Lab 3B: An Introduction to the affy package

June 4, 2003

In this lab, we demonstrate the main functions in the affy package for pre-processing
Affymetrix microarray data. We first load the packages that we will be using.

> library(affy)

Welcome to Bioconductor
Vignettes contain introductory material. To view,
simply type: openVignette()
For details on reading vignettes, see
the openVignette help page.
Creating a new generic function for "summary" in package
reposTools

Synching your local package management information ...
> library(affydata)

For a more detailed introduction, consult the package vignettes which can be listed
by the command openVignette("affy"). A demo can also be accessed by demo (affy).
A number of sample datasets are available in the package and in the affydata add-on; to
list these, type data(package="affy") and data(package="affydata"). To interact
with this and other vignettes you can use vExplorer.

The function ReadAffy is available for reading CEL files. However, in this lab we
will work mainly with the Dilution dataset, which is included in the package. For a
description of Dilution, type ?Dilution. To load this dataset

> data(Dilution)

One of the main classes in affy is the AffyBatch class. For details on this class
consult the help file, help("AffyBatch-class"); methods for manipulating instances
of this class are also described in the help file. Other classes include ProbeSet (PM and
MM intensities for individual probe sets), Cdf (information contained in a CDF file),
and Cel (single array cel intensity data). The object Dilution is an instance of the class
AffyBatch. Try the following commands to obtain information of this object

> class(Dilution)
[1] "AffyBatch"
> slotNames (Dilution)

[1] "cdfName" "nrow" "ncol" "exprs" "se.exprs"
[6] "phenoData" "description" "annotation" "notes"

> Dilution

AffyBatch object

size of arrays=640x640 features (12805 kb)
cdf=HG_U95Av2 (12625 affyids)

number of samples=4

number of genes=12625

annotation=hgu95av2

> annotation(Dilution)
[1] "hgu9b5av2"

For a description of the target samples hybridized to the arrays

> phenoData(Dilution)

phenoData object with 3 variables and 4 cases

varLabels
liver: amount of liver RNA hybridized to array in micrograms
snl9: amount of central nervous system RNA hybridized to array in micrc
scanner: ID number of scanner used

> pData(Dilution)

liver snl9 scanner

20A 20 0 1
20B 20 0 2
10A 10 0 1
10B 10 0 2

The exprs slot contains a matrix with columns corresponding to arrays and rows to
individual probes on the array. To obtain the matrix of intensities for all four arrays

> e <- exprs(Dilution)
> nrow(Dilution) * ncol(Dilution)

[1] 409600
> dim(e)
[1] 409600 4

The values in this array are the raw values for the mean probe expression in your CEL
files.
You can access probe-level PM and MM intensities using

> PM <- pm(Dilution)
> dim(PM)

[1] 201800 4
> PM[1:5,]

20A 20B 10A 10B
1000_at1 468.8 282.3 433.0 198.0
1000_at2 430.0 265.0 308.5 192.8
1000_at3 182.3 115.0 138.0 86.3
1000_at4 930.0 588.0 752.8 392.5
1000_atb5 171.0 128.0 152.3 97.8

The array PM contains only the perfect match probes.
To get the probe set names (Affy IDs)

> gnames <- geneNames (Dilution)
> length(gnames)

[1] 12625

> gnames[1:5]

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"
> nrow(e)/length(gnames)

[1] 32.44356

The length of gnames, 12625, indicates that there are that many probesets on the chip.
As with other microarray objects in Bioconductor packages, you can use standard
subsetting commands on AffyBatch objects. The

> dill <- Dilution[1]
> class(dill)

[1] "AffyBatch"
> dill

AffyBatch object

size of arrays=640x640 features (3204 kb)
cdf=HG_U95Av2 (12625 affyids)

number of samples=1

number of genes=12625
annotation=hgu95av2

> cell <- Dilution[[1]]
> class(cell)

[1] "Cel"
> cell

Cel object

name=20A

cdfName=HG_U95Av2
intensity=640 x 640 (3200 kb)

masked= 0 Y
outliers= 0 Y%
history=

One of the main functions for reading in Affymetrix data is ReadAffy. It reads in data
from CEL and CDF files and creates objects of class AffyBatch. Using ReadAffy(widget=TRUE)
uses a widget for interactive data input.

To produce a spatial image of probe log intensities and probe raw intensities

> image(Dilution[1])

20A

200 300 400 500 600

100

100 200 300 400 500 600

> image (cell)

20A

200 300 400 500 600

100

100 200 300 400 500 600

To produce boxplots of probe log intensities

> boxplot(Dilution, col = c(2, 2, 3, 3))

Small part of dilution study

14

12

X20A X20B X10A X10B

Note that scan-
ner effects seem stronger than concentration effect (the first and third boxplots are from
the same scanner).

To produce density plots of probe log intensities

> hist(Dilution, type = "1", col = c(2, 2, 3, 3), 1ty = rep(1:2,
+ 2), lwd = 3)

© _| i
o /
Vi
4
0 4
S 4 4
4 2
< 4
o] 4
2 N
2 o 4
g o 42
42
493
o~ 2
s 423l
423
423
— 443
2 4
o _|
o
I I I I I
6 8 10 12 14
log intensity

These boxplots and histograms show that the Dilution data needs normalizaton.
Arrays that should be the same are different. Arrays that should be different are similar.
Because of these arrays have increasing concentrations they have to be normalized in

concnetration groups.

> Dil10 <- normalize(Dilution[1:2])
> Dil20 <- normalize(Dilution[3:4])
> normDil <- merge(Dil20, Dil10)

Notice how the boxplot now looks better:

> boxplot (normDil, col = c(2, 2, 3, 3))

Small part of dilution study

14

12

10

X10A X10B X20A X20B

The affy package provides implementations for a number of methods for background
correction, probe-level normalization (e.g., quantile, curve-fitting (Bolstad et al., 2002)),
and computation of expression measures (e.g., MAS 4.0, MAS 5.0, MBEI (Li & Wong,
2001), RMA (Irizarry et al., 2003)). To list available methods for AffyBatch objects

> bgcorrect.methods
[1] "mas" unonen ||rman ||rma2n
> normalize.AffyBatch.methods

[1] "constant" "contrasts" "invariantset" "loess"
[5] "gspline" "quantiles" "quantiles.robust"

> pmcorrect.methods
[1] "mas" "pmonly" "subtractmm"

> express.summary.stat.methods

[1] "avgdiff" "liwong" "mas" "medianpolish" "playerout"

The main probe level pre-processing function is expresso. You can select pre-
processing methods interactively using widgets by typing expresso(Dilution, wid-
get=TRUE). The function operates on objects of class AffyBatch and returns objects of
class exprSet.

The function rma provides a more efficient implementation of Robust Multi-array
Average (RMA)

We don’t normalize because we already did above.

Data packages for CDF information can be download from www.bioconductor.
org|. These packages contain environment objects which provide mappings between
Affymetrix identifiers and matrices of probe locations, with rows corresponding to probe-
pairs and columns to PM and MM cels. CDF environments for HGU95Av2 and HGU133A
chips are already in the package. For information on the environment object 7 hgu95av2cdf

> annotation(Dilution)
[1] "hgu9bav2"

> data(hgu95av2cdf)
> pnames <- ls(env = hgu95av2cdf)
> length(gnames)

[1] 12625

> gnames[1:5]

[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at"
> get(gnames[1], env = hgu95av2cdf)

pm mm
[1,] 358160 358800
[2,] 118945 119585
[3,] 323731 324371
[4,] 223978 224618
[5,] 313420 314060
[6,] 349209 349849
[7,] 199525 200165
[8,] 213669 214309
[9,] 236739 237379
[10,] 298099 298739
[11,] 282744 283384
[12,] 281443 282083

10

www.bioconductor.org
www.bioconductor.org

[13,] 349198 349838
[14,] 297953 298593
[156,] 317054 317694
[16,] 404069 404709

You can also use the indexProbe, pmindex, and mmindex to get information on probe
location

> plocs <- indexProbes(Dilution, which = "both")
> plocs[[1]]

[1] 358160 118945 323731 223978 313420 349209 199525 213669 236739 298099
[11] 282744 281443 349198 297953 317054 404069 358800 119585 324371 224618
[21] 314060 349849 200165 214309 237379 298739 283384 282083 349838 298593
[31] 317694 404709

> pmindex(Dilution, genenames = gnames[1], xy = TRUE)

$"1000_at"
Xy
[1,] 400 560
[2,] 545 186
[3,] 531 506
[4,]1 618 350
[5,] 460 490
[6,] 409 546
[7,] 485 312
[8,] 549 334
[9,1 579 370
[10,] 499 466
[11,] 504 442
[12,] 483 440
[13,] 398 546
[14,] 353 466
[15,] 254 496
[16,] 229 632

> pmindex(Dilution, genenames = gnames[1])

$"1000_at"
[1] 358160 118945 323731 223978 313420 349209 199525 213669 236739 298099
[11] 282744 281443 349198 297953 317054 404069

Having access to PM and MM data can be useful. Let’s look at a plot of PM vs.
MM

11

> plot (mm(Dilution[1]), pm(Dilution[1]), pch = ".", log = "xy")
> abline(0, 1, col = "red")

o
o
o
o
AN
o
o
o
o
=
=
c
S
=
2 3
2 s
IS
CJ'CD
o
Te}
o
o
[qV}
o
o
—

I I I I I I I
100 200 500 1000 2000 5000 10000

mm(Dilution[1])

An example of a ProbeSet is included in the package. The object represents the PM
and M M intensities of a particular control probeset, AFFX-BioB-5_at, from 12 arrays
from the spike-in data set. The transcripts related to this probeset where spiked-in at
known concentrations in the hybridization mixture. The concentrations were varied from
chip to chip. The different concentration values are used as the sample names:

> data(Spikeln)
> sampleNames (SpikelIn)

[1] "0.50" "0.75" "1.00" "1.50" "2.00" "3.00" "5.00" "12.50"
[9] "25.00" "50.00" "75.00" "150.00"

Notice that the concentrations are growing exponentially.

The help file describes the data set in more detail. The The next figure uses this
data set to demonstrate that the M M also detect some transcript signal.

12

In the next plot we see that both the M M values and the PM values increase as the
concentration does. This means that the M M probes are detecting signal and not just
background or non-specific hybridization.

> pms <- pm(SpikeIn)

> mms <- mm(SpikeIn)

> par(mfrow = c(1, 2))

> concentrations <- matrix(as.numeric(sampleNames (SpikeIn)), 20,

+ 12, byrow = TRUE)

> matplot(concentrations, pms, log = "xy", main = "PM", ylim = c(30,
+ 20000))

> lines(concentrations[1,], apply(pms, 2, mean), lwd = 3)

> matplot(concentrations, mms, log = "xy", main = "MM", ylim = c(30,
+ 20000))

> lines(concentrations[1,], apply(mms, 2, mean), lwd = 3)

PM MM
o o
o o
o o
o o
(qV] E N
— 0 " — b
S 8/ S
3 ' E 3 o §
o i o ?
S 0 S
N g b N
7] - 1]
£ 0 £
= g E g
o | 0)
o | . Z o
2 13 2
3 4 3
T T T T 1T 17 11 r T 1T T 1T 1T T1T1
0.5 2.0 10.0 100.0 0.5 2.0 10.0 100.0
concentrations concentrations

These PM and MM intensities were obtained using the probeset method on an
AffyBatch (not included or shown) representing a large spike-in experiment.

13

1 Using sequence information

Sequence information can be used to improve on pre-processing. Two examples are the
use of GC content to adjust for non-specific hybridization and the use of probe location
to take into account RNA degradation. We demonstrate this with some examples

1.1 GC content

To explore issues of GC content we need to load a special library that contains infor-
mation on the GC content of the probes. For any chip the R package makeMatchAffy
can be used, together with the appropriate metadata package to construct the necessary
package. The package named mAffyu95A was built using the HGU95Av2 chip. This
package contains the probe sequences (for most probes) and their location on the RNA
transcript represented by their probeset. We start by loading this information

> if (.Platform$0S.type == "unix") {
+ library (mAffyu954)

+ data(affyprobeids)

+ data(affylocs)

+ }

Now we are ready to put together each probe with their sequence and their GC-
content.

> if (.Platform$0S.type == "unix") {

+ Index <- affylocs[, 1] + affylocs[, 2] * ncol(Dilution) +
+ 1

+ probenames <- probeNames(Dilution)

+ myindex <- unlist(pmindex(Dilution))

+ probenames <- probenames[match(Index, myindex)]

+ seq <- getprobes(seq(along = Index))

+ tmp <- sapply(seq, cgcontent)

+ tmp <- matrix(unlist(tmp), nrow = 4)

+ atc <- tmp[1,] + tmp[2,]
+ gcc <- tmp[3,] + tmp[4,]
+ }

To see that the GC has an effect on hybridization notice how as GC content grows so
does the measured intensity. So probes with higher GC content have higher intensities.
This appears to be independent of the amount of transcript available.

> if (.Platform$0S.type == "unix") {
+ y <- intensity(Dilution) [Index, 1]

14

+ boxplot (split(y, gcc), xlab = "GC content", ylab = "Iintensity",
+ 1og = uyn, las = 1’ range = O, col = ”grey”)
+ }

Now does this matter at the expression level? To see that the average GC across
probes within probeset can be variable notice the distribution shown in the next figure.
The average GC content in probesets is quite variable.

One still might ask whether this matters. If all we are doing is comparing samples
for specific genes then it shouldn’t matter too much, but there may be some cases where
it does. For example if a probeset has a GC rich probe to which some mRNA other than
the target hybridizes then we may perceive differences in the target genes expression,
between the samples (if the samples differ in abundance of the other mRNA). We are
still unsure as to how large that effect might be. These tools will help you to explore
the data more extensively if desired.

> if (.Platform$0S.type == "unix") {

+ avggcc <- tapply(gcc, probenames, mean)

+ barplot (table(round(avggcc)), xlab = "Average GC content in probeset",
+ las = 1)

+ F

Subtracting the M M does a relatively good job at removing this effect. In the next
figure the boxplots are centered around zero.

> if (.Platform$0S.type == "unix") {

+ pmi <- unlist(pmindex(Dilution))

mmi <- unlist(mmindex(Dilution))

pmIndex <- match(pmi, Index)

y <- intensity(Dilution) [pmi, 1] - intensity(Dilution) [mmi,
1]

x <- gcc[pmIndex]

boxplot (split(y, x), xlab = "GC content", ylab = "PM-MM",
las = 1, range = 0, col = "grey", ylim = c(-300, 500))

+ + + + + + + 4+

}

If instead of using RMA we use MASS 5.0 (at least our interpretation of it) the effect
due to GC content is much smaller. The reason for this is that MASS 5.0 does subtract
the MM values and hence removes the GC content effect.

> if (.Platform$0S.type == "unix") {

+ mas5Dil <- mas5(Dilution, normalize = FALSE)

+ boxplot (split (exprs(mas5Dil) [names (avggcc), 1], round(avggcc)),

+ log = "y", range = 0, las = 1, yaxt = "n", xlab = "Average GC content in pr
+ ylab = "MAS 5.0 expression", col = '"grey")

+ axis(2, c(0.1, 10, 1000), c("0.01", "10", "1000"), las = 1)

+

15

background correction: mas
PM/MM correction : mas
expression values: mas
background correcting...done.
12625 ids to be processed

However, as pointed out by Irizarry et al. (2003) subtracting M M results in expres-
sion measures that are very noisy at low expression values. RMA is not as noisy, but
the next plot shows it does not do as well in removing the dependence on GC content.

> if (.Platform$0S.type == "unix") {
+ RMA <- rma(Dilution)
+ }

Background correcting
Normalizing
Calculating Expression

We could write a new version of RMA that does the background adjustment within
GC content strata (and indeed that work is under way).

1.2 Probe Location

The package also includes methods useful for assessing RNA quality. Individual probes
in a probe set are ordered by location relative to the 5" end of the targeted RNA molecule.
Since RNA degradation typically starts from the 5" end of the molecule, we would expect
probe intensities to be systematically lowered at that end of a probe set when compared
to the 3’ end. Affymetrix software includes some 5" and 3’ probe sets that are used
to assess this. The affy package includes some simple methods that complement the
Affymetrix assessment.

When using the probe location functions described above the PM and MM are,
in general, returned in location order. This makes it easy to perform the following
assessment: On each chip, probe intensities are averaged by location in probe set, with
the average taken over probe sets. The package provides a method that produces side-
by-side plots of these means, making it easy to notice any 5 to 3’ trend. The function
AffyRNAdeg does all the computation. The object returned can be summarized and
plotted using summaryAffyRNAdeg and plotAffyRNAdeg respectively.

The summary shows standardized slope estimates of the regression of intensity versus
probe number (not location per se). The plots shows the average across all probes versus
probe number. This plot can be used to compare arrays. An array with degradation
should stand out becuase it has a bigger slope. In this example we dont see any evidence
of this.

16

> if (.Platform$0S.type == "unix") {

+
+
+
+

}

rnadeg <- AffyRNAdeg(Dilution)
summaryAffyRNAdeg (rnadeg)
plotAffyRNAdeg (rnadeg)

X20A X20B X10A X10B
slope -0.0239 0.0363 0.0273 0.0849
pvalue 0.892 0.84 0.875 0.616

If one wants to delve deaper one can use the MatchAffy package, which returns the
exact location (as opposed to order location). The following code gives an example of
how one can obtain a similar plot to the above:

The next plot uses the actual location instead of probe number, however, we re-scale
because otherwise one does not see much (there is too much noise).

> if (.Platform$0S.type == "unix") {

+ scale01 <- function(x) {

+ r <- range(x)

+ x - rl[1]/(r[2] - r[1])

+ }

+ locs <- tapply(as.double(affylocs[, 3]), probenames, scale01)

+ locs <- unlist(locs)

+ plot(locs, locs, type = "n", xlab = "5’ <--—-- > 3’\nRelative position",
+ ylab = "Relative log intesity", yaxt = "n", xaxt = "n",

+ ylim = ¢(-0.02, 0.35))

+ legend (0.1, 0.3, c("normal RNA", "degraded RNA"), col = c("blue",

+ "red"), 1ty = c(2, 1))

+ i<-1

+ o <- sample(length(gcc), 5000)

+ pms <- log2(intensity(Dilution) [Index, i])

+ res <- tapply(pms, probenames, function(x) x - median(x))

+ tmp <- loess(unlist(res) ~ gcc, subset = o, span = 4/5, degree = 1)
+ oo <- seq(1, length(tmp$x), len = 100)

+ lines(sort (tmp$x) [oo], tmp$fitted[order (tmp$x)][oo], col = "red")

+ F

17

