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Two Types of Data:
Pairwise Protein Relationships

 AP-MS (Affinity Purification - Mass Spectrometry )

— Measures Complex Comembership

« Gavin, et al. (Nature, 2002)

— TARP : Tandem Affinity Purification
* Ho, et al. (Nature, 2002)

— HMS-PCI: High-throughput Mass Spectromic Protein Complex
Identification

 Y2H (Yeast Two Hybrid)

— Measures Physical Interactions

 |to, et al. (PNAS, 1998)
» Uetz, et al. (Nature, 2000)
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Using a bait protein, AP-MS technology finds hit proteins that are

comembers of at least one complex with the bait.

Y2H technology finds pairs of physically interacting proteins.
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AP-MS data: Y2H data:
( > . *Estimation of A requires
estimation of K, the number
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Existing analyses of AP-MS data

« Gavin, et al.
— Functional organization of the yeast proteome by systematic
analysis of protein complexes (Nature 2002)
 Purifications grouped together based on significant overlap (p.143)

« Bader and Hogue

— Analyzing Yeast Protein-Protein Interaction Data Obtained from
Different Sources (Nature Biotechnology, 2002)

— An Automated Method for Finding Molecular Complexes in Large
Protein Interaction Networks (Bioinformatics 2003)

» Works within the realm of pairwise interactions without recognition of
the bipartite graph structure for complex membership

» “Spoke” and “Matrix” models
« Treat AP-MS data as “hypothetical pairwise interactions”

« Jansen, et al.
— A Bayesian Networks Approach for Predicting Protein-Protein
Interactions from Genomic Data (Science 2003)

» Deals with pairwise complex comemberships, not comprehensive
complex membership



Four Unique Aspects to our Algorithm

1.  Some proteins participate in more than one complex

2. Inan AP-MS experiment, some proteins are used as baits
and some proteins are only ever found as hits

3. Graph theoretic paradigm to allow for succinct expression of

constructs involved
. Bipartite graph for complex membership (A)

. Relationship of complex membership (A) to complex comembership (Y) assayed in
an AP-MS experiment (Z)
. AP-MS and Y2H are different technologies that measure different relationships

between proteins

4.  Statistical paradigm to allow for false positive and false
negative observations
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2. In an AP-MS experiment, some proteins are used as baits

and some proteins are only ever found as hits

Supplementary Material S1. List of all purifications.

Mote that frequently found proteins are omitted from this list (see Table 52).

# ;?Eti?: Froteins found
1 Abd1 Abdt Rph2 Spth
2 Acci Acct Coth Sitd YLR3IBaW
3 Ade1 Adel
4 Adel2 Adel2
5 Adeld Ade13 Pri
5] Aded Aded Cys3 Rnal
7 Ade5,7 Ades, 7
a Adeb Aded
] Adk1 Adki
10 Ado1 Adot
11 Akl Akl
12 Aosi Adhl Aos1 UbaZ Yefd _
13 Apc2 Apcl Apc? Cdel6 Cde23 Cde27
14 Apdi1 Apdi
15 Apgl4 Vmal Vps3o _
| 18 Apl2 Apl2 Apld Apm1 Apm2 Apst Mis1 Rpal3s
AplS Apls Apm3 Aps3 Ckibi
Apls Apls Apm3 EnaZ
pm3 Apls Apm3

Raw TAP purifications (Gavin et al.)
Available at http://www.nature.com
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3. Graph theoretic paradigm to

allow for succinct expression

of constructs involved
*Bipartite graph for
complex membership
*Relationship of complex
membership (A) to
complex comembership
(Y) assayed in an AP-MS
experiment (Z)
*AP-MS and Y2H are
different technologies that
measure different
relationships between
proteins

We want to
estimate A

using AP-MS
assays of Y.

iy True Complex
Physical Topology

iy PCMG

iii} CCG, 6 baits

iv) Y2H

a-ij
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3. Graph theoretic
paradigm to allow for
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*Relationship of
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4. Statistical paradigm
to allow for false
positive and false
negative observations

Z represents actual
observations using
AP-MS technology.
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4. Statistical paradigm
to allow for false
positive and false
negative observations

Z represents actual
observations using
AP-MS technology.

We will look for
sets of proteins
that form maximal
BH-complete

subgraphs with an

allowance for false
positive and false
negative
observations.
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Our Goal

 for any (every) organism or tissue type
we want to estimate the complex
membership graph

 that is, the bipartite graph where one set
of nodes are all proteins and the other
are all complexes

« we are limited by the experimental data,
experimental techniques and models
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In summary...
A >Y >/

Y=ARA' AP-MS data for N bait proteins
and M hit-only proteins

>(Y,A)

estimation algorithm

We start with an initial estimate for A, and then refine that
estimate according to a two component probability measure:

P(ZIA,u,a)=L(Z| Y=ARA’,u,a)C (Z|A,u,a)



P(ZIA,u,a)=L(Z| Y=ARA’,u,a)C (Z|A,u,a)

L is the usual likelihood for independent Bernoulli observations of the
existence of an edge under a logistic regression model with user-specified
values of y and a.

N N-+M
. (1 Zj) Z,m ~Zim
LZIA® A, ua)=[T] []p," (1-p;)" H [ [pm™ (1= i)

=1 j=1,j#i I=1 m=N-+1

doubly tested edges singly tested edges
p; =Pr(Z; =1|p,a,Y;), and Iog[1p j p+ay;
ij
u gH+a

sensitivity = © specificity =
1+et’ 1+ e



P(ZIA,u,a)=L(Z| Y=ARA’,u,a)C (Z|A,u,a)

L is the usual likelihood for independent Bernoulli observations of the
existence of an edge under a logistic regression model with user-specified
values of y and a.
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i=1 j=1,ji I=1 m=N+1
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p; =Pr(Z; =1|p,a,Y;), and Iog(1p j p+ay;
j
el et ™
sensitivity = ,  specificity =
y 1+ e* & Y 1+ el

Using L, we can estimate ¥;;= 0 or 1 fori=1,..Nand j=1,.. N+M. Fori=j, Y=V,




P(ZIA,u,a)=L(Z| Y=ARA’,u,a)C (Z|A,u,a)

Assumptions for y and a in our analyses:

1) Pr(Z,=0| y,a,Y;=0)>.5 and Pr(Z;=1| y,a,Y;=1)>.5

L 70
-sensitivity and specificity are greater than .5

2) Pr(Z,;=0| p,a, Y;=1)> Pr(Z;=1| p,a,Y,=0)

L 70
-false negative probability is greater than false positive probability

Under these assumptions for y and a, L is easily maximized.

n

For singly tested bait-hit pairs, YI = Zij.

n

For doubly tested bait-bait pairs, |(Yj, Y ;) =max(Z;,Z; ).




P(Z|A,u,a)=L(Z|Y=ARQA’ u,a)C (Z|A,u,a)

Assumptions for y and a in our analyses:

1) Pr(Z,=0| y,a,Y;=0)>.5 and Pr(Z=1| y,a,Y;=1)>.5

L 70
-sensitivity and specificity are greater than .5

2) Pr(Z,;=0| p,a, Y;=1)> Pr(Z;=1| p,a,Y,=0)

L 70
-false negative probability is greater than false positive probability

Under these assumptions for y and a, L is easily maximized.

n

For singly tested bait-hit pairs, YI — Zij.

n

For doubly tested bait-bait pairs, |(Yj, Y ;) =max(Z;,Z; ).

We have an estimate for Y, but our goal is to estimate A.
We use the transformation Y=A®A' and maximal BH-complete subgraphs.




Given Y, What is A? |dentifiability

Y=ARA’
Y is uniquely determined by A,
but A is not uniquely determined by Y.

One Trimer |ldentical Y
- P, P, P,
P,| 1 Three Dimers
A= P, | 1 C, G, G4 Py | 1 1 1
P, | 1 P,11 1 O Y=ARQA'=P, | 1 1 1
One Trimer with a A o Ps| 1 1T 1
Dimer Subcomplex P, 0 1 1
C, G
P, | 1 1
A=p |1 1
P,| 1 O




Given Y, What is A? |dentifiability

Y=ARA’
Y is uniquely determined by A,
but A is not uniquely determined by Y.

One Trimer Identical Y
C,
P, P, P;
P,| 1 Three Dimers
A= P, | 1 C, C, Gy Pt 1
P, | 1 P,|1 1 O Y=ARQA' =P, | 1 1 1
A=
One Trimer with a il L Py | 1 1 1
Dimer Subcomplex P, 0 1 1
C, G, A is identifiable if it assumed
Pl 1 1 to consist of maximal
A= subgraphs of Y. I.e., given the
P11 1 Y above, we would find the
P, 1 0 “one trimer" version of A.




Initial Estimate of A
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Initial Estimate of A
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Why C?
Why isn’'t L enough??

At most, each edge is tested
twice, and independent errors
are made in the observation of
all edges.

A false negative observation
from a bait to a hit would break
one complex into two estimated
complexes.

Effectively, C relaxes the
maximal BH-complete subgraph
requirement for the initial
complex estimates to
accommodate a proportion of
false negative observations in
accordance with the sensitivity
of the AP-MS technology.
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P(ZIA,u,a)=L(Z| Y=ARA’,u,a)C (Z|A,u,a)

C is designed to allow combinations of the complexes in the estimated A
that increase C in favor of small decreases in L.

K
CZ|Aua)= HCD(ck Y (c,) (K = total # of complexes)
k=1

c, is a complex estimate with n, bait proteins and m, hit - only proteins

®(c, ) = cumulative probability of observing a particular missing edge pattern
or something more extreme for the edges in complex c,,
i.e. two - sided p - value from Fisher's exact test on node indegree

t X (p+a) (b+a)
[(c,)= ( “ ] © : [ % = sensitivityj
X (1 + e(‘”“)yk 1+e

t, =n.(n, + m,—1)=number of tested edges in BH - complete subgraph for c,

x,, =number of observed edges in BH - complete subgraph for c,



P(ZIA,u,a)=L(Z| Y=ARA’,u,a)C (Z|A,u,a)

C is designed to allow combinations of the complexes in the estimated A
that increase C in favor of small decreases in L.

K
CZ|Aua)= HCD(ck Y (c,) (K = total # of complexes)
k=1

c, is a complex estimate with n, bait proteins and m, hit - only proteins

®(c, ) = cumulative probability of observing a particular missing edge pattern
or something more extreme for the edges in complex c,,
i.e. two - sided p - value from Fisher's exact test on node indegree

t X (p+a) (b+a)
[(c,)= [ “ ] © : [ % = sensitivityj
X (1 + e(‘““)yk 1+e

t, =n.(n, + m,—1)=number of tested edges in BH - complete subgraph for c,

x,, =number of observed edges in BH - complete subgraph for c,

Since the thousands of individual edges in Y are tested at most twice, an
estimate of A based solely on L may not be accurate. C offers a second
criteria to further refine A.




Combining Complex Estimates

For two complex estimates, c¢,, and c¢,,, we check to see
if they increase P when treatedas one complex c,..

Specifically, if log P,.-logP,, ., >0, we combine c¢,, and ¢,, anew c,..

log Py.-10g Py, =10g®P(c,.)—log®P(c,4)—logP(c);,)
+log/l (c,-)—logl (c,,)—logl (c,,)
+> [azgh —log(1+ e***) +log(1+ e* )]

S

new

= set of all edges between proteins g and h that
are being changed from "absent" to " present”

where S

new



Combining Complex Estimates

For two complex estimates, c¢,, and c¢,,, we check to see
if they increase P when treatedas one complex c,..

Specifically, if log P,.-logP,, ., >0, we combine c¢,, and ¢,, anew c,..

log Py.-10g Py, =10g®P(c,.)—log®P(c,4)—logP(c);,)
+log/l (c,-)—logl (c,,)—logl (c,,)
+> [azgh —log(1+e"**) +log(1+ e )]

S

new

= set of all edges between proteins g and h that
are being changed from "absent" to " present"

where S

new

In general, P increases for a smaller number of complexes that are both
reflective of approximate maximal BH-complete subgraph structure and
consistent with the observed data.




Complex Estimation Algorithm



Complex Estimation Algorithm

1. Find the MLE for Y using Z.



Complex Estimation Algorithm

1. Find the MLE for Y using Z.

2. Find the initial estimate for A by constructing maximal BH-
complete subgraphs in Y.



Complex Estimation Algorithm

1. Find the MLE for Y using Z.

2. Find the initial estimate for A by constructing maximal BH-
complete subgraphs in Y.

3.  Order the columns of A according to the number of baits.



Complex Estimation Algorithm

1. Find the MLE for Y using Z.

2. Find the initial estimate for A by constructing maximal BH-
complete subgraphs in Y.

Order the columns of A according to the number of baits.

4. Set k=1 and K=number of columns of A.

o



Complex Estimation Algorithm

S

Find the MLE for Y using Z.

Find the initial estimate for A by constructing maximal BH-
complete subgraphs in Y.

Order the columns of A according to the number of baits.
Set k=1 and K=number of columns of A.

For c,, find the set A, of columns of A, excluding c,, that share
at least one common entry of “1”. Calculate log P -log P, \,
for ¢, paired with all elements in A,.



Complex Estimation Algorithm

S

Find the MLE for Y using Z.

Find the initial estimate for A by constructing maximal BH-
complete subgraphs in Y.

Order the columns of A according to the number of baits.
Set k=1 and K=number of columns of A.

For c,, find the set A, of columns of A, excluding c,, that share
at least one common entry of “1”. Calculate log P -log P, \,
for ¢, paired with all elements in A,.

If at least one value of log P,. -log P, ,, is greater than O,
replace c, with the union of ¢, and c,,..,,the element of A,
giving the largest value of log P,. -log P, ,,. Remove c,;,,.,
and any columns that are strictly less than ¢, Uc,,,..,- Set
K=number of columns of A.



Complex Estimation Algorithm

S

Find the MLE for Y using Z.

Find the initial estimate for A by constructing maximal BH-
complete subgraphs in Y.

Order the columns of A according to the number of baits.
Set k=1 and K=number of columns of A.

For c,, find the set A, of columns of A, excluding c,, that share
at least one common entry of “1”. Calculate log P -log P, \,
for ¢, paired with all elements in A,.

If at least one value of log P,. -log P, ,, is greater than O,
replace c, with the union of ¢, and c,,..,,the element of A,
giving the largest value of log P,. -log P, ,,. Remove c,;,,.,
and any columns that are strictly less than ¢, Uc,,,..,- Set
K=number of columns of A.

If none of the values of log P,. -log P, ,, are greater than 0,
set k=k+1, and return to step 5.



Complex Estimation Algorithm

S

Find the MLE for Y using Z.

Find the initial estimate for A by constructing maximal BH-
complete subgraphs in Y.

Order the columns of A according to the number of baits.
Set k=1 and K=number of columns of A.

For c,, find the set A, of columns of A, excluding c,, that share
at least one common entry of “1”. Calculate log P -log P, \,
for ¢, paired with all elements in A,.

If at least one value of log P,. -log P, ,, is greater than O,
replace c, with the union of ¢, and c,,..,,the element of A,
giving the largest value of log P,. -log P, ,,. Remove c,;,,.,
and any columns that are strictly less than ¢, Uc,,,..,- Set
K=number of columns of A.

If none of the values of log P,. -log P, ,, are greater than 0,
set k=k+1, and return to step 5.

Repeat until k=K.



Two types of complex estimates to
interpret with care

Unreciprocated
Single-Bait-Multi-Hit (SBMH) Bait-Bait (UnRBB)

By ©

() () () (w9 () ©

Connectivity among hits? False positive?



TAP data analysis

Sensitivity=.75, Specificity=.001

Gene Ontology (GO) cellular component-based similarity
measure in an extended logistic regression model

— Purpose is to increase the probability that two proximally located proteins
are complex comembers even if there is not an edge between them

720 complexes total
— 123 UnRBB
— 331 SBMH

— 266 multi-bait complexes with at least 2
proteins and at least 2 edges

Compared these 266 complexes to the 232 yTAP complexes
(Gavin et al. 2002) through both a large scale comparison, and
complex-by-complex for several complexes.



Large Scale Comparison
to Known Complexes

« Similarity measure: w=min(i/a,i/b)
— a = # proteins in complex A, b = # proteins in complex B
— | = # proteins in both A and B

* Munich Information Center for Protein Sequences (MIPS)
reports a list of 267 curated protein complexes , 129 of which
involved 595 proteins contained in the TAP data.

« Using w>.70 as a mapping criteria and the common subset of
595 proteins, we mapped 85 of our complexes to 65 MIPS
complexes and 40 yTAP complexes to 32 MIPS complexes.
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a YEAST protein complex database - Microsoft Internet Explorer

J File Edit ‘Wiew Faworites Tools  Help

J s Back « =p - @ at | @586"’['1 [Ge] Favarites @Media @ | %v S = -

J Address I@ httpsfveast, cellzome, comfcomplesd, php?k=3F70F27c0aald

"YEAST protein complex database

(NEwSEARCH | [ HELP&FAQ | [ contact | [ LoGour |

Hello Denise Scholtens. You're logged in as dscholte Search:l

complex details.

Complex ID Proteins:
16 Protein Description Localisation
Function ACC1 Acetyl-CoA carbox...Cytoplasmic
Cell cycle BEMZ GTPase-activating ...
CCTZ Component of Cha..Cytoplasmic, Cytoskeletal
CDC25 Guanine-nucleotid... Plasma membrane
FAB1 Phosphatidylinosito..Lysosome/vacuole
MD53 Megative regulator...
MRPL3 Mitochendrial ribos...Mitochondrial
SAP15S Sitdp-associated p...
SAP1BS Protein that associ...
SAP190 Protein that associ...
*51T4 Protein serine/thre...Cytoplasmic
YKL195W Protein of unknow...
YNL1OIW Putative membran...Unspecified membrane
YHL1B7W Protein of unknow...
YORZ&7C Serine/threonine p...

# this flag assigns to proteins which have been used
as baits in our purifications.

2 cellzome &G, september 2001, yeast@cellzome.com




Complex ID
16

Function
Cell cycle

Proteins:

Protein
ACC1
M
T
CDC
FAEL
MDS3
Pl
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Gavin, yTAP C16




Gavin, yTAP C121
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Example of unconnected complex, yTAP C121



Gavin, yTAP C125
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Example of unconnected complex, yTAP C125



Arp2/3

Arp2/3 complex:

Arp2

Arp3

Arc15
Arc18
Arc19
Arc35
Arc40

‘The Arp2/3 complex is a
stable multiprotein
assembly required for the
nucleation of actin
filaments in all eukaryotic
cells and consists of
seven proteins in human
and yeast.’

Winter, et al (1997). Curr Biol.
Higgs and Pollard (2001). Annu
Rev Biochem.

Gavin, yTAP C153
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Arp2/3

Arp2/3 complex:

Arp2

Arp3

Arc15
Arc18
Arc19
Arc35
Arc40

p=.95, complex 4




Origin Recognition Complex

Origin
Recognition
Complex:

Orc1
Orc2
Orc3
Orc4
Orch5
Orc6

Dutta and Bell (1997). Annu

Rev Cell Dev Biol.

Gavin, yTAP C150
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Origin Recognition Complex

p=.95. complex 89

Origin Q

Recognition

Complex: v
Orc1 $
Orc2
Orc3 @
Orc4
Orch5
Orc6

Dutta and Bell (1997). Annu

Rev Cell Dev Biol.
Crch




Exosome

Exosome:

Rrp4

Rrp41 (Ski6)
Rrp42

Rrp43

Rrp44 (Dis3)
Rrp45

Rrp46

Mtr3

Rrp40

Csl4

Rrp6 (only in nuclear
exosome)

Allmang, et al (1999). Genes Devel.

(rderskird

Gavin, yTAP C142
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Exosome

Gavin, yTAP C77

Exosome:

Rrp4

Rrp41 (Ski6)
Rrp42

Rrp43

Rrp44 (Dis3)
Rrp45

Rrp46

Mtr3

Rrp40

Csl4

Rrp6 (only in nuclear
exosome)

Allmang, et al (1999). Genes Devel.




Exosome

Exosome:

Rrp4

Rrp41 (Ski6)
Rrp42

Rrp43

Rrp44 (Dis3)
Rrp45

Rrp46

Mtr3

Rrp40

Csl4

Rrp6 (only in nuclear
exosome)

Allmang, et al (1999). Genes Devel.

p=.95, complex 20
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Heterotrimeric

complex consisting of:

Tpd3

- regulatory A subunit

Cdc55 or Rts1

- regulatory B subunits

Pph21 or Pph22

- catalytic subunits

Jiang and Broach (1999). EMBO.

A\
@ ;ﬁ@%éf & @
!
CTTTT
i/

GCECCTTo,




PP2A

Heterotrimeric
complex consisting of:

Tpd3

- regulatory A subunit

Rts1 or Cdc55

- regulatory B subunits

Pph21 or Pph22

- catalytic subunits

Jiang and Broach (1999). EMBO.




RNA Polymerases I, Il and Il

Ret1
Rpc11
Rpcd0 Rpc17
Rpec19 (YJLO11C)
Rpal2 Rpcz2b
Rpal135 Rpc31
Rpa190 Rpb5 Rpc34
Rpad3 Rpb8 Rpc37
Rpad9 Rpb10 Rpcd3
Rpaild Rpo26 Rpc82
Rpa34 Rpc10 Rpo31
Rpb2
Rpb3
Rpb4
Rpb7
Rpbg
Rpb11
Rpo21

Archambault and Friesen (1993). Microbiol Rev.
Myer and Young (1998). J Biol Chem.
Smid, et al (1995). J Biol Chem.

Ferri, et al (2000). Mol Cell Biol.

Gavin, yTAP C154
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RNA Polymerases I, Il and Il

Ret1
Rpc11
Rpcd0 Rpc17
Rpec19 (YJLO11C)
Rpal2 Rpcz2b
Rpal135 Rpc31
Rpa190 Rpb5 Rpc34
Rpad3 Rpb8 Rpc37
Rpad9 Rpb10 Rpcd3
Rpaild Rpo26 Rpc82
Rpa34 Rpc10 Rpo31
Rpb2
Rpb3
Rpb4
Rpb7
Rpbg
Rpb11
Rpo21

Gavin, yTAP C145
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RNA Polymerases | and Il

Ret1
Rpec11
Rpcd0 Rpel7
Rpc19 (YJLO11C)
Rpal2 Rpec25
Rpal35 Rpe31
Rpa190 Rpb& Rpec34
Rpad3 Rpb8 Rpe37
Rpad9 Rpb10 Rpes3
Rpal4 Rpo26 Rpc82
Rpa3i4 Rpet Rpo31
Rpb2
Rpb3
Rpbd
Rpb7
Rpb9
Rpb11
Rpo21

p=.90, complex 14§
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\

Rpalgo
h
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..@@@

Rpc4dn Rpadi RpoZa

p=.290, complex 145
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RNA Polymerase Il

Ret1
Rpc11
Rpcd0 Rpc17
Rpec19 (YJLO11C)
Rpal2 Rpcz2b
Rpal135 Rpc31
Rpa190 Rpb5 Rpc34
Rpad3 Rpbs Rpc37
Rpad9 Rpb10 Rpcd3
Rpaild Rpo26 Rpc82
Rpa34 Rpc10 Rpo31
Rpb2
Rpb3
Rpb4
Rpb7
Rpbg
Rpb11
Rpo21

p=.90, complex 142
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MRNA cleavage and polyadenylation

CF I PF I
Rnal4 Cftl
Rnal5 Cft2
Pcfll Yshl (Brr5)
Clpl Ptal
Hrp1 Fipl

Pfs2

Ythl

YKLO59C (Mpel)
YGR156W (Ptil)
Papl

Pfs1

-Hrp1 is CFIB — a separate
component that shuttles between
the nucleus and cytoplasm

-CF Il'is Cft1, Cft2, Ysh1, Pta1
-Yeast requires the cooperativity
of CFl & PFI

-Pfs2 and Rna14 exhibit an in
vitro interaction

Gross and Moore (2001). PNAS.
Zhao, et al (1997). J Biol Chem.
Skaar and Greenleaf (2002) Mol Cell.
Vo, et al (2001). Mol Cell Biol.

Gavin, yTAP C162

))

A,

JELS




MRNA cleavage and polyadenylation

Gavin, yTAP C111

CF I PF I
Rnal4 Cftl
Rnal5 Cft2
Pcfll Yshl (Brr5)
Clpl Ptal
Hrp1 Fipl
Pfs2
Ythl
YKLO59C (Mpel)
YGR156W (Ptil)

Papl
Pfs1

-Hrp1 is CFIB — a separate
component that shuttles between
the nucleus and cytoplasm

-CF Il'is Cft1, Cft2, Ysh1, Pta1
-Yeast requires the cooperativity
of CFl & PFI

-Pfs2 and Rna14 exhibit an in
vitro interaction

Gross and Moore (2001). PNAS. GET
Zhao, et al (1997). J Biol Chem.
Skaar and Greenleaf (2002) Mol Cell.
Vo, et al (2001). Mol Cell Biol.




MRNA cleavage and polyadenylation

CF I PF |- p=.95, complex 147
Rnal4 Cftl
Rnal5 Cft2
Pcfll Yshl (Brr5)
Clpl Ptal
Hrp1 Fipl
Pfs2
Ythl
YKLO59C (Mpel)

YGR156W (Ptil)
Papl
Pfs1

p=.95, complex 93




TRAPP

TRAPP:

Bet3

Trs20

Bet5

Trs23

Trs33

Trs31

Trs65 (Kre11)
Trs85 (Gsg1)
Trs120
Trs130

Sacher, et al (2000). EJCB.

Gavin, yTAP C102
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TRAPP

TRAPP:

Bet3

Trs20

Bet5

Trs23

Trs33

Trs31

Trs65 (Kre11)
Trs85 (Gsg1)
Trs120
Trs130

Sacher, et al (2000). EJCB.

p=.95, complex 9
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New complexes to Test?

complex 501

(™,
/
=

Only complex in our analysis involving these four, except for some
SBMH complexes. Currently unreported in the literature.




New complexes to Test?

complex 5
Budz0

_,.H\\ P -
HR197V NL182 YLR106

YCRO072C and Kre32 have no annotation in GO or PubMed.




New complexes to Test?

complex 594

YDLOGOW

YNL207W

.l/.
YGRO81C
i — e P
Ltv1 Dim1 YOR145C YPLO12W

"r’O RO56C

These are both undocumented in the literature — note that
Enp1, YDLOG6OW (Tsr1), and YNL207W (Rio2) are in both complexes.



Conclusions

 Distinction between the structures of the
graphs representing both the estimation goal
and the available data afforded a simple
complex membership estimation algorithm
allowing multiple complex membership by
iIndividual proteins.

 These complex membership estimates allow
a more detailed view of complexes than other
analyses.



What's Next?

 New Experiments
— Test previously unidentified complexes
— Mutate a gene and see what happens to its
complex composition?
e Coordination with Other Data

— Y2H data to determine physical connectivity of
the proteins in a complex

— Cell-cycle gene expression data to determine
which complexes function in a cell cycle-
dependent manner, and to determine the
expression profile of multi-complex proteins

— Sequence data to determine binding sites
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