Making Sense of High throughput Protein-Protein Interaction Data

A Graph Theoretic Algorithm for AP-MS Data Denise Scholtens Robert Gentleman

> Auckland Dec. 2003

Which proteins are these?

Graphic courtesy of: U.S. Department of Energy Human Genome Program http://www.ornl.gov/hgmis

Which proteins are these?

Graphic courtesy of: U.S. Department of Energy Human Genome Program http://www.ornl.gov/hgmis

Two Types of Data: Pairwise Protein Relationships

• AP-MS (Affinity Purification - Mass Spectrometry)

- Measures Complex Comembership
 - Gavin, et al. (Nature, 2002)
 - TAP : Tandem Affinity Purification
 - Ho, et al. (Nature, 2002)
 - HMS-PCI: High-throughput Mass Spectromic Protein Complex Identification
- Y2H (Yeast Two Hybrid)
 - Measures *Physical Interactions*
 - Ito, et al. (PNAS, 1998)
 - Uetz, et al. (Nature, 2000)

AP-MS

AP-MS data:

Y2H data:

*Estimation of A requires estimation of K, the number of complexes.

AP-MS data:

Y2H data:

We want to estimate the bipartite protein complex membership graph, A:

*Estimation of A requires estimation of K, the number of complexes.

Existing analyses of AP-MS data

- Gavin, et al.
 - Functional organization of the yeast proteome by systematic analysis of protein complexes (Nature 2002)
 - Purifications grouped together based on significant overlap (p.143)

Bader and Hogue

- Analyzing Yeast Protein-Protein Interaction Data Obtained from Different Sources (Nature Biotechnology, 2002)
- An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks (Bioinformatics 2003)
 - Works within the realm of pairwise interactions without recognition of the bipartite graph structure for complex membership
 - "Spoke" and "Matrix" models
 - Treat AP-MS data as "hypothetical pairwise interactions"

• Jansen, et al.

- A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data (Science 2003)
 - Deals with pairwise complex *comemberships*, not comprehensive complex *membership*

Four Unique Aspects to our Algorithm

- 1. Some proteins participate in more than one complex
- 2. In an AP-MS experiment, some proteins are used as baits and some proteins are only ever found as hits
- 3. Graph theoretic paradigm to allow for succinct expression of constructs involved
 - Bipartite graph for complex membership (A)
 - Relationship of complex *membership* (*A*) to complex *comembership* (*Y*) assayed in an AP-MS experiment (*Z*)
 - AP-MS and Y2H are different technologies that measure different relationships between proteins
- 4. Statistical paradigm to allow for false positive and false negative observations

PP2A

Heterotrimeric complex consisting of:

Tpd3 - regulatory A subunit

Rts1 or Cdc55 - regulatory B subunits

Pph21 or Pph22

- catalytic subunits

Jiang and Broach (1999). EMBO.

Bader & Hogue (2002) Portion of Figure 2: Overlap of the spoke models of TAP and HMS-PCI.

> Jansen, et al. (2003) PIT Bayesian Network, LR>600 central node=Tpd3 http://genecensus.org/intint YGL109C=Cdc55, YDL134C=Pph21, YDL188C=Pph22 YCR002C=Cdc10, YJR076C=Cdc11, YMR109W=Myo5

Gavin, et al. (2002) Rgraphviz plot of yTAP C151

PP2A

Heterotrimeric complex consisting of:

Tpd3

- regulatory A subunit

Rts1 or Cdc55 - regulatory B subunits

Pph21 or Pph22

- catalytic subunits

Jiang and Broach (1999). EMBO.

Gavin, et al. (2002) Rgraphviz plot of yTAP C151

Bader & Hogue (2002) Portion of Figure 2: Overlap of the spoke models of TAP and HMS-PCI.

Jansen, et al. (2003) PIT Bayesian Network, LR>600 central node=Tpd3 http://genecensus.org/intint YGL109C=Cdc55, YDL134C=Pph21, YDL188C=Pph22 YCR002C=Cdc10, YJR076C=Cdc11, YMR109W=Myo5

PP2A

Heterotrimeric complex consisting of:

Tpd3 - regulatory A subunit

Rts1 or Cdc55 - regulatory B subunits

Pph21 or Pph22

- catalytic subunits

Jiang and Broach (1999). EMBO.

Gavin, et al. (2002) Rgraphviz plot of yTAP C151

Portion of Figure 2: Overlap of the spoke models of TAP and HMS-PCI.

> Jansen, et al. (2003) PIT Bayesian Network, LR>600 central node=Tpd3 http://genecensus.org/intint YGL109C=Cdc55, YDL134C=Pph21, YDL188C=Pph22 YCR002C=Cdc10, YJR076C=Cdc11, YMR109W=Myo5

PP2A

Heterotrimeric complex consisting of:

Tpd3 - regulatory A subunit

Rts1 or Cdc55 - regulatory B subunits

Pph21 or Pph22

- catalytic subunits

Jiang and Broach (1999). EMBO.

Cdc55

Pph21

Gavin, et al. (2002) **Rgraphviz plot of** yTAP C151

Our algorithm detects:

PP2A

Heterotrimeric complex consisting of:

Tpd3 - regulatory A subunit

Rts1 or Cdc55 - regulatory B subunits

Pph21 or Pph22

- catalytic subunits

Jiang and Broach (1999). EMBO.

Zds1 and Zds2 (known cell-cycle regulators) only exist in complexes with the Cdc55-Pph22 trimer!

Our algorithm detects:

Zds1 and Zds2 (known cell-cycle regulators) only exist in complexes with the Cdc55-Pph22 trimer!

Our algorithm detects:

Heterotrimeric complex consisting of:

PP2A

Tpd3 - regulatory A subunit

Rts1 or Cdc55 - regulatory B subunits

Pph21 or Pph22

- catalytic subunits

Jiang and Broach (1999). EMBO.

Zds1 and Zds2 (known cell-cycle regulators) only exist in complexes with the Cdc55-Pph22 trimer!

Our algorithm detects:

PP2A

Heterotrimeric complex consisting of:

Tpd3 - regulatory A subunit

Rts1 or Cdc55 - regulatory B subunits

Pph21 or Pph22

- catalytic subunits

Jiang and Broach (1999). EMBO.

Zds1 and Zds2 (known cell-cycle regulators) only exist in complexes with the Cdc55-Pph22 trimer!

Our algorithm detects:

Zds1 and Zds2 (known cell-cycle regulators) only exist in complexes with the Cdc55-Pph22 trimer!

PP2A

Heterotrimeric complex consisting of:

Tpd3 - regulatory A subunit

Rts1 or Cdc55 - regulatory B subunits

Pph21 or Pph22

- catalytic subunits

Jiang and Broach (1999). EMBO.

2. In an AP-MS experiment, some proteins are used as baits and some proteins are only ever found as hits

Supplementary Material S1. List of all purifications. Note that frequently found proteins are omitted from this list (see Table S2). Eno Tagged # Proteins found protein Abd1 Rpb2 Spt5 Abd1 Acc1 Cct5 Sit4 YLR386W Acc1 2 3 Ade1 Ade1 4 Ade12 Ade12 Apl6 5 Ade13 Ade13 Prt1 Ade4 6 Ade4 Cys3 Rna1 7 Ade5.7 Ade5.7 8 Ade6 Ade6 9 Adk1 Adk1 Apl5 Ado1 bn 10 Ado1 Akl1 Akl1 11 12 Aos1 Adh1 Aos1 Uba2 Yef3 Apc1 Apc2 Cdc16 Cdc23 Cdc27 13 Apc2 14 Apd1 Apd1 tested: 15 Vma1 Vps30 Apg14 Apl2 Apl4 Apm1 Apm2 Aps1 Mis1 Rpa135 16 Apl2 missing Apl5 Apl6 Apm3 Aps3 Ckb1 18 Apl5 19 Apl6 Apl5 Apl6 Apm3 Eno2 20 Apm3 Apl6 Apm3 1 mpre

Subgraph of Z

untested:

DS

Ckb

Raw TAP purifications (Gavin et al.) Available at http://www.nature.com

2. In an AP-MS experiment, some proteins are used as baits and some proteins are only ever found as hits

Supplementary Material S1. List of all purifications. Note that frequently found proteins are omitted from this list (see Table S2). Tagged # Proteins found protein Abd1 Rpb2 Spt5 Abd1 Acc1 Cct5 Sit4 YLR386W Acc1 2 3 Ade1 Ade1 4 Ade12 Ade12 5 Ade13 Ade13 Prt1 Ade4 6 Ade4 Cys3 Rna1 7 Ade5.7 Ade5.7 8 Ade6 Ade6 9 Adk1 Adk1 Ado1 10 Ado1 Akl1 Akl1 11 12 Aos1 Adh1 Aos1 Uba2 Yef3 Apc1 Apc2 Cdc16 Cdc23 Cdc27 13 Apc2 14 Apd1 Apd1 15 Vma1 Vps30 Apg14 Apl2 Apl4 Apm1 Apm2 Aps1 Mis1 Rpa135 16 Apl2 Apl5 Apl6 Apm3 Aps3 Ckb1 18 Apl5 19 Apl6 Apl5 Apl6 Apm3 Eno2 20 Apm3 Apl6 Apm3 _____ - mpre

Subgraph of Z Eno untested:

Raw TAP purifications (Gavin et al.) Available at http://www.nature.com

2. In an AP-MS experiment, some proteins are used as baits and some proteins are only ever found as hits

Supplementary Material S1. List of all purifications. Note that frequently found proteins are omitted from this list (see Table S2). Eno Tagged # Proteins found protein Abd1 Rpb2 Spt5 Abd1 Acc1 Cct5 Sit4 YLR386W Acc1 2 3 Ade1 Ade1 4 Ade12 Ade12 Aple 5 Ade13 Ade13 Prt1 Ade4 6 Ade4 Cys3 Rna1 7 Ade5.7 Ade5,7 8 Ade6 Ade6 9 Adk1 Adk1 Ado1 10 Ado1 Akl1 Akl1 11 12 Aos1 Adh1 Aos1 Uba2 Yef3 Apc1 Apc2 Cdc16 Cdc23 Cdc27 13 Apc2 14 Apd1 Apd1 tested: 15 Vma1 Vps30 Apg14 Apl2 Apl4 Apm1 Apm2 Aps1 Mis1 Rpa135 16 Apl2 Apl5 Apl6 Apm3 Aps3 Ckb1 18 Apl5 19 Apl6 Apl5 Apl6 Apm3 Eno2 20 Apm3 Apl6 Apm3 _____ - mpre

Subgraph of Z

Raw TAP purifications (Gavin et al.) Available at http://www.nature.com 3. Graph theoretic paradigm to allow for succinct expression of constructs involved

> Bipartite graph for complex membership
> Relationship of complex membership (A) to complex comembership (Y) assayed in an AP-MS experiment (Z)
> AP-MS and Y2H are different technologies that measure different relationships between

We want to estimate A using AP-MS assays of Y.

proteins

 True Complex ii) PCMG iii) CCG, 6 baits iv) Y2H Physical Topology a-i) a-ii) a-iii) a-iv) Pat Pa (Pad) b-iii) b-i) b-iv) b-ii) ֍֍֍֍֍ ®®®®®® c-i) c-iii) c-ii) c-iv) d-ii) (Pd d-i) d-iii) d-iv) Pa

3. Graph theoretic paradigm to allow for succinct expression of constructs involved

> Bipartite graph for complex membership
> Relationship of complex membership (A) to complex comembership (Y) assayed in an AP-MS experiment (Z)
> AP-MS and Y2H are different technologies that measure different relationships between proteins

We want to estimate A using AP-MS assays of Y. i) True Complex ii) PCMG iii) CCG, 6 baits iv) Y2H Physical Topolog a-ii) (Pat a-iv) a-i) a-iii) (Pai) Pa (Pa) (Pa) b-i) b-iii) b-iv) b-ii) ֍֍֍֍ ®®®®®® c-i) c-iv) c-iii) c-ii) d-ii) (Pd d-iv) d-i) d-iii) (Pdg Pa

3. Graph theoretic paradigm to allow for succinct expression of constructs involved

> Bipartite graph for complex membership
> Relationship of complex membership (A) to complex comembership (Y) assayed in an AP-MS experiment (Z)
> AP-MS and Y2H are different technologies that measure different relationships between proteins

We want to estimate A using AP-MS assays of Y. i) True Complex ii) PCMG iii) CCG, 6 baits iv) Y2H Physical Topolog a-ii) (Pat a-iv) a-i) a-iii) Pal Pa (Pa) P_{a2} (P.) b-i) b-iv) b-iii) b-ii) ֍֍֍֍ ®®®®®® c-i) c-iv) c-iii) c-ii) d-ii) (Pd d-iv) d-i) d-iii) (Pdg Pa

3. Graph theoretic paradigm to allow for succinct expression of constructs involved

> •Bipartite graph for complex membership •Relationship of complex membership (A) to complex comembership (Y) assayed in an AP-MS experiment (Z) •AP-MS and Y2H are different technologies that measure different relationships between

We want to estimate A using AP-MS assays of Y.

proteins

i) True Complex ii) PCMG iii) CCG, 6 baits iv) Y2H Physical Topolog a-i) a-ii) a-iii) a-iv) (Pai) Pa (Pa) b-i) b-iii) b-iv) b-ii) ֍֍֍֍ ֍֍֍֍֍ c-i) c-iii) c-iv) c-ii) d-ii) (Pa) d-i) d-iii) d-iv)

The Connection: Maximal Complete Subgraphs **Complete Subgraph**: set of *n* nodes for which all *n(n-1)* directed edges exist Maximal Complete Subgraph: complete subgraph that is not contained in any other complete subgraph

3. Graph theoretic paradigm to allow for succinct expression of constructs involved

> •Relationship of complex membership (A) to complex comembership (Y) assayed in an AP-MS experiment (Z)

Y represents "ideal" complex comembership observations from perfectly sensitive and perfectly specific AP-MS technology. Y depends on the baits that are used in an experiment. Y is assayed by AP-MS technology.

3. Graph theoretic paradigm to allow for succinct expression of constructs involved

> •Relationship of complex membership (A) to complex comembership (Y) assayed in an AP-MS experiment (Z)

Y represents "ideal" complex comembership observations from perfectly sensitive and perfectly specific AP-MS technology. Y depends on the baits that are used in an experiment. Y is assayed by AP-MS technology.

The Connection: Maximal BH-Complete Subgraphs BH-Complete Subgraph: set of *n* bait nodes and *m* hit-only nodes for which all *n(n-1)+nm* directed edges exist Maximal BH-Complete Subgraph: BH-complete subgraph that is not contained in any other complete subgraph 4. Statistical paradigm to allow for false positive and false negative observations

Z represents actual observations using AP-MS technology.

4. Statistical paradigm to allow for false positive and false negative observations

Z represents actual observations using AP-MS technology.

We will look for sets of proteins that form maximal BH-complete subgraphs with an allowance for false positive and false negative observations.

Our Goal

- for any (every) organism or tissue type we want to estimate the complex membership graph
- that is, the bipartite graph where one set of nodes are all proteins and the other are all complexes
- we are limited by the experimental data, experimental techniques and models

We start with an initial estimate for *A*, and then refine that estimate according to a two component probability measure:

 $P(Z|A,\mu,\alpha)=L(Z|Y=A\otimes A',\mu,\alpha)C(Z|A,\mu,\alpha)$

$$P(Z|A,\mu,\alpha) = L(Z|Y = A \otimes A',\mu,\alpha)C(Z|A,\mu,\alpha)$$

L is the usual likelihood for independent Bernoulli observations of the existence of an edge under a logistic regression model with user-specified values of μ and α .

$$L(Z \mid A \otimes A', \mu, \alpha) = \prod_{i=1}^{N} \prod_{j=1, j \neq i}^{N} p_{ij}^{Z_{ij}} (1 - p_{ij})^{(1 - Z_{ij})} \prod_{l=1}^{N} \prod_{m=N+1}^{N+M} p_{lm}^{Z_{lm}} (1 - p_{lm})^{(1 - Z_{lm})}$$

doubly tested edges singly tested edges $p_{ij} = \Pr(Z_{ij} = 1 | \mu, \alpha, Y_{ij}), \text{ and } \log\left(\frac{p_{ij}}{1 - p_{ij}}\right) = \mu + \alpha Y_{ij}$ sensitivity $= \frac{e^{\mu}}{1 + e^{\mu}}, \text{ specificity} = \frac{e^{\mu + \alpha}}{1 + e^{\mu + \alpha}}$

$$P(Z|A,\mu,\alpha) = L(Z|Y = A \otimes A',\mu,\alpha)C(Z|A,\mu,\alpha)$$

L is the usual likelihood for independent Bernoulli observations of the existence of an edge under a logistic regression model with user-specified values of μ and α .

$$L(Z \mid A \otimes A', \mu, \alpha) = \prod_{i=1}^{N} \prod_{j=1, j \neq i}^{N} p_{ij}^{Z_{ij}} (1 - p_{ij})^{(1 - Z_{ij})} \prod_{l=1}^{N} \prod_{m=N+1}^{N+M} p_{lm}^{Z_{lm}} (1 - p_{lm})^{(1 - Z_{lm})}$$

doubly tested edges singly tested edges $p_{ij} = \Pr(Z_{ij} = 1 | \mu, \alpha, Y_{ij}), \text{ and } \log\left(\frac{p_{ij}}{1 - p_{ij}}\right) = \mu + \alpha Y_{ij}$ sensitivity $= \frac{e^{\mu}}{1 + e^{\mu}}, \text{ specificity} = \frac{e^{\mu + \alpha}}{1 + e^{\mu + \alpha}}$

Using L, we can estimate Y_{ij} = 0 or 1 for i=1,...,N and j=1,...,N+M. For i=j, Y_{ij} = Y_{ji} .

$P(Z|A,\mu,\alpha)=L(Z|Y=A\otimes A',\mu,\alpha)C(Z|A,\mu,\alpha)$

Assumptions for μ and α in our analyses:

1) $\Pr(Z_{ij}=0 \mid \mu, \alpha, Y_{ij}=0)$ >.5 and $\Pr(Z_{ij}=1 \mid \mu, \alpha, Y_{ij}=1)$ >.5 -sensitivity and specificity are greater than .5

2) $\Pr(Z_{ij}=0|\mu,\alpha,Y_{ij}=1) > \Pr(Z_{ij}=1|\mu,\alpha,Y_{ij}=0)$ -false negative probability is greater than false positive probability

Under these assumptions for μ and α , *L* is easily maximized.

For singly tested bait-hit pairs,

$$\hat{Y}_{ij}=Z_{ij}.$$

For doubly tested bait-bait pairs

s,
$$(\hat{Y}_{ij}, \hat{Y}_{ji}) = \max(Z_{ij}, Z_{ji})$$
.

$P(Z|A,\mu,\alpha)=L(Z|Y=A\otimes A',\mu,\alpha)C(Z|A,\mu,\alpha)$

Assumptions for μ and α in our analyses:

1) $\Pr(Z_{ij}=0 \mid \mu, \alpha, Y_{ij}=0)$ >.5 and $\Pr(Z_{ij}=1 \mid \mu, \alpha, Y_{ij}=1)$ >.5 -sensitivity and specificity are greater than .5

2) $\Pr(Z_{ij}=0|\mu,\alpha,Y_{ij}=1) > \Pr(Z_{ij}=1|\mu,\alpha,Y_{ij}=0)$ -false negative probability is greater than false positive probability

Under these assumptions for μ and α , *L* is easily maximized.

For singly tested bait-hit pairs,

$$\hat{\mathbf{Y}}_{ij} = \mathbf{Z}_{ij}$$
.

For doubly tested bait-bait pairs,

$$(\hat{Y}_{ij}, \hat{Y}_{ji}) = \max(Z_{ij}, Z_{ji}).$$

We have an estimate for Y, but our goal is to estimate A. We use the transformation $Y=A\otimes A'$ and maximal BH-complete subgraphs.

			P _{c1}	P _{c2}	P _{c3}	P _{c4}	P _{c5}	P _{c6}			C ₁	C ₂
		P _{c1}	1	1	1	1	1	1		P _{c1}	1	1
		P_{c2}	1	1	0	1	0	1		P_{c2}	1	0
	Y	= P _{c3}	1	0	1	1	1	1	→ /	A= P _{c3}	0	1
		P_{c4}	1	1	1	1	1	1		P _{c4}	1	1
		P_{c5}	1	0	1	1	1	1		P_{c5}	0	1
		P_{c6}	1	1	1	1	1	1		P_{c6}	1	1
		P _{c1}	P _{c2}	P _{c3}	P _{c4}	P _{c5}	P _{c6}			C ₁	C ₂	C ₃
	P _{c1}	1	1	1	1	1	1		P _{c1}	1	1	1
	P _{c2}	1	1	0	1	0	1		P_{c2}	1	0	0
Y=	P _{c3}	1	0	1	0	1	0	⇒	A= P _{c3}	0	1	0
	P _{c4}	1	1	0	1	1	1		P_{c4}	1	0	1
	P _{c5}	1	0	1	1	1	1		P_{c5}	0	1	1
	P _{c6}	1	1	0	1	1	1		P_{c6}	1	0	1

			P _{c1}	P_{c2}	P _{c3}	P _{c4}	P _{c5}	P _{c6}			C ₁	C ₂
		P _{c1}	1	1	1	1	1	1		P _{c1}	1	1
		P _{c2}	1	1	0	1	0	1		P _{c2}	1	0
	Y=	P _{c3}	1	0	1	1	1	1	⇒ /	A= P _{c3}	0	1
		P_{c4}	1	1	1	1	1	1		P _{c4}	1	1
		P_{c5}	1	0	1	1	1	1		P_{c5}	0	1
		P_{c6}	1	1	1	1	1	1		P_{c6}	1	1
		P _{c1}	P _{c2}	P _{c3}	P _{c4}	P _{c5}	P _{c6}			C ₁	C ₂	C ₃
	P _{c1}						00			'	2	5
	Fc1	1	1	1	1	1	1		P _{c1}	1	1	1
	г _{с1} Р _{с2}	1 1	1 1		1 1				P _{c1} P _{c2}			
Y=	P _{c2}	1 1 1		1	-	1	1	⇒		1	1	1
Y=	P _{c2}	•	1	1 0	1	1 0	1 1	⇒	P_{c2}	1 1	1 0	1 0
Y=	P _{c2} P _{c3}	1	1 0	1 0 1	1 0	1 0 1	1 1 0	⇒	P _{c2} A= P _{c3}	1 1 0	1 0 1	1 0 0

Y=

hits	; ->	P _{c1}	P _{c2}	P _{c3}	P _{c4}	P_{c5}	P_{c6}	
baits	P _{c1}	1	1	1	1	1	1	
+	P_{c2}	1	1	0	1	0	1	
V-A@A'	P _{c3}	1	0	1	0	1	0	
Y=A⊗A' =	- P _{c4}	1	1	0	1	0	1	
	P_{c5}	1	0	1	0	1	0	
	P_{c6}	1	1	0	1	0	1	

			P _{c1}	P _{c2}	P_{c3}	P _{c4}	P _{c5}	P _{c6}			C ₁	
		P _{c1}	1	1	1	1	1	1		P _{c1}	1	
		P_{c2}	1	1	1	1	1	1		P_{c2}	1	
	Y	′= P _{c3}	1	1	1	1	1	1	⇒ /	A= P _{c3}	1	
		P_{c4}	1	1	1	1	1	1		P_{c4}	1	
		P_{c5}	1	1	1	1	1	1		P_{c5}	1	
		P_{c6}	1	1	1	1	1	1		P_{c6}	1	
		P _{c1}	P _{c2}	P _{c3}	P _{c4}	P_{c5}	P _{c6}			C ₁	C ₂	
	P _{c1}	1	1	1	1	1	1		P_{c1}	1	1	
	P_{c2}	1	1	0	1	0	1		P_{c2}	1	0	
Y	= P _{c3}	1	0	1	1	1	1	⇒	A= P _{c3}	0	1	
	P _{c4}	1	1	1	1	1	1		P_{c4}	1	1	
	P_{c5}	1	0	1	1	1	1		P_{c5}	0	1	
	P_{c6}	1	1	1	1	1	1		P_{c6}	1	1	
	P _{c1}	P _{c2}	P _{c3}	P _{c4}	P _{c5}	P _{c6}			C ₁	C ₂	C ₃	
P _{c1}	1	1	1	1	1	1		Pc	1 1	1	1	
P _{c2}	1	1	0	1	0	1		Pc	2 1	0	0	
P_{c3}	1	0	1	0	1	0	⇒	A= P _c	3 0	1	0	
P _{c4}	1	1	0	1	1	1		Pc		0	1	
P_{c5}	1	0	1	1	1	1		Pc	5 0	1	1	
P_{c6}	1	1	0	1	1	1		Pc	₆ 1	0	1	
												ľ

Y=

hits		P _{c1}	P _{c2}	P _{c3}	P _{c4}	P _{c5}	P _{c6}	
baits	P _{c1}	1	1	1	1	1	1	
•	P _{c2}	1	1	0	1	0	1	
Y=A⊗A' =	P _{c3}	1	0	1	0	1	0	
t-A⊗A -	- Р _{с4}	1	1	0	1	0	1	
	P_{c5}	1	0	1	0	1	0	
	P_{c6}	1	1	0	1	0	1	

			P _{c1}	P _{c2}	P_{c3}	P _{c4}	P_{c5}	P _{c6}			C ₁	
		P _{c1}	1	1	1	1	1	1		P _{c1}	1	
		P _{c2}	1	1	1	1	1	1		P _{c2}	1	
	Ŷ	′= P _{c3}	1	1	1	1	1	1	⇒ .	A= P _{c3}	1	
		P_{c4}	1	1	1	1	1	1		P_{c4}	1	
		P_{c5}	1	1	1	1	1	1		P_{c5}	1	
		P_{c6}	1	1	1	1	1	1		P_{c6}	1	
		P _{c1}	P _{c2}	P _{c3}	P _{c4}	P _{c5}	P _{c6}			C ₁	C ₂	
	P _{c1}	1	1	1	1	1	1		P _{c1}	1	1]
	P_{c2}	1	1	0	1	0	1		P_{c2}	1	0	
Y	= P _{c3}	1	0	1	1	1	1	⇒	A= P _{c3}	0	1	
	P _{c4}	1	1	1	1	1	1		P_{c4}	1	1	
	P_{c5}	1	0	1	1	1	1		P_{c5}	0	1	
	P_{c6}	1	1	1	1	1	1		P_{c6}	1	1	
	P _{c1}	P _{c2}	P _{c3}	P _{c4}	P _{c5}	P _{c6}			C ₁	C ₂	C ₃	-
P _{c1}	1	1	1	1	1	1		P _c	1 1	1	1]
P _{c2}	1	1	0	1	0	1		P _c	2 1	0	0	
P _{c3}	1	0	1	0	1	0	⇒	A= P _c		1	0	
P _{c4}	1	1	0	1	1	1		Po		0	1	
P _{c5}	1	0	1	1	1	1		Pc		1	1	
P _{c6}	1	1	0	1	1	1		Pc	₆ 1	0	1	

Y= F

			P _{c1}	P _{c2}	P_{c3}	P _{c4}	P_{c5}	P _{c6}			C ₁	
		P _{c1}	1	1	1	1	1	1		P _{c1}	1]
		P _{c2}	1	1	1	1	1	1		P_{c2}	1	
	Y	′= P _{c3}	1	1	1	1	1	1	⇒ .	A= P _{c3}	1	
		P_{c4}	1	1	1	1	1	1		P_{c4}	1	
		P_{c5}	1	1	1	1	1	1		P_{c5}	1	
		P_{c6}	1	1	1	1	1	1		P_{c6}	1	
		P _{c1}	P _{c2}	P _{c3}	P _{c4}	P_{c5}	P _{c6}			C ₁	C ₂	-
	P _{c1}	1	1	1	1	1	1		P _{c1}	1	1]
	P_{c2}	1	1	0	1	0	1		P_{c2}	1	0	
Y	= P _{c3}	1	0	1	1	1	1	⇒	A= P _{c3}	0	1	
	P _{c4}	1	1	1	1	1	1		P _{c4}	1	1	
	P_{c5}	1	0	1	1	1	1		P_{c5}	0	1	
	P_{c6}	1	1	1	1	1	1		P_{c6}	1	1	
	P _{c1}	P _{c2}	P _{c3}	P _{c4}	P _{c5}	P _{c6}			C ₁	C ₂	C ₃	-
P _{c1}	1	1	1	1	1	1		P _c	1 1	1	1]
P _{c2}	1	1	0	1	0	1		P _c	2 1	0	0	
P _{c3}	1	0	1	0	1	0	⇒	A= P _c	3 0	1	0	
P _{c4}	1	1	0	1	1	1		P _c	₄ 1	0	1	
P _{c5}	1	0	1	1	1	1		Pct	5 0	1	1	
P _{c6}	1	1	0	1	1	1		Pcf	3 1	0	1	

hits	; →	P _{c1}	P _{c2}	P _{c3}	P _{c4}	P _{c5}	P _{c6}	
baits	P _{c1}	1	1	1	1	1	1	
•	P _{c2}	1	1	0	1	0	1	
Y=A⊗A' =	P _{c3}	1	0	1	0	1	0	
	P_{c4}	1	1	0	1	0	1	
	P_{c5}	1	0	1	0	1	0	
	P_{c6}	1	1	0	1	0	1	

Since we only use a subset of the proteins as baits, we cannot identify maximal complete subgraphs in Y. Instead, the initial estimate of A based on Y consists of the maximal BH-complete subgraphs in Y.

Y=

			P _{c1}	P _{c2}	P_{c3}	P_{c4}	P_{c5}	P_{c6}			C ₁	
		P _{c1}	1	1	1	1	1	1		P _{c1}	1]
		P _{c2}	1	1	1	1	1	1		P _{c2}	1	
	٢	′= P _{c3}	1	1	1	1	1	1	⇒ /	A= P _{c3}	1	
		P_{c4}	1	1	1	1	1	1		P_{c4}	1	
		P_{c5}	1	1	1	1	1	1		P_{c5}	1	
		P_{c6}	1	1	1	1	1	1		P_{c6}	1	
		P _{c1}	P _{c2}	P _{c3}	P _{c4}	P_{c5}	P _{c6}			C ₁	C ₂	
	P _{c1}	1	1	1	1	1	1		P_{c1}	1	1]
	P _{c2}	1	1	0	1	0	1		P_{c2}	1	0	
Y	'= P _{c3}	1	0	1	1	1	1	⇒	A= P _{c3}	0	1	
	P _{c4}	1	1	1	1	1	1		P_{c4}	1	1	
	P_{c5}	1	0	1	1	1	1		P_{c5}	0	1	
	P_{c6}	1	1	1	1	1	1		P_{c6}	1	1	
	P _{c1}	P _{c2}	P _{c3}	P _{c4}	P _{c5}	P _{c6}			C ₁	C ₂	C ₃	
P _{c1}	1	1	1	1	1	1		Pc	1 1	1	1]
P_{c2}	1	1	0	1	0	1		Pc	2 1	0	0	
P _{c3}	1	0	1	0	1	0	⇒	A= P _c	3 0	1	0	
P _{c4}	1	1	0	1	1	1		Pc	4 1	0	1	
P_{c5}	1	0	1	1	1	1		Pc		1	1	
P _{c6}	1	1	0	1	1	1		P _c	6 1	0	1	

Why C? Why isn't *L* enough?

- At most, each edge is tested twice, and independent errors are made in the observation of all edges.
- A false negative observation from a bait to a hit would break one complex into two estimated complexes.
- Effectively, C relaxes the maximal BH-complete subgraph requirement for the initial complex estimates to accommodate a proportion of false negative observations in accordance with the sensitivity of the AP-MS technology.

$P(Z|A,\mu,\alpha)=L(Z|Y=A\otimes A',\mu,\alpha)C(Z|A,\mu,\alpha)$

C is designed to allow combinations of the complexes in the estimated *A* that increase *C* in favor of small decreases in *L*.

$$C(Z \mid A, \mu, \alpha) = \prod_{k=1}^{K} \Phi(c_k) \Gamma(c_k) \qquad (K = \text{total } \# \text{ of complexes})$$

 c_k is a complex estimate with n_k bait proteins and m_k hit - only proteins

 $\Phi(c_k)$ = cumulative probability of observing a particular missing edge pattern or something more extreme for the edges in complex c_k ,

i.e. two - sided p - value from Fisher's exact test on node indegree

$$\Gamma(c_k) = \begin{pmatrix} t_k \\ x_k \end{pmatrix} \frac{e^{x_k(\mu+\alpha)}}{\left(1+e^{(\mu+\alpha)}\right)^{t_k}}, \qquad \left(\frac{e^{(\mu+\alpha)}}{1+e^{(\mu+\alpha)}} = \text{sensitivity}\right)$$

 $t_k = n_k(n_k + m_k - 1) =$ number of tested edges in BH - complete subgraph for c_k $x_k =$ number of observed edges in BH - complete subgraph for c_k

$P(Z|A,\mu,\alpha)=L(Z|Y=A\otimes A',\mu,\alpha)C(Z|A,\mu,\alpha)$

C is designed to allow combinations of the complexes in the estimated *A* that increase *C* in favor of small decreases in *L*.

$$C(Z \mid A, \mu, \alpha) = \prod_{k=1}^{K} \Phi(c_k) \Gamma(c_k) \qquad (K = \text{total } \# \text{ of complexes})$$

 c_k is a complex estimate with n_k bait proteins and m_k hit - only proteins

 $\Phi(c_k)$ = cumulative probability of observing a particular missing edge pattern or something more extreme for the edges in complex c_k ,

i.e. two - sided p - value from Fisher's exact test on node indegree

$$\Gamma(c_k) = \begin{pmatrix} t_k \\ x_k \end{pmatrix} \frac{e^{x_k(\mu+\alpha)}}{\left(1+e^{(\mu+\alpha)}\right)^{t_k}}, \qquad \left(\frac{e^{(\mu+\alpha)}}{1+e^{(\mu+\alpha)}} = \text{sensitivity}\right)$$

 $t_k = n_k(n_k + m_k - 1) =$ number of tested edges in BH - complete subgraph for c_k $x_k =$ number of observed edges in BH - complete subgraph for c_k

Since the thousands of individual edges in Y are tested at most twice, an estimate of A based solely on L may not be accurate. C offers a second criteria to further refine A.

Combining Complex Estimates

For two complex estimates, c_{k1} and c_{k2} , we check to see if they increase *P* when treated as one complex c_{k*} .

Specifically, if log P_{k^*} -log $P_{k_{1,k_2}} > 0$, we combine c_{k_1} and c_{k_2} a new c_{k^*} .

$$\log P_{k^*} - \log P_{k1,k2} = \log \Phi(c_{k^*}) - \log \Phi(c_{k1}) - \log \Phi(c_{k2}) + \log \Gamma(c_{k^*}) - \log \Gamma(c_{k1}) - \log \Gamma(c_{k2}) + \sum_{S_{new}} \left[\alpha z_{gh} - \log(1 + e^{\mu + \alpha}) + \log(1 + e^{\mu}) \right]$$

where S_{new} = set of all edges between proteins g and h that are being changed from "absent" to "present"

Combining Complex Estimates

For two complex estimates, c_{k1} and c_{k2} , we check to see if they increase *P* when treated as one complex c_{k*} .

Specifically, if log P_{k^*} -log $P_{k_{1,k_2}} > 0$, we combine c_{k_1} and c_{k_2} a new c_{k^*} .

$$\log P_{k^*} - \log P_{k1,k2} = \log \Phi(c_{k^*}) - \log \Phi(c_{k1}) - \log \Phi(c_{k2}) + \log \Gamma(c_{k^*}) - \log \Gamma(c_{k1}) - \log \Gamma(c_{k2}) + \sum_{\mathcal{S}_{new}} \left[\alpha z_{gh} - \log(1 + e^{\mu + \alpha}) + \log(1 + e^{\mu}) \right]$$

where S_{new} = set of all edges between proteins g and h that are being changed from "absent" to "present"

In general, P increases for a smaller number of complexes that are both reflective of approximate maximal BH-complete subgraph structure and consistent with the observed data.

1. Find the MLE for Y using *Z*.

- 1. Find the MLE for Y using *Z*.
- 2. Find the initial estimate for *A* by constructing maximal BHcomplete subgraphs in *Y*.

- 1. Find the MLE for Y using *Z*.
- 2. Find the initial estimate for *A* by constructing maximal BH-complete subgraphs in *Y*.
- 3. Order the columns of *A* according to the number of baits.

- 1. Find the MLE for Y using *Z*.
- 2. Find the initial estimate for *A* by constructing maximal BH-complete subgraphs in *Y*.
- 3. Order the columns of *A* according to the number of baits.
- 4. Set *k*=1 and *K*=number of columns of *A*.

- 1. Find the MLE for Y using *Z*.
- 2. Find the initial estimate for *A* by constructing maximal BH-complete subgraphs in *Y*.
- 3. Order the columns of *A* according to the number of baits.
- 4. Set *k*=1 and *K*=number of columns of *A*.
- 5. For c_k , find the set A_k of columns of A, excluding c_k , that share at least one common entry of "1". Calculate log P_{k^*} -log $P_{k1,k2}$ for c_k paired with all elements in A_k .

- 1. Find the MLE for Y using *Z*.
- 2. Find the initial estimate for *A* by constructing maximal BH-complete subgraphs in *Y*.
- 3. Order the columns of *A* according to the number of baits.
- 4. Set *k*=1 and *K*=number of columns of *A*.
- 5. For c_k , find the set A_k of columns of A, excluding c_k , that share at least one common entry of "1". Calculate log P_{k^*} -log $P_{k1,k2}$ for c_k paired with all elements in A_k .
- 6. If at least one value of log P_{k^*} -log $P_{k1,k2}$ is greater than 0, replace c_k with the union of c_k and c_{Akmax} , the element of A_k giving the largest value of log P_{k^*} -log $P_{k1,k2}$. Remove c_{Akmax} and any columns that are strictly less than $c_k Uc_{Akmax}$. Set *K*=number of columns of *A*.

- 1. Find the MLE for Y using *Z*.
- 2. Find the initial estimate for *A* by constructing maximal BH-complete subgraphs in *Y*.
- 3. Order the columns of *A* according to the number of baits.
- 4. Set *k*=1 and *K*=number of columns of *A*.
- 5. For c_k , find the set A_k of columns of A, excluding c_k , that share at least one common entry of "1". Calculate log P_{k^*} -log $P_{k1,k2}$ for c_k paired with all elements in A_k .
- 6. If at least one value of log P_{k^*} -log $P_{k1,k2}$ is greater than 0, replace c_k with the union of c_k and c_{Akmax} , the element of A_k giving the largest value of log P_{k^*} -log $P_{k1,k2}$. Remove c_{Akmax} and any columns that are strictly less than $c_k Uc_{Akmax}$. Set *K*=number of columns of *A*.
- 7. If none of the values of log P_{k^*} -log $P_{k1,k2}$ are greater than 0, set k=k+1, and return to step 5.

- 1. Find the MLE for Y using *Z*.
- 2. Find the initial estimate for *A* by constructing maximal BH-complete subgraphs in *Y*.
- 3. Order the columns of *A* according to the number of baits.
- 4. Set *k*=1 and *K*=number of columns of *A*.
- 5. For c_k , find the set A_k of columns of A, excluding c_k , that share at least one common entry of "1". Calculate log P_{k^*} -log $P_{k1,k2}$ for c_k paired with all elements in A_k .
- 6. If at least one value of log P_{k^*} -log $P_{k1,k2}$ is greater than 0, replace c_k with the union of c_k and c_{Akmax} , the element of A_k giving the largest value of log P_{k^*} -log $P_{k1,k2}$. Remove c_{Akmax} and any columns that are strictly less than $c_k Uc_{Akmax}$. Set *K*=number of columns of *A*.
- 7. If none of the values of log P_{k^*} -log $P_{k_{1,k_2}}$ are greater than 0, set k=k+1, and return to step 5.
- 8. Repeat until k=K.

Two types of complex estimates to interpret with care

TAP data analysis

- Sensitivity=.75, Specificity=.001
- Gene Ontology (GO) cellular component-based similarity measure in an extended logistic regression model
 - Purpose is to increase the probability that two proximally located proteins are complex comembers even if there is not an edge between them
- 720 complexes total
 - 123 UnRBB
 - 331 SBMH

<u>266</u> multi-bait complexes with at least 2 proteins and at least 2 edges

 Compared these 266 complexes to the 232 yTAP complexes (Gavin et al. 2002) through both a large scale comparison, and complex-by-complex for several complexes.

Large Scale Comparison to Known Complexes

- Similarity measure: ω=min(i/a,i/b)
 - a = # proteins in complex A, b = # proteins in complex B
 - i = # proteins in both A and B
- Munich Information Center for Protein Sequences (MIPS) reports a list of 267 curated protein complexes, 129 of which involved 595 proteins contained in the TAP data.
- Using ω>.70 as a mapping criteria and the common subset of 595 proteins, we mapped 85 of our complexes to 65 MIPS complexes and 40 yTAP complexes to 32 MIPS complexes.

ile Edit View Favorites Tools			1
= Back 🔹 🔿 🚽 🙆 🚮 🛛 🥘 S	Search 🔝 Favorites 🏈 Media	3 N- 3 Z - 3	
dress 🙋 http://www.nature.com/cgi-t	af/DynaPage.taf?file=/nature/jouri	nal/v415/n6868/full/415141a_fs.html	▼ 🖉 Go 🗍 Links 👌
pg nature publishing group	2	Click here to subscribe	
	nature.com about npg	nature science update naturejobs natureevents help site index	
nature		my account e-alerts	s subscribe register
SEARCH JOURNAL	go advanced se	earch	
		Tuesc	day 23 September 2003
AOP	в∾• # 8№№ •То•छ ∃ • <i>≬•∠</i> •		
Archive Highlights			2
			4
THIS ARTICLE			
		any Matavial C1 List of all numifications	
Download PDF	Supplement	ary Material S1. List of all purifications.	
	Supplement	ary Material S1. List of all purifications.	
Supplementary info			tions
Supplementary info		found proteins are omitted from this list (see Table S2) 589 'raw' purificat	tions,
Supplementary info		found proteins are omitted from this list (see Table S2) 589 'raw' purificat	
Supplementary info Figure index Methods			
Supplementary info Figure index		found proteins are omitted from this list (see Table S2) 589 'raw' purificat	
Supplementary info Figure index Methods References	Note that frequently	found proteins are omitted from this list (see Table S2) 589 'raw' purificat N=455,M=909 (136	
Supplementary info Figure index Methods References	Note that frequently # Tagged protein	found proteins are omitted from this list (see Table S2) 589 'raw' purificat N=455,M=909 (136)	
Supplementary info Figure index Methods References	Note that frequently # Tagged protein 1 Abd1	Found proteins are omitted from this list (see Table S2) 589 'raw' purificat N=455,M=909 (136 Proteins found Abd1 Rpb2 Spt5	
Supplementary info Figure index Methods References Send to a friend Table of Contents	Note that frequently # Tagged protein 1 Abd1 2 Acc1	Proteins found Proteins found Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W	
Supplementary info Figure index Methods References	Note that frequently # Tagged protein 1 Abd1	Found proteins are omitted from this list (see Table S2) 589 'raw' purificat N=455,M=909 (136 Proteins found Abd1 Rpb2 Spt5	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	Note that frequently # Tagged protein 1 Abd1 2 Acc1 3 Ade1	Found proteins are omitted from this list (see Table S2) 589 'raw' purificat N=455,M=909 (136 Proteins found Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade1	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	Note that frequently Tagged protein 1 Abd1 2 Acc1 3 Ade1 4 Ade12	found proteins are omitted from this list (see Table S2) 589 'raw' purificat N=455,M=909 (136 Proteins found Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade1 Ade1	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	#Tagged protein1Abd12Acc13Ade14Ade125Ade136Ade4,77Ade5,7	Proteins are omitted from this list (see Table S2) 589 'raw' purificate N=455,M=909 (136) Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade1 Ade12 Ade12 Ade13 Prt1 Ade4 Cys3 Rna1 Ade5,7	
Supplementary info Figure index Methods References	Note that frequently # Tagged protein 1 Abd1 2 Acc1 3 Ade1 4 Ade12 5 Ade13 6 Ade4 7 Ade5,7 8 Ade6	found proteins are omitted from this list (see Table S2) 589 'raw' purificat N=455,M=909 (136 Abd1 Rpb2 Spt5 Acc1 Ct5 Sit4 YLR386W Ade1 Ade12 Ade13 Prt1 Ade4 Cys3 Rna1 Ade6	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	#Tagged protein1Abd12Acc13Ade14Ade125Ade136Ade47Ade6,78Ade69Adk1	Proteins are omitted from this list (see Table S2) 589 'raw' purificate N=455,M=909 (136) Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade1 Ade12 Ade13 Prt1 Ade4 Cys3 Rna1 Ade5,7 Ade6 Adk1	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	#Tagged protein1Abd12Acc13Ade14Ade125Ade136Ade47Ade5,78Ade69Adk110Ado1	Proteins are omitted from this list (see Table S2) 589 'raw' purificate N=455,M=909 (136) Ac1 Rpb2 Spt5 Ac1 Cct5 Sit4 YLR386W Ade1 Ade12 Ade13 Prt1 Ade5,7 Ade6 Adk1 Ade1	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	# Tagged protein 1 Abd1 2 Acc1 3 Ade1 4 Ade12 5 Ade13 6 Ade4 7 Ade5,7 8 Ade6 9 Adk1 10 Ado1 11 Akl1	found proteins are omitted from this list (see Table S2) 589 'raw' purificate N=455,M=909 (136) Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade12 Ade13 Prt1 Ade41 Spt5 Ace6 Adk1 Ade6 Adk1 Ade1	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	# Tagged protein 1 Abd1 2 Acc1 3 Ade1 4 Ade12 5 Ade13 6 Ade4 7 Ade5,7 8 Ade6 9 Adk1 10 Ado1 11 Akl1 12 Aos1	Found proteins are omitted from this list (see Table S2) 589 'raw' purificate Proteins found Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade1 Ade12 Ade12 Ade12 Ade4 Cys3 Rna1 Ade6 Adk1 Ade6 Adk1 Ade1 Ade1 Ade6 Adk1 Ade1 Ade1 Ade1 Ade1 Ade2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade1 Ade12 Ade12 Ade12 Ade12 Ade1 Ade1 Ade2 Ade1 Ad	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	# Tagged protein 1 Abd1 2 Acc1 3 Ade1 4 Ade12 5 Ade13 6 Ade4 7 Ade5,7 8 Ade6 9 Adk1 10 Ado1 11 Akl1	found proteins are omitted from this list (see Table S2) 589 'raw' purificate N=455,M=909 (136) Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade12 Ade13 Prt1 Ade41 Spt5 Ace6 Adk1 Ade6 Adk1 Ade1	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	# Tagged protein 1 Abd1 2 Acc1 3 Ade1 4 Ade12 5 Ade13 6 Ade4 7 Ade5,7 8 Ade6 9 Adk1 10 Ado1 11 Akl1 12 Aos1 13 Apc2 14 Apd14 15 Apg14	found proteins are omitted from this list (see Table S2) 589 'raw' purificat N=455,M=909 (136 Proteins found Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade12 Ade13 Prt1 Ade41 Prt1 Ade5,7 Ade6 Adk1 Ade6 Adk1 Ade1 Via 1 Ade5,7 Ade6 Adk1 Ade1 Ade1 Via 1	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	# Tagged protein 1 Abd1 2 Acc1 3 Ade1 4 Ade12 5 Ade13 6 Ade4 7 Ade5,7 8 Ade6 9 Adk1 10 Ado1 11 Akl1 12 Aos1 13 Apc2 14 Apd1 15 Apg14 16 Apl2	Proteins are omitted from this list (see Table S2) 589 'raw' purificat N=455, M=909 (136 Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade1 Ade12 Ade12 Ade13 Prt1 Ade6,7 Ade6 Adk1 Ade6 Adk1 Ade7 Ade6 Ade1 Ade4 Cys3 Rna1 Ade6 Adk1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade3 Ade4 Ade1 A	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	# Tagged protein 1 Abd1 2 Acc1 3 Ade1 4 Ade12 5 Ade13 6 Ade4 7 Ade5,7 8 Ade6 9 Adk1 10 Ado1 11 Akl1 12 Aos1 13 Apc2 14 Apd1 15 Apg14 16 Apl3	Found proteins are omitted from this list (see Table S2) 589 'raw' purificat N=455, M=909 (136 Proteins found Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade1 Ade12 Ade13 Prt1 Ade4 Cys3 Rna1 Ade5,7 Ade6 Adk1 Ade1 Ade6 Adk1 Ado1 Akl1 Ado1 Akl1 Ado1 Akl1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Apd1 Vma1 Vps30 Apl1 Apl3 Apm1 Apm2 Aps1 Mis1 Rpa135 Apl1 Apl3 Apm4 Aps2	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	# Tagged protein 1 Abd1 2 Acc1 3 Ade1 4 Ade12 5 Ade13 6 Ade4 7 Ade5,7 8 Ade6 9 Adk1 10 Ado1 11 Akl1 12 Aos1 13 Apc2 14 Apd1 15 Apg14 16 Apl2 17 Apl3 18 Apl5	Proteins are omitted from this list (see Table S2) Proteins found Proteins found Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade1 Ade1 Ade1 Ade12 Ade13 Prt1 Ade4 Ade4 Ade5,7 Ade6 Adk1 Ade1 Ade5,7 Ade6 Adk1 Ade1 Ade5,7 Ade6 Adk1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade5,7 Ade6 Adk1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade5,7 Ade6 Adk1 Ade1 Ade5 Apt1 Ade1 Ade	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	# Tagged protein 1 Abd1 2 Acc1 3 Ade1 4 Ade12 5 Ade13 6 Ade4 7 Ade5,7 8 Ade6 9 Adk1 10 Ado1 11 Akl1 12 Aos1 13 Apc2 14 Apd1 15 Apg14 16 Apl2 17 Apl3 18 Apl6	Found proteins are omitted from this list (see Table S2) 589 'raw' purificat N=455,M=909 (136 Proteins found Abd1 Rpb2 Spt5 Acc1 Cct5 Sit4 YLR386W Ade1 Ade12 Ade13 Prt1 Ade6 Adk1 Ade6 Adk1 Ade6 Adk1 Ade7 Vma1 Vps30 Apl2 Apl4 Apm1 Apm2 Aps1 Mis1 Rpa135 Apl5 Apl6 Apm3 Eno2	
Supplementary info Figure index Methods References Send to a friend Table of Contents < Previous Next >	# Tagged protein 1 Abd1 2 Acc1 3 Ade1 4 Ade12 5 Ade13 6 Ade4 7 Ade5,7 8 Ade6 9 Adk1 10 Ado1 11 Akl1 12 Aos1 13 Apc2 14 Apd1 15 Apg14 16 Apl2 17 Apl3 18 Apl5	Proteins are omitted from this list (see Table S2) 589 'raw' purificat N=455,M=909 (136 N=455,M=909 (136 Act 1 Cct5 Sit4 YLR386W Ade1 Ade12 Ade13 Prt1 Ade5,7 Ade6 Adk1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade1 Ade	
Figure 1 from Gavin, et al.

ack 🔹 🔿 👻 🙆 🔿 🧔	Search 👔 Favorites	s 🛞 Media 🎯 🖏 - 🎒 🖬 - 🗐			
s 🙋 http://www.nature.com/cgi	-taf/DynaPage.taf?file	=/nature/journal/v415/n6868/full/415141a_fs.html			▼ 🔗 Go
			tootute		
nature publishing grou	ıp		nature REVIEWS molecular cell biology DEVIEWS ON THE MOV Click here to find out more! Click here to find out more!		
	г	nature.com about npg nature science up	date naturejobs natureevents help site index		
ature					
			my ac	count e-alerts	subscribe re
	go a	advanced search			
Journal Home 🛛 🔲 🚑	Ban - MA 8		× • ● D D C C · M	Tuesd	ay 23 September
Current Issue					
AOP 🙌 🔍	. • []6 • 19 [] 🗄 .				
Highlights					
THIS ARTICLE Download PDF News and views		23	2 'TAP complexes'		
Download PDF		201			
News and views					
nlamantawinfa 🛛 🚺	Suppler	mentary Material S3. List of complexes.			
Figure index 💆	'Entry n	oints' gives the names of the proteins tagged and purific			
151				tions in the	
Methods	LUCanz	ctions' are b: membrane, c: cytosonc, e: er/golgi/vesicle	e, nu mitochondrial, n: nuclear, u: unknown.		
	yTAP C	tions' are b: membrane, c: cytosefic, e: er/golgi/vesicle Entry points		tions in the	
Sand to a firing d	yTAP C Cell c	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points cycle	a, h∵mitochondrial, n: nuclear, u: unknown. │	Loc.	
Sand to a firing d	yTAP C Cell c 16	vions'are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points Sit4	Acc1 Bem2 Cct2 Cdc25 Fab1 Mds3 MrpI3 Sap155 Sap185 Sap190 Sit4 YKL195W YNL101W YNL187W YOR267C	Loc.	
Sand to a firing d	yTAP C Cell c 16	vions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points cycle Sit4 YDL219W	A, It: mitochondrial, n: nuclear, u: unknown. Found Acc1 Bern2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Sit4 YKL195W YNL101W YNL187W YOR267C Sit4 YDL219W	Loc.	
Send to a friend	yTAP C Cell c 16	vions'are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points Sit4	Acc1 Bem2 Cct2 Cdc25 Fab1 Mds3 MrpI3 Sap155 Sap185 Sap190 Sit4 YKL195W YNL101W YNL187W YOR267C	Loc.	
Send to a friend able of Contents revious Next >	200416 yTAP C Cell C 16 52 69 79 82	vions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points cycle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24	Acc1 Bern2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Sit4 YKL195W Sit4 YDL219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bern1 Boi2 Cdc24 Rsc2	Loc. Loc. cu n c c b c n u	
Send to a friend able of Contents revious Next >	2004115 yTAP C Cell c 16 52 69 79 82 83	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle tentry points tycle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1	Acc1 Bem2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Sit4 YKL195W YNL101W YNL187W YOR267C Sit4 YDL219W Acc1 Apo1 Apo2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bem1 Boi2 Cdc24 Rsc2 Cdc28 Cks1 Clb3 Cln1 Cln2 Dal7 Pca1 Sic1 Srl3 YPL014W	Loc. u cu n c b cn u cu	
Send to a friend able of Contents revious Next >	2004 yTAP C Cell c 16 52 69 79 82 83 121	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle sycle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4	Acc1 Bem2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Sit4 YKL195W YNL101W YNL187W YOR267C Sit4 YDL219W Acc1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bem1 Boi2 Cdc24 Rsc2 Cdc26 Cks1 Clb3 Cln1 Cln2 Dal7 Pca1 Sic1 Sr/3 YPL014W Cdc48 Gim3 Gim5 Nuf1 Pac10 Pik1 Spc97 Spc98 Tub4 Ykc2	Loc. u cu n c b c n u cu cu c n u	
Sand to a firing d	2004115 yTAP C Cell c 16 52 69 79 82 83 121 125	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points ycle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Ir1 Mod1 Smc1 Smc3	Acc1 Bem2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Sit4 YKL195W YNL101W YNL187W YOR267C Sit4 YDL219W Acc1 Apo1 Apo2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bem1 Boi2 Cdc24 Rsc2 Cdc28 Cks1 Clb3 Cln1 Cln2 Dal7 Pca1 Sic1 Srl3 YPL014W Cdc48 Gim3 Gim5 Nuf1 Pac10 Pik1 Spc97 Spc98 Tub4 Yke2 Cct8 Gcn1 Hhf2 Irr1 Kap123 Mcd1 Nop12 Rvb2 Smc1 Smc3 YER147C Ybb1	Loc. u cu n c b cn u cu cn cn	
Send to a friend able of Contents revious Next >	2004 yTAP C Cell c 16 52 69 79 82 83 121	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle sycle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4	Acc1 Bem2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Sit4 YKL195W YNL101W YWL187W YOR267C Sit4 YDL219W Acc1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bern 1 Boi2 Cdc24 Rsc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pik1 Spc97 Spc98 Tub4 Ykc2 Cct8 Gen1 Hhf2 Irr1 Kap123 Mcd1 Nop12 Rvb2 Smc1 Smc3 YER147C Yhb1 Bn1 Cdc48 Doa1 Mrps28 Npl4 Pdc1 Rai1 Reg1 Rpa135 Rpa190	Loc. u cu n c b cn u cu cn cn	
Send to a friend able of Contents revious Next >	Centre yTAP C Centre 16 52 69 79 82 83 121 125 141	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points ycle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Irr1 Mod1 Smc1 Smc3 Cdc48 Doa1 Npl4 Shp1 Ufd1	Acc1 Bern2 Cct2 Cdc25 Fab Mds3 Mrpl3 Sap155 Sap185 Sap190 Si4 YKL 195W YNL101W YNL187W YOR267C Sit4 YDL219W Act1 Apc1 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bern1 Boil Cdc24 Rsc2 Cdc428 Cls2 Cls2 Res Cdc428 Cls2 Sin1 Cls2 Sin2	Loc. u cu n c bcnu cu cnu cnu cnu	
Send to a friend able of Contents revious Next >	Cell c 16 52 69 79 82 83 121 125 141	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points ycle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Irr1 Mod1 Smc1 Smc3 Cdc48 Doa1 Npl4 Shp1 Ufd1 Cdc48 Doa1 Npl4 Shp1 Ufd1	Acc1 Bern2 Cct2 Cdc25 Fab Mds3 Mrpl3 Sap155 Sap190 Si4 YKL 195W YNL101W YNL187W YOR267C Sit4 YDL219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL218W Bern1 Boi2 Cdc24 Rsc2 Cdc410 Cdc12 Cdc3 YDL218W Bern1 Boi2 Cdc24 Rsc2 Cdc410 Cdc12 Cdc3 YDL218W Bern1 Boi2 Cdc24 Rsc2 Cdc48 Gdc3 Clb3 Spe37 Spe38 Tub YL014W Cdc48 Gdc3 Clb3 Spe31 Spe31 Spe31 Spe31 Spe31 Spe31 YL014 YL014W Cdc46 Cdc47 Erg26 Git1 Hat1 Hsp42 Lys12 More Cpc1 Cpc3 Cpc40 Cpc46 <td< td=""><td>Loc. u cu n c bcnu cu cnu cnu cnu</td><td></td></td<>	Loc. u cu n c bcnu cu cnu cnu cnu	
Send to a friend able of Contents revious Next >	2004 yTAP C Cell C 16 52 69 79 82 83 121 125 141 150 183	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points ycle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Irr1 Mod1 Smc1 Smc3 Cdc48 Doa1 Npl4 Shp1 Ufd1 Cdc45 Cdc47 Mcm2 Mcm6 Orc1 Orc2 Gtr2	Ace1 Bern2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Si4 YKL195W Ybl219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bern1 Boi2 Cdc24 Rsc2 Cdc28 Cks1 Clb3 Ch1 Ch2 Dat7 Pca1 Sic1 Sr/3 YPL014W Cdc48 Gm3 Gim5 Nuf1 Pac10 Pik1 Spc97 Spc98 Tub4 Ykc2 Ccte48 Gm1 Hhf2 Ir1 Kap123 Mcd1 Nop12 Rvb2 Smc1 Smc3 YER147C Yhb1 Bn1 Cdc48 Cba1 Mrps28 Npl4 Pdc1 Rai1 Reg1 Rpa135 Rpa190 Rpc31 Shp1 Uid1 YDR049W Cdc45 Cdc46 Cdc47 Erg26 Gh1 Hat1 Hsp42 Lys12 Mcm8 Ore1 Orc2 Orc3 Orc4 Orc5 Orc6 Rpd3 Rpn9 Sin3 Vma1 Cs11 Sep1 Gr12 Rvb2 Sp16 YCR015C YGR203W	Loc. u cu n c b c n u cu cn u cn u c n cn u c n u c u c u c u c u c u c u c u c	
Send to a friend able of Contents revious Next >	200416 yTAP C Cell c 16 52 69 79 82 83 121 125 141 150 183 198	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points ycle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Irr1 Mod1 Smc1 Smc3 Cdc48 Doa1 Npl4 Shp1 Ufd1 Cdc45 Cdc47 Mcm2 Mcm6 Orc1 Orc2 Gtr2 Lte1	Acc1 Bem2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Sit4 YKL195W YNL101W YNL187W YOR267C Sit4 YDL219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bem1 Boi2 Cdc24 Rsc2 Cdc28 Cks1 Clb3 Cln1 Cln2 Dal7 Pca1 Sic1 Srl3 YPL014W Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Cdc48 Cdc47 Erg26 Gft1 Hat1 Hsp42 Lys12 Mcm2 Mcm6 Orc1 Orc2 Orc3 Orc4 Orc5 Orc6 Rpd3 Rpr9 Sin3 Vma1 Cst13 Esp1 Gtr2 Rvb2 Spt16 YCR015C YGR203W Kel1 Lte1	Loc. u cu n c bcnu cu cnu cnu cnu cnu cnu cnu c	
Send to a friend able of Contents revious Next >	Locate yTAP C Cell c 16 52 69 79 82 83 121 125 141 150 183 198 206	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points ycle Sit4 YDL219W Ape2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Irr1 Mod1 Smc1 Smc3 Cdc48 Doa1 Np4 Shp1 Ufd1 Cdc45 Cdc47 Mcm2 Mcm6 Orc1 Orc2 Gtr2 Lte1 Mum2	Ace1 Bern2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Si4 YKL195W Ybl219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bern1 Boi2 Cdc24 Rsc2 Cdc28 Cks1 Clb3 Ch1 Ch2 Dat7 Pca1 Sic1 Sr/3 YPL014W Cdc48 Gm3 Gim5 Nuf1 Pac10 Pik1 Spc97 Spc98 Tub4 Ykc2 Ccte48 Gm1 Hhf2 Ir1 Kap123 Mcd1 Nop12 Rvb2 Smc1 Smc3 YER147C Yhb1 Bn1 Cdc48 Cba1 Mrps28 Npl4 Pdc1 Rai1 Reg1 Rpa135 Rpa190 Rpc31 Shp1 Uid1 YDR049W Cdc45 Cdc46 Cdc47 Erg26 Gh1 Hat1 Hsp42 Lys12 Mcm8 Ore1 Orc2 Orc3 Orc4 Orc5 Orc6 Rpd3 Rpn9 Sin3 Vma1 Cs11 Sep1 Gr12 Rvb2 Sp16 YCR015C YGR203W	Loc. u cu n c b c n u cu cn u cn u c n cn u c n u c u c u c u c u c u c u c u c	
Send to a friend able of Contents revious Next >	Locate yTAP C Cell c 16 52 69 79 82 83 121 125 141 150 183 198 206	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points ycle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Irr1 Mod1 Smc1 Smc3 Cdc48 Doa1 Npl4 Shp1 Ufd1 Cdc45 Cdc47 Mcm2 Mcm6 Orc1 Orc2 Gtr2 Lte1	Acc1 Bem2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Sit4 YKL195W YNL101W YNL187W YOR267C Sit4 YDL219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bem1 Boi2 Cdc24 Rsc2 Cdc28 Cks1 Clb3 Cln1 Cln2 Dal7 Pca1 Sic1 Srl3 YPL014W Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cdc48 Cdc48 Cdc47 Erg26 Gft1 Hat1 Hsp42 Lys12 Mcm2 Mcm6 Orc1 Orc2 Orc3 Orc4 Orc5 Orc6 Rpd3 Rpr9 Sin3 Vma1 Cst13 Esp1 Gtr2 Rvb2 Spt16 YCR015C YGR203W Kel1 Lte1	Loc. u cu n c bcnu cu cnu cnu cnu cnu cnu cnu c	
Send to a friend able of Contents revious Next >	Locate yTAP C QTAP C Cell c 16 52 69 79 82 83 121 125 141 150 183 198 206 Cell p 19	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Irr1 Mod1 Smc1 Smc3 Cdc48 Doa1 Npl4 Shp1 Ufd1 Cdc45 Cdc47 Mcm2 Mcm6 Orc1 Orc2 Gtr2 Lte1 Mum2 Dolarity and structure Spo7	Acc1 Bem2 Cct2 Cdc25 Fab1 Mds3 MrpI3 Sap155 Sap185 Sap190 Sit4 YKL 195W YNL101W YNL187W YOR267C Sit4 YDL219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bem1 Boi2 Cdc24 Rsc2 Cdc28 Cks1 Clb3 Cln1 Cln2 Dal7 Pca1 Sic1 Srl3 YPL014W Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cst8 Gcn1 Hhf2 Irr1 Kap123 Mcd1 Nop12 Rvb2 Smc1 Smc3 YER147C Yhb1 Bni1 Cdc48 Doa1 Mrps28 Npl4 Pdc1 Rai1 Reg1 Rpa135 Rpa190 Rpo31 Shp1 Ufd1 YDR049W Cdc45 Cdc46 Cdc47 Erg26 Glt1 Hat1 Hsp42 Lys12 Mcm2 Mcm6 Orc1 Orc2 Orc3 Orc4 Orc5 Orc6 Rpd3 Rpn9 Sin3 Vma1 Cst13 Esp1 Girz Rvb2 Spt16 YCR015C YGR203W Kel1 Lte1 Mrc2 Mum2 Spo14	Loc. u cu n c bcnu cu cnu cnu cnu cnu cnu cnu c	
Send to a friend able of Contents revious Next >	Location yTAP C QTAP C Cell C 16 52 69 79 82 83 121 125 141 150 183 198 206 Cell p 19 55	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 In11 Mcd1 Smc1 Smc3 Cdc48 Doa1 Npl4 Shp1 Ufd1 Cdc45 Cdc47 Mcm2 Mcm6 Orc1 Orc2 Gtr2 Lte1 Lte1 Mum2 Polarity and structure Spo7 YJL060W	Acc1 Bern2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Si4 YKL 195W YNL101W YNL187W YOR267C Sit4 YDL219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bern1 Boil Cdc24 Rcc2 Ccd8 Gma3 Gma3 Sint2 Cdc48 Gma3 Sint2 Ccd8 Gma3 Sint2 Mod Sint3 <	Loc. Loc. Loc. Loc. Loc. Cu Cu Cu Cu Cu Cu Cu Cu Cn Cn Cn Cn Cu	
Send to a friend able of Contents revious Next >	Locate yTAP C QTAP C Cell c 16 52 69 79 82 83 121 125 141 150 183 198 206 Cell p 19	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Irr1 Mod1 Smc1 Smc3 Cdc48 Doa1 Npl4 Shp1 Ufd1 Cdc45 Cdc47 Mcm2 Mcm6 Orc1 Orc2 Gtr2 Lte1 Mum2 Dolarity and structure Spo7	Acc1 Bem2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Sit4 YKL195W YNL101W YNL187W YOR267C Sit4 YDL219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bem1 Boi2 Cdc24 Rsc2 Cdc28 Cks1 Clb3 Cln1 Cln2 Dal7 Pca1 Sic1 Srl3 YPL014W Cdc28 Cks1 Clb3 Cln1 Cln2 Dal7 Pca1 Sic1 Srl3 YPL014W Cdc48 Gim3 Gim5 Nuf1 Pac10 Pfk1 Spc97 Spc98 Tub4 Ykc2 Cct8 Gcn1 Hhf2 Irr1 Kap123 Mcd1 Nop12 Rvb2 Smc1 Smc3 YER147C Yhb1 Bni1 Cdc48 Doa1 Mrps28 Npl4 Pdc1 Rai1 Reg1 Rpa135 Rpa190 Rpo31 Shp1 Ufd1 YDR049W Cdc45 Cdc46 Cdc47 Erg26 Glt1 Hat1 Hsp42 Lys12 Mcm2 Mcm6 Orc1 Orc2 Orc3 Orc4 Orc5 Orc6 Rpd3 Rpn9 Sin3 Vma1 Cst13 Esp1 Gtr2 Rvb2 Spt16 YCR015C YGR203W Kel1 Lte1 Mtc2 Mum2 Spo14 Fks1 Gcd6 Nat1 Nem1 Swi3 Cdc43 YL060W Cap1 Cap2 YER071C YIR003W Act1 Adh1 Gcn1 Hsc82 Kap123 Mic1 Mic2 Myo1 Myo2 Myo4	Loc. u cu n cu bcnu cu cnu cnu cn cnu cnu cnu cn	
Send to a friend able of Contents revious Next >	Location yTAP C QTAP C Cell C 16 52 69 79 82 83 121 125 141 150 183 198 206 Cell p 19 55 81 107	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points ycle Sii4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 In1 Mcd1 Smc1 Smc3 Cdc48 Doa1 Npl4 Shp1 Ufd1 Cdc45 Cdc47 Mcm2 Mcm6 Orc1 Orc2 Gtr2 Lte1 Mum2 polarity and structure Spo7 YJL060W Cap1 Cap2 Myo1 Myo4 She3	Acc1 Bern2 Cct2 Cdc25 Fab1 Mds3 Mrpl3 Sap155 Sap185 Sap190 Si4 YKL 195W YNL101W YNL187W YOR267C Sit4 YKL YK	Loc. Loc. Loc. Loc. Loc. n cu cu cu cn cn cn cn cn cn	
Send to a friend able of Contents revious Next >	Location yTAP C Cell C 16 52 69 79 82 83 121 125 141 150 183 198 206 Cell p 19 55 81 107 118	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points sycle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Ir11 Mod1 Smc1 Smc3 Cdc48 Doa1 Npl4 Shp1 Ufd1 Cdc48 Doa1 Npl4 Shp1 Ufd1 Cdc45 Cdc47 Mcm2 Mcm6 Orc1 Orc2 Gtr2 Lte1 Mum2 bolarity and structure Spo7 YJL060W Cap1 Cap2 Myo1 Myo4 She3 Las17 Sla1 Vrp1	Acc1 Bern2 Cct2 Cdc25 Fab Mds3 Mrp13 Sap155 Sap190 Si4 YKL 195W YNL101W YNL187W YOR267C Sit4 YDL219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc10 Cdc12 Cdc37 Cdc48 Gdc37 D101 D11 D201 D11 D201 D11 D201 D11 D201 D11 D101 D11 D101 D101 D101 D101 <thd101< th=""> <thd101< th=""> <thd101< th=""></thd101<></thd101<></thd101<>	Loc. Loc. Loc. Loc. Loc. Cu	
Send to a friend able of Contents revious Next >	Locate yTAP C yTAP C Cell C 16 52 69 79 82 83 121 125 141 150 183 198 206 Cell p 19 55 81 107 118 153	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points sycle Sil4 YDL219W Ape2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Irr1 Mod1 Smc1 Smc3 Cdc48 Doc1 Np4 Shp1 Ufd1 Cdc48 Doc1 Np4 Shp1 Ufd1 Cdc45 Cdc47 Mcm2 Mcm6 Orc1 Orc2 Gtr2 Lte1 Mum2 polarity and structure Spo7 YJL060W Cap1 Cap2 Myo1 Myo4 She3 Las17 Sla1 Vrp1 Arc15 Arc18 Arc35 Arc40 Arp2 Arp3	Found Found Acc1 Bem2 Cct2 Cdc25 Fab1 Mds3 Mrp13 Sap155 Sap185 Sap190 Sit4 YKL195W YNL101W YNL187W YOR267C Sit4 YDL219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bern 1 Boi2 Cdc24 Rsc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Ctde48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Doa1 Mrps28 Npl4 Pdc1 Rai1 Reg1 Rpa135 Rpa190 Rpo31 Shp1 Uid1 VDR049W Cdc45 Cdc46 Cdc47 Erg26 Git1 Hat1 Hsp42 Lys12 Mcm2 Mcm6 Orc1 Orc2 Orc3 Orc4 Orc5 Orc6 Rpd3 Rpn9 Sin3 Vma1 Cst13 Esp1 Gtr2 Rvb2 Spt16 YCR015C YGR203W Kei1 Lte1 Mic2 Mum2 Spo14 Fks1 Gcd6 Nat1 Nem1 Swi3 Cdc3 YJL060W Cap1 Cap2 YER071C YIR003W Act1 Adh1 Gcn1 Hsc82 Kap123 Mic1 Mic2 Myo1 Myo2 Myo4 Nip1 Shc2 Shc3 YDR101C Ycr3 Bzz7 Chc1 Ecm25 End3 Inp5 Las17 Rad51 Sla1 Sla2 Stm1 Yma1 Ycr0 YCR030C	Loc. u cu n c bcnu cnu cnu cnu cnu cnu cnu cnu	
Send to a friend able of Contents revious Next >	Location yTAP C QTAP C Cell C 16 52 69 79 82 83 121 125 141 150 183 198 206 Cell p 19 55 81 107 118 153 169	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points sycle Sit4 YDL219W Apc2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Ir11 Mod1 Smc1 Smc3 Cdc48 Doa1 Npl4 Shp1 Ufd1 Cdc48 Doa1 Npl4 Shp1 Ufd1 Cdc45 Cdc47 Mcm2 Mcm6 Orc1 Orc2 Gtr2 Lte1 Mum2 bolarity and structure Spo7 YJL060W Cap1 Cap2 Myo1 Myo4 She3 Las17 Sla1 Vrp1 Arc15 Arc18 Arc35 Arc40 Arp2 Arp3 Ede1	Acc1 Bern2 Cct2 Cdc25 Fab Mds3 Mrpl3 Sap155 Sap190 Si4 YKL 195W YNL101W YNL187W YOR267C Sit4 YDL219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc10 Cdc12 Cdc3 YDL219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc12 Cdc3 YDL215W Bern1 Boi2 Cdc24 Rsc2 Cdc48 Cdc428 Cdc27 Cdc40 Cdc12 Cdc3 YDL014W YDL014W <td< td=""><td>Loc. U Loc. U Loc. C C C C C C C C C C C C C C C C C C</td><td></td></td<>	Loc. U Loc. U Loc. C C C C C C C C C C C C C C C C C C	
Send to a friend able of Contents revious Next >	Location yTAP C yTAP C Cell C 16 52 69 79 82 83 121 125 141 150 183 198 206 Cell p 19 55 81 107 118 153 169 194	tions' are b: membrane, c: cytosofic, e: er/golgi/vesicle Entry points sycle Sil4 YDL219W Ape2 Doc1 Cdc3 Bern1 Cdc24 Cdc28 Cks1 Nuf1 Pac10 Tub4 Irr1 Mod1 Smc1 Smc3 Cdc48 Doc1 Np4 Shp1 Ufd1 Cdc48 Doc1 Np4 Shp1 Ufd1 Cdc45 Cdc47 Mcm2 Mcm6 Orc1 Orc2 Gtr2 Lte1 Mum2 polarity and structure Spo7 YJL060W Cap1 Cap2 Myo1 Myo4 She3 Las17 Sla1 Vrp1 Arc15 Arc18 Arc35 Arc40 Arp2 Arp3	Found Found Acc1 Bem2 Cct2 Cdc25 Fab1 Mds3 Mrp13 Sap155 Sap185 Sap190 Sit4 YKL195W YNL101W YNL187W YOR267C Sit4 YDL219W Act1 Apc1 Apc2 Cdc16 Cdc23 Cdc27 Cdc10 Cdc11 Cdc12 Cdc3 YDL225W Bern 1 Boiz Cdc24 Rsc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Gim3 Gim5 Nuf1 Pac10 Pikt Spc97 Spc98 Tub4 Ykc2 Cdc48 Doa1 Mrps28 Npl4 Pdc1 Rai1 Reg1 Rpa135 Rpa190 Rpo31 Shp1 Uid1 VDR049W Cdc45 Cdc46 Cdc47 Erg26 Git1 Hat1 Hsp42 Lys12 Mcm2 Mcm6 Orc1 Orc2 Orc3 Orc4 Orc5 Orc6 Rpd3 Rpn9 Sin3 Vma1 Cst13 Esp1 Gtr2 Rvb2 Spt16 YCR015C YGR203W Kei1 Lte1 Mic2 Mum2 Spo14 Fks1 Gcd6 Nat1 Nem1 Swi3 Cdc3 YJL060W Cap1 Cap2 YER071C YIR003W Act1 Adh1 Gcn1 Hsc82 Kap123 Mic1 Mic2 Myo1 Myo2 Myo4 Nip1 Shc2 Shc3 YDR101C Ycr3 Bzz7 Det1 Cmc2 SE rd3 Inp3 Las17 Rad51 Sl	Loc. u cu n c bcnu cnu cnu cnu cnu cnu cnu cnu	

YEAST protein complex datab File Edit View Favorites										
1	🔯 Search 🗟 Favorites 🖓 Media 🎯									
Address in http://yeast.cellzome.o	▼ @Go	Links »								
, <u>, , .</u>										
STEAST protein complex database										
NEW SEARCH	H HELP & FAQ CONTACT	LOGOUT								
Hello Denise S	choltens. You're logged in as dscholte		Search:	SUBMIT	?					
	complex	k detail	S.							
	Complex ID 16 Function Cell cycle	Proteins: Protein ACC1 BEM2 CCT2 CDC25 FAB1 MDS3 MRPL3 SAP155 SAP155 SAP190 SIT4 YNL195W YNL195W YNL101W YNL187W YOR267C * this flag assign as baits in our	DescriptionLocalisationAcetyl-CoA carboxCytoplasmicGTP ase-activatingComponent of ChaCytoplasmic, CytoskeletalGuanine-nucleotid Plasma membranePhosphatidylinositoLysosome/vacuoleNegative regulatorMitochondrial ribosMitochondrialSit4p-associated pProtein that associProtein serine/threCytoplasmicProtein of unknowPutative membraneUnspecified membraneProtein of unknowSerine/threonine pnot the protein swhich have been usedpurifications.							
© <u>cellzome AG</u> , september 2001, <u>veast@cellzome.com</u>										

Example of unconnected complex, yTAP C121

Example of unconnected complex, yTAP C125

Arp2/3

Arp2/3 complex: Arp2 Arp3 Arc15 Arc18 Arc19 Arc35 Arc40

'The Arp2/3 complex is a stable multiprotein assembly required for the nucleation of actin filaments in all eukaryotic cells and consists of seven proteins in human and yeast.'

Winter, et al (1997). *Curr Biol.* Higgs and Pollard (2001). *Annu Rev Biochem.*

Origin Recognition Complex

Origin Recognition Complex:

> Orc1 Orc2 Orc3 Orc4 Orc5 Orc6

Dutta and Bell (1997). Annu Rev Cell Dev Biol.

Exosome

Exosome:

Rrp4 Rrp41 (Ski6) Rrp42 Rrp43 Rrp44 (Dis3) Rrp45 Rrp46 Mtr3 Rrp40 Csl4 Rrp6 (only in nuclear exosome)

Allmang, et al (1999). Genes Devel.

Exosome

Exosome:

Rrp4 Rrp41 (Ski6) Rrp42 Rrp43 Rrp44 (Dis3) Rrp45 Rrp46 Mtr3 Rrp40 Csl4 Rrp6 (only in nuclear exosome)

Allmang, et al (1999). Genes Devel.

Exosome

Exosome:

Rrp4 Rrp41 (Ski6) Rrp42 Rrp43 Rrp44 (Dis3) Rrp45 Rrp46 Mtr3 Rrp40 Csl4 Rrp6 (only in nuclear exosome)

Allmang, et al (1999). Genes Devel.

PP2A

Heterotrimeric complex consisting of:

Tpd3 - regulatory A subunit

Cdc55 or Rts1 - regulatory B subunits

Pph21 or Pph22 - catalytic subunits

Jiang and Broach (1999). EMBO.

PP2A

Heterotrimeric complex consisting of:

Tpd3 - regulatory A subunit

Rts1 or Cdc55 - regulatory B subunits

Pph21 or Pph22

- catalytic subunits

Jiang and Broach (1999). EMBO.

RNA Polymerases I, II and III

Ferri, et al (2000). Mol Cell Biol.

RNA Polymerases I, II and III

RNA Polymerase II

mRNA cleavage and polyadenylation

CF I: PF I: Rna14 Cft1 Rna15 Cft2 Pcf11 Ysh1 (Brr5) Clpl Pta1 Fip1 Hrp1 Pfs2 Yth1 YKL059C (Mpe1) YGR156W (Pti1) Pap1 Pfs1

-Hrp1 is CFIB – a separate component that shuttles between the nucleus and cytoplasm -CF II is Cft1, Cft2, Ysh1, Pta1 -Yeast requires the cooperativity of CFI & PFI -Pfs2 and Rna14 exhibit an in vitro interaction

Gross and Moore (2001). *PNAS*. Zhao, et al (1997). *J Biol Chem*. Skaar and Greenleaf (2002) *Mol Cell*. Vo, et al (2001). *Mol Cell Biol*.

mRNA cleavage and polyadenylation

CF I: PF I: Rna14 Cft1 Cft2 Rna15 Pcf11 Ysh1 (Brr5) Pta1 Clpl Hrp1 Fip1 Pfs2 Yth1 YKL059C (Mpe1) YGR156W (Pti1) Pap1 Pfs1

-Hrp1 is CFIB – a separate component that shuttles between the nucleus and cytoplasm -CF II is Cft1, Cft2, Ysh1, Pta1 -Yeast requires the cooperativity of CFI & PFI -Pfs2 and Rna14 exhibit an in vitro interaction

Gross and Moore (2001). *PNAS*. Zhao, et al (1997). *J Biol Chem*. Skaar and Greenleaf (2002) *Mol Cell*. Vo, et al (2001). *Mol Cell Biol*.

mRNA cleavage and polyadenylation

New complexes to Test?

Only complex in our analysis involving these four, except for some SBMH complexes. Currently unreported in the literature.

New complexes to Test?

YCR072C and Kre32 have no annotation in GO or PubMed.

New complexes to Test?

These are both undocumented in the literature – note that Enp1, YDL060W (Tsr1), and YNL207W (Rio2) are in both complexes.

Conclusions

- Distinction between the structures of the graphs representing both the estimation goal and the available data afforded a simple complex membership estimation algorithm allowing multiple complex membership by individual proteins.
- These complex membership estimates allow a more detailed view of complexes than other analyses.

What's Next?

- New Experiments
 - Test previously unidentified complexes
 - Mutate a gene and see what happens to its complex composition?
- Coordination with Other Data
 - Y2H data to determine physical connectivity of the proteins in a complex
 - Cell-cycle gene expression data to determine which complexes function in a cell cycledependent manner, and to determine the expression profile of multi-complex proteins
 - Sequence data to determine binding sites

Thanks to

- Marc Vidal, DFCI
 - Very helpful discussions about the biology
- Jeff Gentry, DFCI
 - Graph plotting software: Rgraphviz
- Jianhua Zhang, DFCI
 - Annotation package: yeast
- Vince Carey, Channing Lab

 Helpful discussion and insights
- Members of Gentleman/Carey Lab