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1 Overview of some genetical genomics work

Variation in expression is shown in [Cheung et al! (2005) to be associated with
SNP genotypes. The multistage investigation used expression measures on
approximately 1000 genes and over 700000 SNP markers. SNPs found to be
associated with variation in expression for a gene were labeled as cis-acting if

they were located on the same chromosome as the gene; trans-acting otherwise.

Mapping determinants of human gene expression
by regional and genome-wide association

Vivian G. Cheung'*?, Richard S. Spielman?, Kathryn G. Ewens?, Teresa M. Weber??, Michael Morley3
& Joshua T. Burdick®
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Figure 1 | Results of genome-wide association analysis for six
representative phenotypes with cis regulators. The horizontal line in each
panel corresponds to P = 0.05 after Sidak correction.
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Table 1 | Genome-wide association results for 27 phenotypes

Phenotype Location of target gene Linkage results GWA results (for peak marker)
Peak marker P-value (all cis) Marker Location* MNominal P-valuet

LRAP (LOCe4167) 5q15 T 1077 rs2762 58,030 198x10 "
AABZ78D2 20q11.23 3x10°®8 rs/B8350 —666 367x10° "
PSPHL fpll2 3xwo" rs6593279 —36,903 558 x10° "=
CPNET 20gn.22 1x1077 rs6060535 17,327% 835x107™
CS5TB 210223 2x1077 rs880587 —28155 248 %107
RPS26 12q13.2 2x1077 rs227194 —41,768 784%10 “
GSTMZ2 1p133 3x10°¢8 rs535088 12,699 200x107"
HLA-DRB2 6p21.32 <10 " rs6928482 8,345 B51%10°"
IRF5 70321 2x10°¢8 rs2280714 16,731 678x10°"
H5D17B12 11p11.2 2x107" rs4755741 100,949 738x107"
GSTMI 1pi133 1%x1077 rs535088 —7.052 833x107 ™
PPAT 4q12 2x10°’ rs227940 Trans (Chr 7) 529 %107
PPAT 4q12 2x%1077 rs2139512 25227% 287%10 ¢
Dox17 22q13a 6x107"° rs10420570 Trans (Chr 2 713 %1077
CTSH 15g25.1 THI0-2 rs1365324 —2,298 217%107°8
POMZP3 Jqi.23 ox10® rs1754162 —6,215 7.23 %1078
CGI-96 22q13.2 3x107° rs9600337 Trans (Chr 13) 243%1077
CHI3L2 1p133 3x107" rs755467 =91 257x10 '
VAMPSE 2pn.2 9x10 " rs10509846 Trans (Chr.10) 531x1077
EIF358 16pT1.2 4x%10°8 rs8092794 Trans (Chr 18) 7.20%x10°7
TM75F3 12p1.23 <10 rs11822822 Trans (Chr 110 7.32%1077
IL16 15g25.1 3x10°° rs6557502 Trans (Chr 7 9.63%10°7
TCEAT Bgn.23 6x10°" rs6562160 Trans (Chr 13} 1.08 x107°
S100A13 19213 3x10°¢ rs3757791 Trans (Chr 73 1.40 % 10°®
ICAP-TA 2p25.1 =10 " rs10807387 Trans (Chr &) 227%10°°
SMARCBT 22g1.23 4x10°7 rs 7802273 Trans (Chr 7 246%10 °
CTBF1 4p16.3 2%x107° rs1060043 Trans {Chr 193 526x10°°
ZNF85 19pi2 o9x1077 rs2168503 Trans (Chr 12) 651 %10°°

* Relative to transcriptional start site of target gene. When the maost significant marker is located on a chromosome different from the target gene, it is listed as 'Trans' and the chromosome is

shown.
+Corrected P-value of 0.05 corresponds to a nominal P-value of 6.7 %105,
T Marker is within genomic extent of target gene.



basic findings
e cis and trans (off chromosome) type determinants exist

e locations of cis determinants seem equally balanced between
3" and 5’ regions

e findings are possible with modest sample size






2 Sources of complexity and anxiety
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Metadata complex

Reporter materials have context in genomic sequence and in bi-

ological knowledge.

Some of the resources that can be used

to specify context are depicted in the following schematic from
KEGG (Kanehisa, [1997; Kanehisa et all, 2004):
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Reproducibility issues

Prediction of cancer outcome with microarrays: a multiple
random validation strategy

Stefan Michiels, Serge Koscielny, Cotherine Hifl

Summary

Background General studies of microarray pene-expression profiling have been undertaken to predict cancer
outcome. Knowledge of this gene-expression profile or molecular signature should improve treatment of patients by
allowing treatment o be tailored to the severily of the disease. We reanalysed data from the seven largest published
studies thal have atternpled to predict prognosis of cancer patients on the basis of DNA microarray analysis.

Methods The standard strategy is to identify a molecular signature (ie, the subset of genes most differentially
expressed in patients with different outcomes) in a training set of patients and o estimate the proportion of
misclassifications with this signature on an independent validation set of patients. We expanded this strategy
(based on unique training and validation sets) by using multiple random sets, to study the stability of the
molecular signature and the proportion of misclassifications.

Findings The list of genes identified as predictors of prognosis was highly unstable; molecular signatures strongly
depended on the selection of patients in the training sets. For all but one study, the proportion misclassified
decreased as the number of patients in the training sel increased. Because of inadequate validation, our chosen
studies published overoptimistic results compared with those from our own analyses. Five of the seven studies
did not classify patients better than chance.

Interpretation The prognostic value of published microarray resulls in cancer studies should be considered with
caution. We advocate the use of validation by repeated random sampling.
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“Preferred” methods

—

Preferred analysis methods for Affymetrix GeneChips revealed by

a wholly defined control dataset
Sung E Choe"’, Michael Boutros™, Alan M Michelson", George M Church’

and Marc S Halfon ™"

Corespondence
A reanalysis of a published Affymetrix GeneChip control dataset
Alan K Dabney and John D Storey

A Pespocss 0 Peefereed analyshs metbods for AfTvmetsis GeneChips vevenled by 8 wholly defined conteol
datnsel by S Chee, M Boutros, &M Michelsen, GM Chusch amd 38 alfon, Genome Talngy 2008, fsluh
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In a recent Genome Bioloegy article,
Choe et al. [1] described a control
dataset for Affymetrix GeneChips. By
spiking RNA at known quantities, the
identities of all null and differentially
expressed genes are known exactly, as
well as the fold change of differential
expression, With the wealth of analysis
methods available for microarray data,
a control dataset would be very useful.
Unfortunately, serious errors are
evident in the Choe et al. data, disprov-
ing their conclusions and implying that
the dataset cannot be used to validly
evaluate statistical inference methods.
We argue that problems in the dataset
are at least partially due to a flaw in the
experimental design.

In a JHU technical report, Irizarry, Cope and Wu address the
same dataset:
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Introduction

In [1] a spike-in experiment is deseribed which the authors use to compare expression measures for Affymetrix
GeneChip technology. Two sets of triplicates were created to represent control (C) and experimental (5)
samples. In [2] and [3] we describe a benchmark for such measures based on experiments developed by
Affymetrix and a GeneLogic. These datasets are described in detail in [2]. A web-based implementation of
the benchmark, is available at affycomp.bicstat. jhaph.edn. There are various inconsistencies hetween
the conclusions reached by [1] and [3]. In this letter we describe certain characteristics of the feature-level
data produced by [1] which we believe explain these inconsistencies. These can be divided into 1) induced
by the experimental design and 2) an artifact.

Experimental design

There are three characteristice of the experimental design described by [1] make the resulting data inappro-
priate for assessment. Below we enumerate these problems and explain how they lead to unfair assessments.
Other problems with the experimental design are described by [4].

1. The spike-in concentrations are unrealistically high. In [3] we demonstrate that background noise
malkes it harder to detect differentially expression for genes that are present in low concentrations. In [3] we
point out that in the Affvmetrix spike-in experiments the concentrations for spiked-in features are artificially
high but that a large number of these are actually in a usable range (See Figure 1A ). Figure 1B demonstrates
that in a tvpical experiment, features related to differentially expressed genes show intensities with a similar
range as the rest of the genes. However, Figures 1C-D suggest that none of the genes spiked-in by [1] are in
a usable range since less than 1% of the data would reach the intensity levels seen for the spiked-in genes.
Thi= implies that expression measure assessments based on this dataset only apply to unlikely situations
where we expect differentially expressed genes to be in the top 1% of overall expression.

2. A large percentage of the genes (about 10%) are spiked-in to be differentially expressed and all
of these are expected to be up-regulated. This design makes this spike-in data verv different from those
produced by typical experiments where at least one of the following assumptions is expected to hold: 1) a
small percentage of genes are differentially expressed, 2) there is a balance between up and down regulation,
and 3) the gene expression distribution across arrays is roughly the same. Most preprocessing algorithms
implement normalization routines motivated by one or more of these assnmptions, thus we should not expect
existing expression measure methodology to perform well with the Choe et al. data.

3. A careful look at Table 1 in [1] shows that nominal concentrations and fold change sizes are confounded.
This is better demonstrated by a graphical representation (Figure 2). This problem will not permit us
to distingnish ahbility to detect small fold changes from the ability to detect differential expression when
concentration is low. [3] show why this distinetion is important.
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upshots

e assertions about “preferred” methods, even if methods are
transparent, must be taken with caution

e users should execute multiple “preferred” methods and under-
stand sources of discrepant conclusions

e concrete reproducibility of research is useful to support reuse
and extension of useful methods
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3 Genetical genomics using chr 7,15, 20

Provenance:

e hgfocus expression data for N=58 CEPH CEU unrelated individuals pro-
vided by Vivian Cheung and Richard Spielman at the 2006 Cold Spring
Harbor course on Integrative Data Analysis for High-throughput Biology.

e high-density SNP genotypes from HapMap, matched by CEU NAnnnnn
number to the expression samples, for only 48 individuals

e key results of Cheung and Spielman qualitatively reproducible with the
N=48 subsample

15



> library(GGtools)

> data(c20GGceu)
> ¢c20GGceu

GG Expression Set (exprSet catering for many SNP attributes) with
8793 genes
48 samples

There are 114666 attributes; names include:

rs4814683 rs6076506 rs6139074 rs1418258 rs7274499

> pData(c20GGceu) [1:4, 1:4]
rs4814683 rs6076506 rs6139074 rs1418258

NA11829 0 2 0 0
NA11830 1 2 1 1
NA11831 0 2 0 0
NA11832 1 2 1 1

The value in the 7, j element of the phenoData is the count
of rare alleles found in the genotype on snp j in individual 2. Any
missing call leads to a missing record.
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Cheung, Spielman et al. report genome-wide association (GWA)
results for gene CPNEL in connection with rs6060535. The
RSNPper package gives us some curated information about the

SNP:

> library (RSNPper)
Loading required package: XML
> SNPinfo("6060535")

SNPper SNP metadata:
DBSNPID CHROMOSOME POSITION  ALLELES VALIDATED

[1,] "rs6060535" "chr20" "33698936" "C/T" "y
There are details on 4 populations
and 10 connections to gene features

SNPper info:
SOURCE VERSION GENOME DBSNP

[1,] "*RPCSERV-NAMEx" "$Revision: 1.38 $" "hgl7" "123"
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bb = SNPinfo("6060535")
> popDetails(bb)

PANEL
Japanese

Han_Chinese

1

2

3 Yoruba-30-trios
4 CEPH-

30-trios

> geneDetails(goo)
HUGO LOCUSLINK

1 CPNE1
2 CPNE1
3 CPNE1
4 CPNE1
5 CPNE1
6 CPNE1
7 CPNE1
8 CPNE1
9 RBM12
10 RBM12

8904
8904
8904
8904
8904
8904
8904
8904

SIZE MAJOR.ALLELE MINOR.ALLELE

sanger
sanger
sanger
sanger

C

C
C
C

NAME

copine
copine
copine
copine
copine
copine
copine
copine

HoH H H H H

I

10137 RNA binding motif protein 12
10137 RNA binding motif protein 12

18

majorf

m

inorf

T 0.918605 0.0813954
T 0.94186 0.0581395

T 0.925

T 0.9

MRNA
NM_003915
NM_152925
NM_152926
NM_152927
NM_152928
NM_152929
NM_152930
NM_152931

ROLE
Exon
Exon
Exon
Exon
Exon
Exon
Exon
Exon

NM_006047 3' UTR
NM_152838 3' UTR

0.075
0.1

RELPOS AMINO

-14677
-14677
-14677
-14677
-14677
-14677
-14677
-14677
7722
7722

<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>



> geneInfo ("CPNE
snpper. ID
"12438"

PRODUCT

"copine I"
SWISSPROT
"QONTZ6"
TRANSCRIPT.START
"33677382"

> geneInfo ("RBM1

"RNA binding mot

TR

111)
NAME
"CPNE1"
LOCUSLINK
"8904"
NSNPS
n189"
CODINGSEQ.START
"3367757T"

2")
snpper. ID
"12440"
CHROM
"chr20"
PRODUCT
if protein 12"
OMIM
"607179"
SWISSPROT

REFSEQACC
ANSCRIPT.START
"33700295"
TRANSCRIPT.END
"337162562"

19

CHROM STRAND
IICthOII n_n
OMIM UNIGENE
"604205" "Hs.166887"
REFSEQACC MRNAACC
"n - n IINM_152931||
TRANSCRIPT.END CODINGSEQ.END
"133716262" "133684259"

NAME

"RBM12"

STRAND

n_n

LOCUSLINK

"10137"

UNIGENE

NSNPS

" 1 13 "

MRNAACC

""NM_152838"

CODINGSEQ.START

"33703860"

CODINGSEQ.END

"33706658"



Both genes are antisense on chromosome 20 in the vicinity
of 33.7M. Note that all RSNPper responses provide a toollnfo
attribute describing the underlying database versions.
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3.1 Reproducing Cheung and Spielman on CPNE1

We can plot the available data on CPNE1 expression and the
rare allele counts in the N=58 individuals:
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Table 1 of the paper of Cheung, Spielman et al. presents p-
values for regression hypotheses about data configurations like
the one displayed above.
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Table 1 | Genome-wide association results for 27 phenotypes

Phenotype Location of target gene Linkage results GWA results (for peak marker)
Peak marker P-value (all cis) Marker Location* MNominal P-valuet

LRAP (LOCe4167) 5q15 T 1077 rs2762 58,030 198x10 "
AABZ78D2 20q11.23 3x10°®8 rs/B8350 —666 367x10° "
PSPHL fpll2 3xwo" rs6593279 —36,903 558 x10° "=
CPNET 20gn.22 1x1077 rs6060535 17,327% 835x107™
CS5TB 210223 2x1077 rs880587 —28155 248 %107
RPS26 12q13.2 2x1077 rs227194 —41,768 784%10 “
GSTMZ2 1p133 3x10°¢8 rs535088 12,699 200x107"
HLA-DRB2 6p21.32 <10 " rs6928482 8,345 B51%10°"
IRF5 70321 2x10°¢8 rs2280714 16,731 678x10°"
H5D17B12 11p11.2 2x107" rs4755741 100,949 738x107"
GSTMI 1pi133 1%x1077 rs535088 —7.052 833x107 ™
PPAT 4q12 2x10°’ rs227940 Trans (Chr 7) 529 %107
PPAT 4q12 2x%1077 rs2139512 25227% 287%10 ¢
Dox17 22q13a 6x107"° rs10420570 Trans (Chr 2 713 %1077
CTSH 15g25.1 THI0-2 rs1365324 —2,298 217%107°8
POMZP3 Jqi.23 ox10® rs1754162 —6,215 7.23 %1078
CGI-96 22q13.2 3x107° rs9600337 Trans (Chr 13) 243%1077
CHI3L2 1p133 3x107" rs755467 =91 257x10 '
VAMPSE 2pn.2 9x10 " rs10509846 Trans (Chr.10) 531x1077
EIF358 16pT1.2 4x%10°8 rs8092794 Trans (Chr 18) 7.20%x10°7
TM75F3 12p1.23 <10 rs11822822 Trans (Chr 110 7.32%1077
IL16 15g25.1 3x10°° rs6557502 Trans (Chr 7 9.63%10°7
TCEAT Bgn.23 6x10°" rs6562160 Trans (Chr 13} 1.08 x107°
S100A13 19213 3x10°¢ rs3757791 Trans (Chr 73 1.40 % 10°®
ICAP-TA 2p25.1 =10 " rs10807387 Trans (Chr &) 227%10°°
SMARCBT 22g1.23 4x10°7 rs 7802273 Trans (Chr 7 246%10 °
CTBF1 4p16.3 2%x107° rs1060043 Trans {Chr 193 526x10°°
ZNF85 19pi2 o9x1077 rs2168503 Trans (Chr 12) 651 %10°°

* Relative to transcriptional start site of target gene. When the maost significant marker is located on a chromosome different from the target gene, it is listed as 'Trans' and the chromosome is

shown.

+Corrected P-value of 0.05 corresponds to a nominal P-value of 6.7 %105,

T Marker is within genomic extent of target gene.
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Are p-values a good index for this problem?
Anscombe's 4 Regression data sets
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3.2 Probing around with GGtools

Based on the 48 that | could find, we have
> mcpnel = ggrplot(c20GGceu, "CPNE1", "rs6060535")
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detScreen: Want SNPs on a sequence of locations checked for

association with expression of a given gene

> dput (detScreen)

function (gge = c20GGceu, psn = "206918_s_at", chrmeta = chr20meta,

chr = "chr20", gran = 50, gene = "")

{

opar = par()

cpn = regseq(gge, psn, seq(l, ncol(gge@phenoData@pData),

gran), chrmeta, chr)
par (mfrow = c(1, 2))

plot(cpn$locs, -loglO(cpn$pva), main
ylab = "-logl0 p Ho:B=0")

bot = which.min(cpn$pva)

ggrplot (gge, gene, names(bot))

par (opar)

invisible(list(bot = bot, cpn = cpn))

25

paste(psn, chr), xlab = "posit:



—-log10 p Ho:B=0

10

206918 s at chr20

O0e+00

3e+07

position

6e+07

26

CPNE1

@)
I [ [ [ I

00 05 1.0 15 20

rare allele count rs2425131



Another cis example (1/50 available snps sampled):

> detScreen(c15GGceu, psn = "202295_s_at", chrmeta = chrlbmeta,
+ chr = "chr20", gene = "CTSH")
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> cs2 = ggrplot(c15GGceu, "CTSH", "rs1369324")
> summary(cs2[[3]1])

Call:
Im(formula =Y ~ X)

Residuals:
Min 1Q Median 3Q Max
-0.64164 -0.16139 -0.04057 0.17366 0.64218

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 10.04638 0.05467 183.753 <2e-16 **x
X -0.14788 0.06594 -2.243 0.0298

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 "' "1
Residual standard error: 0.2947 on 46 degrees of freedom

Multiple R-Squared: 0.09857, Adjusted R-squared: 0.07897
F-statistic: b5.03 on 1 and 46 DF, p-value: 0.02977
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a trans example (IL16 [resident on chrl5], determinant on chr
7]), random set of snps (1/50)
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if we focus on the finding of CS:

> ¢sill6é = ggrplot(c7GGceu, "IL16", "rs6957902")
> summary(csill6[[3]])

Call:
Im(formula = Y ~ X)

Residuals:
Min 1Q Median 3Q Max
-0.9424 -0.3328 -0.0742 0.2112 0.9496

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 7.83542 0.08127 96.408 < 2e-16 *x*x
X -0.46072 0.10280 -4.482 4.89e-05 **x

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' "1

Residual standard error: 0.4101 on 46 degrees of freedom
Multiple R-Squared: 0.3039, Adjusted R-squared: 0.2888
F-statistic: 20.08 on 1 and 46 DF, p-value: 4.889e-05
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screen at a fraction of 1/20 snps on chr7:
209827 s at chr7

0
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> vcill6
SNPper SNP metadata:
DBSNPID CHROMOSOME POSITION ALLELES VALIDATED
[1,] "rs10952094" "chr7" "8011051" "A/C" "y
There are details on 3 populations
and 3 connections to gene features

> csil16
SNPper SNP metadata:

DBSNPID CHROMOSOME POSITION  ALLELES VALIDATED
[1,] "rs6957902" "chr7" "68383269" "C/T" "y"

There are details on 4 populations
and 1 connections to gene features

SNPper info:
SOURCE VERSION GENOME DBSNP
[1,] "*RPCSERV-NAMEx" "$Revision: 1.38 $" "hgl7" "123"

> geneDetails(vcill6)
HUGO LOCUSLINK NAME
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1 ICA1 3382 islet cell autoantigen 1 isoform 1
2 ICA1 3382 islet cell autoantigen 1 isoform 3
3 ICA1 3382 islet cell autoantigen 1 isoform 2
(Intron role noted)
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—log10 p Ho:B=0
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notes

e compact representation of assay data (expr+snp) feasible,
leads to simple workflow

e detScreen function should be configurable (alternatives to
OLS with 0-1-2 genotype representation)

e competitive trans determinants easily discoverable

e linking trans findings to target gene via networks? other
organizations?
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