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The S Language� The S language has been developed since the late 1970s by

John Chambers and his colleagues at Bell Labs.� The language has been through a number of major changes but

it has been relatively stable since the mid 1990s� The language combines ideas from a variety of sources (e.g.

Awk, Lisp, APL...) and provides an environment for

quantitative computations and visualization.
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S Implementations� S-Plus a commercialization of the Bell Labs code.� R an independent open source version that was originally

developed at the University of Auckland but which is now

developed by a world wide group of developers.� Each version has advantages and problems.
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References� The New S Language, Statistical models in S, Programming

with Data, by John Chambers and various co-authors.� Modern Applied Statistics, S Programming by W. N. Venables

and B. D. Ripley.� Introductory Statistics with R by P. Dalgaard.� Data Analysis and Graphics Using R by J. Maindonald and J.

Braun.
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The Nature of Programming

The task of writing a program has two sub-tasks:

1. describing precisely what is to be done

2. describing the data that will be used

These cannot be done separately, the choices made in solving one

subtask affect the other.

algorithms + data structures = programs

- N. Wirth
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Data Structures� S has a rich set of self-describing data structures.� These structures describe both the data that can be processed

by the language and the language itself.� Since the structures are self-describing there is no need for the

user to declare the types of the variables.� It is possible that in future versions of S an optional set of type

declarations will be supported. These could, for example,

support the efficient generation of byte-compiled code.
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Atomic Data Structures� The most basic data type in S is the atomic vector.� Such vectors contain an indexed set of values that are all of the

same type:

– logical

– numeric

– complex

– character� The numeric type can be further broken down into integer,

single, and double types (but this is only important when

making calls to foreign functions, eg. C or Fortran.)
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Creating Vectors� Many S functions create vectors to hold the results they

compute.� there are also functions which can be used to create “empty”

vectors.
> vector("numeric", 10)

[1] 0 0 0 0 0 0 0 0 0 0

> numeric(10)

[1] 0 0 0 0 0 0 0 0 0 0

> vector("logical", 0)

logical(0)
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Patterned Vectors� The functions rep and seq can be used to create vectors

containing patterns of values.� Simple replication.
> rep(1:2, 3)

[1] 1 2 1 2 1 2� More complex replication.
> rep(c("A", "B"), c(2, 3))

[1] "A" "A" "B" "B" "B"

> rep(c("A", "B"), each = 3)

[1] "A" "A" "A" "B" "B" "B"
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Vector Structures� S retains the notion of vector structures from its earliest

implementation.� A vector structure is a vector with some additional information

attached to it as an attribute list.� Most uses of vector structures have been deprecated in favor of

object-oriented alternatives.� The major remaining use of vector structures is as the

representation of arrays.
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Arrays� S regards an array as consisting of a vector containing the

array’s elements together with a dimension (or dim) attribute.� A vector can be given dimensions by using the functions array

or matrix, or by directly attaching them with the dim function.� The elements in the underlying vector correspond to the

elements of the array with earlier subscripts moving faster.
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Examples� Direct array creation.
> x = 1:10

> dim(x) = c(2, 5)

> x

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10� Array creation using matrix.
> x = matrix(1:10, nrow = 2)
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Naming� The elements of a vector can (and often should) be given
names by using the names function.
> x = c(10, 20)

> names(x) = c("First", "Second")

> x

First Second

10 20� Array extents can be named by using the dimnames function or

the dimnames argument to matrix or array. Extent names are

given as a list, with each list element being a vector of names

for the corresponding extent.
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Example
> x = array(1:8, dim = c(2, 2, 2))

> dimnames(x) = list(c("A", "B"), NULL, c("X", "Y"))

> x

, , X

[,1] [,2]

A 1 3

B 2 4

, , Y

[,1] [,2]

A 5 7

B 6 8
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Subsetting� One of the most powerful features of S, is its ability to

manipulate subsets of vectors and arrays.� The S subsetting facility is derived from, and extends that of,

APL.� Subsetting is indicated by [, ]. Note that the first of these is

actually a function (try get("[")).
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Subsetting with Positive Indices� A subscript consisting of a vector of positive integer values is
taken to indicate a set of indexes to be extracted.
> x = 1:10

> x[1:3]

[1] 1 2 3� A subscript which is larger than the length of the vector being
subsetted produces an NA in the returned value.
> x[9:11]

[1] 9 10 NA
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Subsetting with Positive Indices� Subscripts which are zero are ignored and produce no
corresponding values in the result.
> x[0:1]

[1] 1� Subscripts which are NA produce an NA in the result.
> x[c(1, 2, NA)]

[1] 1 2 NA
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Assignments with Positive Indices� Subset expressions can appear on the left side of an
assignment. In this case the given subset is assigned the values
on the right (recycling the values if necessary).
> x[1:3] <- 10

> x

[1] 10 10 10 4 5 6 7 8 9 10� If a zero or NA occurs as a subscript in this situation, it is

ignored.
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Subsetting with Negative Indexes� A subscript consisting of a vector of negative integer values is
taken to indicate the indexes which are not to be extracted.
> x[-(1:3)]

[1] 4 5 6 7 8 9 10� Subscripts which are zero are ignored and produce no

corresponding values in the result.� NA subscripts are not allowed.� Positive and negative subscripts cannot be mixed.
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Assignments with Negative Indexes� Negative subscripts can appear on the the left side of an
assignment. In this case the given subset is assigned the values
on the right (recycling the values if necessary).
> x = 1:10

> x[-(2:4)] = 10

> x

[1] 10 2 3 4 10 10 10 10 10 10� Zero subscripts are ignored.� NA subscripts are not permitted.
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Subsetting by Logical Predicates� Vector subsets can also be specified by a logical vector of TRUEs
and FALSEs.
> x = 1:10

> x[x > 5]

[1] 6 7 8 9 10� NA values used as logical subscripts produce NA values in the

output.� The subscript vector can be shorter than the vector being

subsetted. The subscripts are recycled in this case.� The subscript vector can be longer than the vector being

subsetted. Values selected beyond the end of the vector

produce NAs.
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Subsetting by Name� If a vector has named elements, it is possible to extract subsets
by specifying the names of the desired elements.
> x = 1:10

> names(x) = LETTERS[1:10]

> x[c("A", "D", "F")]

A D F

1 4 6� If several elements have the same name, only the first of them

will be returned.� Specifying a non-existent name produces an NA in the result.
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Exercises

1. Determine (precisely) how S handles non-integer subscripts

(e.g. 1.2). How might this produce problems?

2. What value do the following expressions produce.

x = 1:10

x[-11]

3. How could you choose all elements of a vector which have odd

subscripts? Even subscripts?

4. How are complex subscripts treated?
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Subsetting Arrays� Rectangular subsets of arrays obey similar rules to those which

apply to vectors.� One point to note is that arrays can be treated as either
matrices or vectors. This can be quite useful.
> x = matrix(1:9, ncol = 3)

> x[x > 6]

[1] 7 8 9

> x[row(x) > col(x)] = 0

> x

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 0 5 8

[3,] 0 0 9
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Mode and Storage Mode� The functions mode and storage.mode return information
about the types of vectors.
> mode(1:10)

[1] "numeric"

> storage.mode(1:10)

[1] "integer"

> mode("a string")

[1] "character"

> mode(TRUE)

[1] "logical"
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Automatic Type Coercion� S will automatically coerce data to the appropriate type when
this is necessary.
> 1 + TRUE

[1] 2

Here the logical value TRUE is coerced to the numeric value of 1

so that addition can take place.� Some common coercions are:

– logical −→ numeric

– logical, numeric −→ complex

– logical, numeric, complex −→ character

– numeric, complex −→ logical
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Type Coercion and NA values� Logical values can be coerced to any other atomic mode.
Because of this, the constant NA has been made a logical value.
> mode(NA)

[1] "logical"� When NA is used in an expression, the mode of the result is
usually determined by the mode of the other operands.
> 1 + NA

[1] NA

> mode(1 + NA)

[1] "numeric"
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An R/ S-Plus Difference� S-Plus does not have an NA indicator for character strings. It

coerces NA values to the character string "NA". There are

potential problems with this approach.

> is.na(as.character(NA))

[1] F� R does have a special NA value for character strings and so does
differentiate between NA and "NA".
> is.na(as.character(NA))

[1] TRUE
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Explicit Type-Coercion� The functions as.logical, as.integer, etc. return a copy of
values passed to them, coerced to the specified type.
> as.numeric(c("1", "10.5", "text"))

[1] 1.0 10.5 NA� Warning: These functions discard all labeling and
dimensioning information.
> x = 1:5

> names(x) = LETTERS[1:5]

> as.character(x)

[1] "1" "2" "3" "4" "5"
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Explicit Type-Coercion� The functions mode and storage.mode (or more precisely
mode<- and storage.mode<-) can be used to alter the storage
mode of a variable.
> x = 1:5

> names(x) = LETTERS[11:15]

> x

K L M N O

1 2 3 4 5

> storage.mode(x) = "character"

> x

K L M N O

"1" "2" "3" "4" "5"� These functions preserve attributes like labeling and

dimensioning.
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Vectorized Arithmetic� Most arithmetic operations in the S language are vectorized.
That means that the operation is applied element-wise.
> 1:3 + 10:12

[1] 11 13 15� In cases where one operand is shorter than the other the short
operand is recycled, until it is the same length as the longer
operand.
> 1 + 1:5

[1] 2 3 4 5 6

> paste(1:5, "A", sep = "")

[1] "1A" "2A" "3A" "4A" "5A"� Many operations which need to have explicit loops in other

languages do not need them with S. You should vectorize any

functions you write.
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Lists� In addition to atomic vectors, S has a number of recursive data

structures. Among the important members of this class are

lists and environments.� A list is a vector which can contain vectors and other lists (in
fact arbitrary R objects) as elements. In contrast to atomic
vectors, whose elements are homogeneous, lists and
environments contain heterogeneous elements.
> lst = list(a = 1:3, b = "a list")

> lst

$a

[1] 1 2 3

$b

[1] "a list"
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Environments� One difference between lists and environments is that there is
no concept of ordering in an environment. All objects are
stored and retrieved by name.
> e1 = new.env(hash = TRUE)

> assign("a", 1:3, e1)

> assign("b", "a list", e1)

> ls(e1)

[1] "a" "b"� Another difference is that for lists partial matching of names is

used, for environments it is not.
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Subsetting and Lists� Lists are useful as containers for grouping related thing

together (many S functions return lists as their values).� Because lists are a recursive structure it is useful to have two

ways of extracting subsets.� The [ ] form of subsetting produces a sub-list of the list being

subsetted.� The [[ ]] form of subsetting can be used to extract a single

element from a list.
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List Subsetting Examples� Using the [ ] operator to extract a sublist.
> lst[1]

$a

[1] 1 2 3� Using the [[ ]] operator to extract a list element.
> lst[[1]]

[1] 1 2 3� As with vectors, indexing using logical expressions and names

are also possible.
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List Subsetting by Name� The dollar operator provides a short-hand way of accessing list
elements by name. This operator is different from all other
operators in S, it does not evaluate its second operand (the
string).
> lst$a

[1] 1 2 3

> lst[["a"]]

[1] 1 2 3� For these accessors partial matching (!) is used.
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Environment Accessing Elements� Access to elements in environments can be through, get,

assign, mget.� You can also use the dollar operator and the [[ ]] operator,
with character arguments only. No partial matching is done.
> e1$a

[1] 1 2 3

> e1[["b"]]

[1] "a list"
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Assigning values in Lists and Environments� Items in lists and environments can be replaced in much the
same way as items in vectors are replaced.
> lst[[1]] = list(2, 3)

> lst[[1]]

[[1]]

[1] 2

[[2]]

[1] 3

> e1$b = 1:10

> e1$b

[1] 1 2 3 4 5 6 7 8 9 10
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Data Frames� Data frames are a special S structure used to hold a set of

related variables. They are the S representation of a statistical

data matrix. Typically the cases are the rows and the variables

are the columns (and this is how data.frames are

implemented).� Data frames can be treated like matrices, and indexed with two

subscripts. The first subscript refers to the observation, the

second to the variable.� In fact, this is an illusion maintained by the S object system.

Data frames are really lists, and list subsetting can also be used

on them.
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Control-Flow� S has a number of special control-flow structures which make it

possible to express quite complex computations in the S

language.� Iteration is provided by the for, while and repeat statements.� Conditional evaluation is provided by the if statement and the

switch function.� Of these capabilities, for and if are by far the most commonly

used.
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for statements� for statements have the basic form:

for ( var in vector) {

statements

}

The effect of this is to set the value of the variable var

successively to each of the elements in vector and then evaluate

all statements.� This looks similar to the for statement found in languages such

as C and C++, but it is closer to the foreach statement in Perl.
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Examples� Summing the values in a vector (C style)

sum = 0

for( i in 1:length(x) ) {

sum = sum+x[i]

}

� Summing the values in a vector (Perl style).

sum = 0

for( elt in x) {

sum = sum + elt

}� The second of these is more efficient.
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Flow Control� break: when a break statement is encountered, evaluation

halts and transfers to the first statment outside of the enclosing

for, while or repeat loop.� next: when a next statement is encountered then evaluation of

the current iteration halts, and the loop is entered with the

looping index incremented by one.
> for (i in 1:5) if (i == 3) next else print(i)

[1] 1

[1] 2

[1] 4

[1] 5

> for (i in 1:4) if (i == 3) break else print(i)

[1] 1

[1] 2

43



if expressions� If statements have the basic form:

if( test ) {

statements

} else {

statements

}

� If the first element of test is true, the first group of statements

is executed, otherwise, the second group of statements is

executed.� The else clause is optional.
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Examples� Here is a typical use of if.

if (any(x < 0) )

stop("negative values encountered")

� Here is a choice between actions.

r = if( all( x >= 0 ) )

sqrt(x) else

sqrt( x + 0i)

The layout here is important. The else clause must fall on the

same line as the preceeding statement (assuming the code

above is not enclosed within a set of braces ({, }).
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The switch Function� The switch function uses the value of its first argument to

determine which of its remaining arguments to evaluate and

return. The first argument can be either an integer index, or a

character string to be used in matching one of the following

arguments.

center = function(x, type) {

switch(type,

mean = mean(x),

median = median(x),

trimmed = mean(x, trim = .1))

}� Calling center with type=1 or type="mean" produce the same

result.
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Efficiency Issues� S provides a full set of control-flow statements but they can be

slow because S is an interpreted language.� R is somewhat faster than S-Plus at looping, but it is still about

two orders of magnitude slower than compiled C or Fortran.� For time-critical applications, it can be useful to obtain

measures of how fast a particular piece of code runs as a guide

for choosing a good computational method.� The function system.time provides timing information. But

do be careful, timing is not completely simple.
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Timing Experiments� Timing experiments can be a very good way of checking
alternative ways of carrying out computations.
> sum = 0

> x = rnorm(10000)

> system.time({

+ s = 0

+ for (i in 1:length(x)) s = s + x[i]

+ })

[1] 0.06 0.00 0.07 0.00 0.00

> system.time({

+ s = 0

+ for (v in x) s = s + v

+ })

[1] 0.04 0.00 0.04 0.00 0.00
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Profiling� Once you know that something takes a long time, you might

want to find out what part of your function is taking that long

time.� The functions Rprof and summaryRprof can be used to profile

R commands and to provide some insight into where the time

is being spent.

Rprof()

<commands go here>

Rprof(NULL)

summaryRprof()
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Debugging� When you have an error in your code there are some tools that

can help. traceback, debug and browser all provide different

tools.� When running either debug or browser there is a special

interpreter that intercepts some commands; in particular n,

where, and Q.� The option error can be set to recover, in which case the

debugger will be invoked on error.� Warnings can be converted into errors (if desired), see options

for more details.
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The apply Family� A natural programming construct in S is to apply the same

function to elements of a list, of a vector, rows of a matrix, or

elements of an environment.� The members of this family of functions are different with

regard to the data structures they work on and how the

answers are dealt with.� Some examples, apply, sapply, lapply, mapply, eapply.
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Using apply� apply applies a function over the margins of an array.� For example,

> apply(x, 2, mean)

computes the column means of a matrix x, while

> apply(x, 1, median)

computes the row medians.� (apply) is implemented in a way which avoids the overhead

associated with looping. (But it is still slow and you might use

rowSums or colSums).
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An Additive Table Decomposition� Given the data matrix x, this code carries out an overall + row

+ column decomposition.

overall = mean(x)

row = apply(x, 1, mean) - overall

col = apply(x, 2, mean) - overall

res = x = outer(row, col, "+") - overall� The generalized outer product function outer is used here to

produce a matrix, the same shape as x, containing the

appropriate sums of row and column effects.� Something similar can be used to produce a simple

implementation of median polish.
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Writing Functions� Writing S functions provides a means of adding new

functionality to the language.� Functions that a user writes have the same status as those

which are provided with S.� Reading the functions provided with the S system is a good

way to learn how to write functions.� If a user chooses she can make modifications to the system

functions and use her modified ones, in preference to the

system ones.
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A Simple Function� Here is a function that computes the square of its argument.
> square = function(x) x * x

> square(10)

[1] 100� Because the underlying arithmetic is vectorized, so is this
function.
> square(1:4)

[1] 1 4 9 16
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Composition of Functions� Once a function is defined, it is possible to call it from other
functions.
> sumsq = function(x) sum(square(x))

> sumsq(1:10)

[1] 385
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Example: Factorials� Iteration.
> facI = function(n) {

+ ans = 1

+ for (i in seq(n)) ans = ans * i

+ ans

+ }

> facI(5)

[1] 120� Recursion.
> facR = function(n) if (n <= 0) 1 else n * facR(n - 1)

> facR(5)

[1] 120
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Examples: Factorials� Vectorized arithmetic.
> facV = function(n) prod(seq(n))

> facV(5)

[1] 120� Using special functions.
> facG = function(n) gamma(n + 1)

> facG(5)

[1] 120� The function facG is the fastest and most flexible version.
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Exercise

Time each of the different factorial functions.
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General Functions� In general, each S function has the form: function ( arglist )

body

where arglist is a comma-separated list of formal parameters

and body is an S expression which computes the value of the

function.� Functions are evaluated by associating the values of the

arguments with the names of the formal parameters and then

evaluating the body of the function using these associations.
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The Evaluation Process
If the function hypot defined by:
> hypot = function(a, b) sqrt(a^2 + b^2)

then the S expression hypot(3, 4) is evaluated as follows.� Temporarily create variables a and b, which have the values 3

and 4.� Use these variables definitions to evaluate the expression

sqrt(a^2 + b^2) to obtain the value 5.� When the evaluation is complete remove the temporary

definitions of a and b.
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Optional Arguments� S has a notion of default argument values.� These make it possible for arguments to take on reasonable

default values if no values was specified in the call to the

function.� In the following, the second argument takes on the value 0 if no
value is specified for it.
> sumsq = function(x, about = 0) sum((x - about)^2)� This means that the expressions sumsq(1:10, 0) and

sumsq(1:10) are equivalent and will return the same value.
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Optional Arguments� The default values for arguments can be specified by an S
expression involving the variables available inside the body of
the function.
> sumsq = function(x, about = mean(x)) sum((x - about)^2)� Recursive references within default arguments are not
permitted. E. g. at least one argument must be provided to the
following function.
> silly = function(a = b, b = a) a + b
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Argument Matching� Because it is not necessary to specify all the arguments to S

function, it is important to be clear about which argument

corresponds to which formal parameter of the function.� The solution is to indicate which formal parameter is

associated with an argument by providing a (partial) name for

the argument.� In the case of the sumsq function, the following are equivalent:

sumsq(1:10, mean(1:10)

sumsq(1:10, about = mean(1:10))

sumsq(1:10, a=mean(1:10))
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Argument Matching

The arguments that the function is called with are called the

actuals. The arguments that appear in the definition of the

function are called the formals.� First, arguments are matched by name, using exact matching.� Second, partial matching of arguments is carried out.� Third, remaining unmatched arguments are matched by

position.
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The dots� In S there is a special argument, . . ., which is three sequential

periods.� This argument matches any number of actual (or supplied)

arguments.� It lets functions have variable numbers of arguments.� Positional matching only applies to arguments that preceed

(are left of) the . . . argument.� To match arguments to the right of the dots, you must name

the argument and no partial matching is done.
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Lazy Evaluation� S differs from many computer languages because the evaluation

of function arguments is lazy.� In other words, arguments are not actually evaluated until they

are required.� It can be the case that arguments are never evaluated.
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Example� Here is a variation of the sumsq function.
> sumsq = function(x, about = mean(x)) {

+ x = x[!is.na(x)]

+ sum((x - about)^2)

+ }� This function first removes any NA values from x before

computing its answer.� Lazy evaluation means that the about value is computed after

x has been cleaned.
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Exercises

1. Modify the sumsq so that the removal of NA values is optional.

2. Write a new function which computes the deviations of the

values in x about about. The values returned by the function

should be just like x. How should missing values be handled?
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Reading System Functions

1. The built-in functions supplied with S form a valuable resource

for learning about S programming.

2. In many cases you may be surprised by the complexity of what

appear to be trivial function (try median).

3. Be warned there can still be bugs in system functions.
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Returning Values� Any single R object can be returned as the value of a function;

including a function.� If you want to return more than one object, you should put

them in a list (usually with names), or an S4 object, and return

that.� The value returned by a function is either the value of the last

statement executed, or the value of an explicit call to return.� return takes a single argument, and can be called from any

where in a function.� return is lexically scoped, and can be passed out to other

functions, to effect non-local returns.
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Using return

In the functions below, a call to f with a value of x less than 5
causes an exit from f. Notice that the print statement is not
evaluated in this case.
> f = function(x) {

+ z = g(x, return(3))

+ print("in f")

+ z

+ }

> g = function(n, y) if (n < 5) y else 4

> f(3)

[1] 3

> f(10)

[1] "in f"

[1] 4
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Control of Evaluation� In some cases you want to evaluate a function that may fail,

but you do not want to exit from the middle of an evaluation.� In these cases the function try can be used.� try(expr) will either return the value of the expression expr,

or an object of class try-error� tryCatch provides a much more substantial mechanism for

condition handling and error recovery.

73



Closing Things� Sometimes you will want to make sure that global parameters

(say in options) are reset, or files are closed, when you exit a

function.� And often you want to ensure that these are reset even if an

error or some other non-local exit occurs.� In these cases you should use on.exit; it allows you to place

expressions into a list to be evaluated.
> f = function(x) {

+ on.exit(print("hi"))

+ 5

+ }

> f

function (x)

{

on.exit(print("hi"))

5

}
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Computing on the Language� Because argument evaluation is lazy, S allows programmers to

get access to the unevaluated arguments.� This is made possible by the substitute function.
> g = function(x) substitute(x)

> g(x[1] + y * 2)

x[1] + y * 2� substitute is used in conjunction with deparse to obtain a
character string representation of an argument.
> g = function(x) deparse(substitute(x))

> g(x[1] + y * 2)

[1] "x[1] + y * 2"
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Computing on the Language� The substitute function can take a call and substitute the
symbolic representation of several arguments.
> g <- function(a, b) substitute(a + b)

> g(x * x, y * y)

x * x + y * y� One particularly useful trick is to use the ... argument in a
substitute expression.
> g = function(...) substitute(list(...))

> g(a = 10, b = 11)

list(a = 10, b = 11)
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Scoping� We’ve seen that evaluation is the process of determining the

value of a symbolic expression.� In order for evaluation to take place, values must be

determined for the variables in the expression.� The scope of a variable is that portion of a program where that

variable refers to the same value.� The two dialects of S differ in their scoping rules.
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Example� In the following fragment:
> x = 10

> y = 20

> f = function(y) {

+ x + y

+ }� There is a global variable called x� There is a global variable called y and a local variable called y.
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Scoping in S-Plus� The rules in S-Plus are that variables are either local to the

function they are defined in, or they are global.� The process of determining the value of a variable is as follows.

– Look for a local variable – if there is one, use its value.

– If there is no local variable, use the value of the global

variable.� There are some effects of these scoping rules that can be

counter-intuitive.
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Scoping Problems� The following implementation of binomial coefficients does not
work in S-Plus.
> choose = function(n, k) {

+ fac = function(n) if (n <= 1)

+ 1

+ else n * fac(n - 1)

+ fac(n)/(fac(k) * fac(n - k))

+ }� Why does this function fail?
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Consequences of S-Plus Scoping Rules� The scoping rules of S-Plus encourage the use of many globally

defined functions, even when those functions are never called

directly.� This is because it is difficult to hide related helper functions

inside wrapper functions.� The use of this style of programming produces name space

clutter and effects like the accidental masking of functions.� Object-oriented programming extensions help a little, as do

name spaces.
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Scoping in R� R uses what is called static, or lexical scoping (another term is

block structure).� Variables defined in outer blocks are visible inside inner blocks.� This is a natural extension to the S-Plus way of scoping.� The hiding of helper functions within wrappers is encourage.� This promotes better software design and alleviates name space

clutter.� It also has some interesting consequences.
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Example: Gaussian Likelihoods� This works in R, but not S-Plus, since it relies on lexical scope.
> mkNegLogLik = function(x) {

+ function(mu, sigma) {

+ sum(sigma + 0.5 * ((x - mu)/sigma)^2)

+ }

+ }

> q = mkNegLogLik(rnorm(100))� What is q? How does it work?

83



Packages� In R one of primary mechanisms for distributing software is via

packages� CRAN is the major repository for getting packages.� You can either download packages manually or use

install.packages or update.packages to install and update

packages.� In addition, on Windows and in some other GUIs, there are

often menu items that facilitate package downloading and

updating.� It is important that you use the R package installation

facilities. You cannot simply unpack the archive in some

directory and expect it to work.
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Packages - Bioconductor� In Bioconductor the package handling tools are somewhat

extended by the reposTools package. This packages supports

more general downloading and installing of packages.� There are also some tools that help you to create and maintain

your own, possibly private, package repository.� Bioconductor has both a release branch and a development

branch and you must be careful to specify which you want. We

cannot simply use version numbers because devel version

numbers are always larger.� Bioconductor packages all have vignettes.
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Packages� Having, and needing many more packages can cause some

problems.� When packages are loaded into R, they are essentially attached

to the search list, see search.� This greatly increases the probabilities of variable masking,

that is one package provides a function that has the same name

as a different function in another package.� Name spaces were introduced in R 1.7.0 to provide tools that

would help alleviate some of the problems.

86



Name Spaces� Name spaces were introduced in R 1.7.0, see R News, Vol 3/1

for more details.� They provide a mechanism that allows package writers to

control what functions they import (and hence use) and export

(and hence let others use).� They allow a package author to use a function from another

package without attaching it to the search list.� However, name spaces cause some problems and interfere with

some of the ways users like to interact with R.
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Name Spaces� Functions that are not exported from a name space are not

easily viewed by the user.� Functions that are exported from a name space can be accessed

by using the double-colon, ::, operator. This is a binary

operator, its first operand is the name of the package and the

second is the name of the function, e.g. base::mean.� To access a function that is not exported you need to use the

triple-colon operator, :::.� This should only be done for the purposes of investigation. If a

package author does not export a function, they typically have

a reason for that.
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Object Oriented Programming� Object oriented programming is a style of programming where

one attempts to have software reflections of real-world objects

and to write functions (methods) that operate on these objects.� The S language has two different object oriented paradigms,

one S3 is older and should not be used for new projects. The

second, S4 is newer and is currently under active development.� These objects systems are more like OOP in Scheme, Lisp or

Dylan than they are like OOP in Java or C++.
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Classes� In OOP there are two basic ingredients, objects and methods.� An object is an instance of a class, and most OOP

implementations have mechanisms to ensure that all objects of

a particular class have some common characteristics.� In most implementations there is some notion of inheritance or

class extension. Class B is said to extend class A if a member

of B has all the attributes that a member of A does, plus some

other attributes.
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Generic Functions� A generic function is an interface, or a dispatcher, that

examines the type or class of its arguments and invokes the

most appropriate method.� A method is registered with a generic function, by indicating

its existence together with the number and types (classes) of its

arguments.� In the previous example, if a generic function is called with an

instance of class B and there is no class B method, a class A

method could be used.
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S3� S3 OOP has no real mechanism for defining classes or for

creating objects from a specific class.� One can make any object an instance of class foo, by assigning

a class attribute, class(x) = "foo".� S3 handles inheritance by setting several different class

attributes (but these are not always handled correctly).� S3 is not suitable for the development of large scale complex

systems.
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S3 Generic Functions� The relationship between a generic function and its methods is
done by a naming convention. The generic function must have
a call to UseMethod and the method must have a name that is
the name of the generic function concatenated with the name
of the class, with the two names separated by a dot.
> mean

function (x, ...)

UseMethod("mean")

<environment: namespace:base>

> methods("mean")

[1] mean.Date mean.POSIXct mean.POSIXlt mean.data.frame

[5] mean.default mean.difftime
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S4� In S4 classes of objects must be explicitly defined using
setClass and instances of a class must be instantiated using
new.
> setClass("foo", representation(a = "numeric"))

[1] "foo"

> b = new("foo", a = 10)

> b

An object of class "foo"

Slot "a":

[1] 10

> b@a

[1] 10
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S4� Generic functions are defined using setGeneric.� Methods are registered with a generic function using

setMethod. Note there are no required or used naming

conventions.� Methods can found, and listed using getMethods.� Generic functions can dispatch on any, and all, arguments

(unlike Java and C++, which basically dispatch on the first

argument).� Generic functions and classes are not tightly linked, as they are

in other programs, and there is no real notion of this.
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General Comments� One of the main reasons for using OOP is to hide

implementation details from the user.� Users essentially only know what operations are valid. They

may use them and if the developer changes the implementation,

there should be no effect on the end user.� OOP lets you specialize the behavior of your functions (and

system functions) to your objects.
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