor packages provide a number of functions that
carry out summarization to produce gene expression values:
expresso and threestep, provide the ability to produce
expression measures using a wide variety of user specified
preprocessing methods.

� other functions are optimized for computing specific expression
measures such as rma, gcrma, and expressopdnn are also
available.

32



expresso

� expresso provides quite general facilities for computing
expression summary values

� it allows most background adjustment, normalization and
summarization methods to be combined

� The trade-off is that expresso is often considerably slower
than the functions that have been optimized for producing
specific expression measures.

� the names of background correction, PM correction and
summarization methods available to expresso can be found by
typing bgcorrect.methods pmcorrect.methods and
express.summary.stat.methods respectively.

33



Normalization Methods

� for example, calling the function normalize.methods on an
AffyBatch will list the available normalization methods:
> normalize.methods(Dilution)

[1] "constant" "contrasts" "invariantset" "loess"

[5] "qspline" "quantiles" "quantiles.robust"

34



expresso

� A call to expresso setting most of the parameters:
> options(width = 50)

> eset <- expresso(Dilution, bgcorrect.method = "rma",

+ normalize.method = "constant", pmcorrect.method = "pmonly",

+ summary.method = "avgdiff")

� Or the PM-only model based the expression index model of Li
and Wong can be performed by:
> eset <- expresso(Dilution, normalize.method = "invariantset",

+ bg.correct = FALSE, pmcorrect.method = "pmonly",

+ summary.method = "liwong")

� To obtain MAS 5 estimates
> eset <- mas5(Dilution)

35



threestep

� The affyPLM package provides the threestep function that
can be used to compute very general expression measures.

� Because threestep is primarily implemented in compiled code
it is typically faster than expresso

� threestep always returns expression measures in log2 scale

� The background.method, normalize.method and
summary.method arguments of threestep control which
preprocessing methods are used at each stage.

36



threestep - Example

To compute expression measures where the ideal mismatch is
subtracted from PM, then quantile normalization between arrays is
carried out, and probesets are summarized by using a robust
average, one can use the following code:

> library("affyPLM")

> eset <- threestep(Dilution, background.method = "IdealMM",

+ normalize.method = "quantile", summary.method = "tukey.biweight")

37



RMA

� is an expression measure consisting of three particular
preprocessing steps: convolution background correction,
quantile normalization and a summarization based on a
multi-array model fit robustly using the median polish
algorithm
> eset <- rma(Dilution)

� The function justRMA can be used instead of rma in cases
where there are a large number of CEL files to process and no
other low-level analysis is desired

38



GCRMA

� since the global background adjustment in RMA ignores the
different propensities of probes to undergo non-specific binding
(NSB), the background is often underestimated

� The characteristics of each probe are determined by its
sequence

� Using the sequence information an affinity measure is
computed.

� A background adjustment method motivated by this model has
been implemented and together with quantile normalization
and the median polish procedures, used by RMA, define a new
expression measure called GCRMA.

39



GRMA

� the function gcrma computes GCRMA expression measures
from AffyBatch objects and returns them in exprSet objects
> library("gcrma")

> Dil.expr <- gcrma(Dilution)

� the affinity information can be computed once and saved for
future analysis in the following way:
> ai <- compute.affinities(cdfName(Dilution))

> Dil.expr <- gcrma(Dilution, affinity.info = ai)

40



GCRMA

� the default background correction method in GCRMA uses
both probe affinity information and the observed MM
intensities(type="fullmodel").

� Users can choose to use only affinity information by setting
type="affinities" or to use only MM intensities with
type="mm".
> Dil.expr2 <- gcrma(Dilution, affinity.info = ai,

+ type = "affinities")

� justGCRMA can be used to compute expression measures
directly from CEL files.

41



Assessing preprocessing methods

� the existing alternatives for background correction,
normalization and summarization yield a great number of
different possible methods for preprocessing probe level data

� however, we seem to have passed the point where it makes
sense to simply say: here is a new method, and rather we
should start to expect here is a better method, and to have
better actually mean something.

42



affycomp

� affycomp package provides a graphical tool for the assessment of
preprocessing procedures for Affymetrix probe level data

� it is based on publicly available benchmark data

� affycomp contains most of the software needed to carry out the
comparison

� check out the results at
http://affycomp.biostat.jhsph.edu/

43



Quality Assessment

� You will find more details on this part of the lecture in Chapter
3, Quality Assessment of Affymetrix GeneChip Data.

� the affyPLM package provides one set of tools for quality
assessment of Affymetrix microarrays.

� there are also tools for quality assessment in the simpleaffy

package

� those in simpleaffy are largely based on Affymetrix
recommendations and make use of different provided control
spots on the arrays.

44



Example Data

� We load the ALLMLL example data and take a subset of it.
> library("ALLMLL")

> data(MLL.B)

> Data <- MLL.B[, c(2, 1, 3:5, 14, 6, 13)]

> sampleNames(Data) <- letters[1:8]

45



Figure 4: Image plot of intensities on a log scale.

46



Affymetrix quality assessment metrics

Affymetrix has proposed a number of different quality metrics.

� Average Background: the average of the 16 background values
(see Section 2.3.1).

� Scale Factor: The constant βi which is the ratio of the trimmed
mean for array i to the trimmed mean of the reference array
(Table 2.1).

� Percent Present: the percentage of spots that are present
according to Affymetrix detection algorithm.

� 3′/5′ ratios: for different quality control probe sets, such as
β−Actin and GAPDH, each represented by 3 probesets, one
from the 5′ end, one from the middle and one from the 3′ end of
the targeted transcript. The ratio of the 3′ expression to the 5′

expression for these genes serves as a measure of RNA quality.

47



Affymetrix QC

First we load simpleAffy and call the qc function to do the
computations.

> library("simpleaffy")

> Data.qc <- qc(Data)

Average background for each array is computed by:

> avbg(Data.qc)

a b c d e

68.18425 67.34494 42.12819 61.31731 53.64844

f g h

128.41264 49.39112 49.25758

The average background values should be comparable to each
other. Notice the large background value for array f. This might
be indicative of a problem.

48



Affymetrix QC
The scale factors can be computed using:

> sfs(Data.qc)

[1] 9.765986 4.905489 10.489529 7.053323

[5] 7.561613 2.475224 13.531238 8.089458

These values should be within 3-fold of each other. In this example
there appears to be a problem with, for example, arrays f and g.
The percentage of present calls can be obtained with the following
code:

> percent.present(Data.qc)

a.present b.present c.present d.present e.present

21.65158 26.53124 25.58181 23.53279 23.35615

f.present g.present h.present

25.25061 17.96423 24.40274

These should be similar for replicate samples with extremely low
values being a possible indication of poor quality.

49



Finally, the 3′/5′ ratios for the first two quality control probesets
are computed with:
> ratios(Data.qc)[, 1:2]

AFFX-HSAC07/X00351.3'/5'

a 0.9697007

b 0.3235390

c 0.4661537

d 1.2567868

e 0.6036608

f 0.6715308

g 0.3798125

h 0.4850414

AFFX-HUMGAPDH/M33197.3'/5'

a 0.16387418

b 0.05796629

c -0.15570382

d 0.57552773

e -0.14019396

f 0.24674941

g -0.01830517

h 0.27684843

These should be less than 3.

50



RNA degradation

� RNA degradation plots inform us as to whether there are big
differences in RNA degradation between arrays.

� The amount of degradation (slope of the lines) is not that
important, but rather whether one (or more) lines have very
different slopes, or other features, than the others

� these differences can manifest themselves in altered estimates
of expression.

� For any single probeset the probe effects dominate even the
most dramatic signs of degradation; a 3′/5′ trend only becomes
apparent on the average over large numbers of probesets.

51



RNA digestion plot

5' <−−−−−> 3'
 Probe Number 

M
ea

n 
In

te
ns

ity
 : 

sh
ift

ed
 a

nd
 s

ca
le

d

0 2 4 6 8 10

0
10

20
30

40
50

60

Figure 5: Each line represents one of 6 HG-U133A chips. Plotted
on the Y axis is mean intensity by probeset position. Intensities
have been shifted from original data for a clearer view, but slope is
unchanged.

52



a a

a a

Figure 6: a: raw data. b: weights used in fitting the model, low
weights are dark green c: residuals d : signs of the residuals: red
positive, blue negative

53



Quality Assessment

� It is not uncommon to have some artifacts and small blemishes
on microarrays. And in general these will have a small effect on
the estimates of gene expression.

� But, some slides can be of very poor quality, or substantially
different from other slides. And we would like to identify and
potentially adjust for, or remove, such slides.

� B. Bolstad has done a lot of work in this area and the affyPLM

has tools for carrying out some diagnostic proceedures.

54



Relative Log Expression (RLE)

� Compute the log scale estimates of expression θ̂gi for each gene
g on each array i,

� next compute the median value across arrays for each gene, mg,

� define the relative expression as Mgi = θ̂gi −mg.

� these relative expressions are then displayed with a boxplot for
each array,

� an array that has problems will either have larger spread, or
will not be centered at M = 0, or both

55



Normalized Unscaled Standard Error (NUSE)

� we estimate the standard error for each gene on each array
from the PLM fit,

� to account for the fact that variability differs considerably
between genes standardize these standard error estimates so
that the median standard error across arrays is 1 for each gene

� specifically, NUSE values are computed using

NUSE
(
θ̂gi

)
=

SE
(
θ̂gi

)
medi

(
SE

(
θ̂gi

)) .

� plot the NUSE values using boxplots

� low quality arrays are those that are significantly elevated or
more spread out, relative to the other arrays

� NUSE values are not comparable across data sets

56



1 2 3 4 5 6 7 8

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1 2 3 4 5 6 7 8

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Figure 7: Interquartile ranges of RLE (a) and box-and-whiskers
plots of NUSE values (b) for the ALLAML data.

57



Interpretation of RLE

� notice that array 1 shows fairly substantial problems in both
the NUSE and RLE plots

� this array seems to be enough different from the others that its
use in the analysis is suspect

58


