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Notation
Microarray data. The set of observed data arrives in two
parts:

a n × p matrix X = (xij), where, typically, each row

corresponds to a gene (1 × p) expression profile for
an individual or subject (i) corresponding to the ith

row of X, so the microarray corresponds to XT. We
will suppose that the data have already been
preprocessed and normalized.

an n-dimensional vector Y of group labels, taking
values in {0, . . . , G − 1}.

We will assume that the rows of X are standardized to

have mean zero and variance one for each column (gene).
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Two type of problems

Class discovery and class prediction.
We will focus here on the class prediction problem:
observations are known to belong to a prespecified class
and the task is to build predictors for assigning new
observations to these classes.

Standard methods include linear discriminant analysis,
diagonal linear discriminant classifiers, classification
trees, nearest neighbor (NN), SVM and aggregating
classifiers.

Comprehensive account in Dudoit, Fridlyant and Speed
(2002).
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A regression model based on SVD

Formulate the effects of gene expression on class type
using the multinomial logistic regression model:

log
P(Yi = r)

P(Yi = 0)
= Xi·βr0, r = 1, . . . , G − 1,

where βr0 is a p-dimensional vector of unknown
regression coefficients.

Since p >> n it is not possible to estimate the parameters
of the above model using standard statistical methods. A
principal component study becomes then a suitable first
step to reduce the dimension of βr0.
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Principal Component Regression

We first perform a singular value decomposition of the

p × n matrix XT:

XT = UDV,

where

U is a p × n matrix whose columns are orthonormal.

D is the diagonal matrix containing the ordered
singular values di of X. We will assume that di > 0
for i = 1, . . . , n.

V is the n × n singular value decomposition factor
matrix and has both orthonormal rows and
columns.
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PCR

Aim: project the high-dimensional multivariate data into
a lower dimensional subspace.

By SVD we now have

log
P(Yi = r)

P(Yi = 0)
= Wi·γr0,

where Wi· is the ith row of W = DV and γr0 = UTβr0 is
now an n-dimensional vector of regression coefficients.

We have therefore reduced the dimension of space for
the predictor variables from p to n, thus making the
problem computationally tractable, fitting the model by
maximum likelihood methods.
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The number of potential predictor genes is only a
fraction of the set of genes that have real biological
activity.

Suggestion: reduce the initial number p of genes by
ANOVA like based prefiltering techniques for improving
predictive performance (see e.g. Golub et al. (1999),
Dutoit et al. (2002), Nguyen and Rocke (2002)).

Idea: fit an ANOVA model for gene expression versus
class for each gene. For each ANOVA model, compute
an overall F-statistic and take the m genes with the
largest F-statistic as the potential predictors in the model.
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Choosing the components

A major issue is determining how many components to
retain. One way of performing this is leave-one-out cross
validation.

One sample is removed from the data set at a time. For a
fixed number of components, say k, the regression model
is fit to the remaining data. Based on the estimated
model, the fit is used to predict the withheld sample. An
error measure is then computed and the procedure is
repeated to get an estimate of the prediction classification
error. This is done for each value of k and the value of k
that yields the smallest classification error is then chosen.
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Caution

Performance of the classification rules for a selected
subset of genes is measured by their errors on the test set
and also by their leave-one-out cross validated errors.

If these errors are calculated within the gene preliminary
selection process, there is a selection bias in them when
they are used as an estimate of the prediction error.
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Partial Least Squares

SVD produces orthogonal class descriptors that reduce
the high dimensional data (supergenes).

This is achieved without regards to the response
variation and may be inefficient. This way of reducing
the regressor dimensionality is totally independent of the
output variable.

One must not treat the predictors separately from the
response. This is the spirit of the methods developed by
Nguyen and Rocke (2002) and Gosh (2002), where the
PLS components are chosen so that the sample
covariance between the response and a linear
combination of the p predictors (genes) is maximum.
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Partial Least squares

Popular regression method in chemometrics. It
attempts to simultaneously find linear combinations
of the predictors whose correlation is maximized
with the response and which are uncorrelated over
the training sample.
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Partial Least squares

Popular regression method in chemometrics. It
attempts to simultaneously find linear combinations
of the predictors whose correlation is maximized
with the response and which are uncorrelated over
the training sample.

Several algorithms for numerical fitting partial least
squares models.

However, PLS is really designed to handle
continuous responses and especially for models that
do not really suffer from conditional
heteroscedasticity as it is the case for binary or
multinomial data.
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Sample PLS

Given X and Y ∈ R
n, an important feature of PLS is that

the following two decompositions are carried out
together:

E0 = X =
K

∑
j=1

tjp
T
j + EK

and

f0 = y? =
K

∑
j=1

qjtj + fK,

where the tj are n-vector latent variables (scores), pj are

the p-vector loadings, and EK is a residual matrix. The qj

are scalar coefficients and fK is an n vector of residuals.
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Sample PLS

Denoting by T the n × K matrix of scores and by P the

K × p matrix of loadings whose rows are the pT
j , one has:

X = TP + EK.

One may see that the above decomposition is not

unique since for any invertible K × K matrix C we have

(TC)(C−1P). The uniqueness of the tj’s and pj’s comes

from imposing conditions of orthogonality, i.e. PPT = DP

and TTT = DT.
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Pseudo code

1. Set E0 = X and f0 = y. Compute
p1 = argmax{p, ‖p‖ = 1, |〈E0p, y〉|} (answer

p1 = ET
0 y/‖ET

0 y‖).

2. t1 = E0p1/‖E0p1‖

3. X = t1(XTt1)
T + E1

4. y = t1(yTt1)
T + f1

5. repeat the above until K. One may show that
K ≤ rank(X).
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Denote

wk = XTfk−1/‖XTfk−1‖

and let WK the p × K matrix whose columns are the wk’s.
The fitted PLS regression is then given by

Ŷ = XWK(WT
KXTXWK)−1WT

KXTY

and
β̂PLS = WK(WT

KXTXWK)−1WT
KXTY

In contrast to PCR, PLS procedures are nonlinear. Again

many ways in choosing K.
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Another look
PLS Algorithm (Initialize E0 = X and f0 = y)

1. Iterate until ∆ŷ is small

(a) For k = 1 to K

i. ŵk < −ET
k−1fk−1/‖ET

k−1fk−1‖n

ii. tk < −Ek−1ŵk

iii. q̂k < − coefficient lsfit (fk−1 on tk with no
intercept)

iv. fk < −fk−1 − tkq̂k

v. pk < − coefficient lsfit (Ek−1 on tk with no
intercept)

vi. Ek < − residual lsfit (Ek−1 on tk with no
intercept)

(b) end For
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(c) ŷ < − mean(f0) + ∑
K
k=1 q̂ktk

3. Choose s ≤ K

4. lm(y ˜ t1 · · · ts)

However, PLS is really designed to handle continuous re-

sponses and especially for models that do not really suffer

from conditional heteroscedasticity as it is the case for bi-

nary or multinomial data.
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GLM

The purpose here is to shortly introduce some relevant
facts on generalized linear models. For a more thorough
description of such models please refer to McCullagh
and Nelder (1989) or Fahrmeir and Tutz (1994).
Consider a pair (X, Y) of random variables, where Y is
real-valued and X is possibly real vector-valued; here Y
is referred to as a response or dependent variable and X
as the vector of covariates or predictor variables.
Generalized models (GM for short) are particular
regression models which describe the dependence of the
response variable of interest Y on one or more predictor
variables X.
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A basic generalized model analysis starts with a random
sample of size n from the distribution of (X, Y) where the
conditional distribution of Y given that X = x is assumed
to be from a one-parameter exponential family
distribution with a density of the form

exp

(

yθ(x)− b(θ(x))

φ
+ c(y, φ)

)

The natural parameter function θ(x) specifies how the re-

sponse depends on the covariates.
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The conditional mean and variance of the ith response Yi

are given by

E(Yi/X = xi) = ḃ(θ(xi)) = µ(xi)

and
Var(Yi/X = xi) = φb̈(θ(xi))

Here a dot denotes differentiation.
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In the usual GM framework, the mean is related to the
GM regression surface via the link function
transformation g(µ(xi)) = η(xi) where η(x) is referred as
the predictor function.

A wide variety of distributions can be modelled using this

approach including normal regression with additive nor-

mal errors (identity link), logistic regression (logit link)

where the response is a binomial variable and Poisson

regression models (log link) where the observations are

from a Poisson distribution.
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MLE algorithm

Consider the case
η = Xβ

with a monotone and continuously differentiable link
function g such that ηi = g(µi) (the canonical link if
g(µi) = θi).

One may show that the ML estimators of the parameters

may be obtained by an iterative reweighted least squares

procedure, as follows:
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Let η̂0 the current estimate of the linear predictor, with a
corresponding value of the mean µ̂0 by means of the link
g. One forms the adjusted response

z0 = η̂0 + (y − µ̂0)

(

dη

dµ

)

0

,

the derivative of the link being computed at µ̂0. The

weight matrix W is evaluated at µ̂0. One then regresses

by LS the vector z0 on X with weights W to get β̂1 and the

procedure is repeated until convergence.
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PLS for GLMs
A close look at the PLS algorithm shows that the
adjusted dependent vector residuals, fk−1 (in step k − 1),
are regressed on the explanatory variable residuals, Ek−1.
Next, the adjusted dependent vector residuals (in step
k − 1) are regressed on the current latent variable. The
result of this fitted value is then subtracted from the
residuals to form the next sequence of adjusted
dependent vector residuals.

Borrowing the equivalence between MLE and IRLS,
Marx (1996) treats the iterated adjusted dependent vector
as the current dependent variable, in a weighted metric
which allows him to express an IRPLS algorithm as the
analog of the familiar PLS algorithm.
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Pseudocode

Initialize E0 = X, f0 = ψ(y), V̂ = g′(ψ(y))}2/(Var(Y)

1. Iterate until ∆η̂ is small

(a) For k = 1 to K

i. ŵk = ET
k−1V̂fk−1/‖ET

k−1V̂fk−1‖n

ii. tk = Ek−1ŵk

iii. q̂k = coefficient lsfit (fk−1 on tk with no

intercept and weight V̂)

iv. fk = fk−1 − tkq̂k

v. pk = coefficient lsfit (Ek−1 on tk with no

intercept and weight V̂)

vi. Ek = residual lsfit (Ek−1 on tk with no

intercept and weight V̂)
Dimension reduction techniquesfor classification – p.26/53



(b) end For

(c) η̂ < − wt.mean(f0, wt = V̂) + ∑
K
k=1 q̂ktk

(d) V̂ = {g′(η̂)}2/var(Y)

(e) f0 = η̂ + diag{1/g′(η̂i)}(y − g(η̂))

(f) Compute the adjusted residuals E0

3. Choose s ≤ K

4. glm(y ˜ t1 · · · ts)
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An example

The data consist of 22 cDNA microarrays, each represent-

ing 5361 genes based on biopsy specimens of primary

breast tumours of 7 patients with germ-line mutations of

BRCA1, 8 patients with germline mutations of BRCA2,

and 7 with sporadic cases. These data were first presented

and analysed by Hedenfalk et al. (2001). Information

on the data can be found in http://www.nejm.org and

http://www.nhgri.nih.gov/DIR/Microarray. The analy-

sis focuses on identifying groups of genes that can be used

to predict class membership to the two BRCA mutationDimension reduction techniquesfor classification – p.28/53



SVD Logistic regression
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Applying SVD based logistic regression to the BRCA data.
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PLS regression
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GPLS regression
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Sliced inverse regression (SIR)
A convenient data reduction formulation, that accounts
for the correlation among genes, is to assume there exists
a p × k, k ≤ p, matrix η so that

F(Y|X) = F(Y|ηTX)

where F(·|·) is the conditional distribution function of
the response Y given the second argument.

The above statement that the p × 1 predictor vector X can

be replaced by the k × 1 predictor vector ηTX without
loss of information.
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Most importantly, if k < p, then sufficient reduction in
the dimension of the regression is achieved. The linear
subspace S(η) spanned by the columns of η is a
dimension-reduction subspace (Li, 1991) and its
dimension denotes the number of linear combinations of
the components of X needed to model Y .

Let SY|X denote the unique smallest dimension reduction

subspace, referred to as the central subspace (Cook,
1996). The dimension d = dim(SY|X) is called the

structural dimension of the regression of Y on X, and can
take on any value in the {0, 1, . . . , p}set.
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Estimation of the central subspace

The estimation of the central subspace is based on
finding a kernel matrix M so that S(M) ⊂ SY|X.

SIR and variations (Li, 1991) M = Cov(E(X|Y)),
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The estimation of the central subspace is based on
finding a kernel matrix M so that S(M) ⊂ SY|X.

SIR and variations (Li, 1991) M = Cov(E(X|Y)),

polynomial inverse regression (Bura and Cook,
2001) M = E(X|Y).

pHd (Li, 1991) M = E((Y − E(Y))XXT),

SAVE (Cook and Weisberg, 1991)

M = E(Cov(X) − Cov(X|Y))2, and
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Estimation of the central subspace

The estimation of the central subspace is based on
finding a kernel matrix M so that S(M) ⊂ SY|X.

SIR and variations (Li, 1991) M = Cov(E(X|Y)),

polynomial inverse regression (Bura and Cook,
2001) M = E(X|Y).

pHd (Li, 1991) M = E((Y − E(Y))XXT),

SAVE (Cook and Weisberg, 1991)

M = E(Cov(X) − Cov(X|Y))2, and

SIRII (Li, 1991) with

M = E(Cov(X|Y)− E(Cov(X|Y)))2
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The two conditions for all kernel matrices M to span
subspaces of the central dimension reduction subspace

are that E(X|γTX) be linear, and that Var(X|γTX) be
constant. The conditions are empirically checked by
considering the scatterplot matrix of the predictors.

Linearity of E(X|γTX) can be ascertained if the
scatterplots look roughly linear or random,

homogeneity of the variance holds if there are no
pronounced fluctuations in data density in the
scatterplots.
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Without loss of generality we use standardised

predictors Z = Σ−1/2
X (X − E(X)). Let µj = E(Z|Y = j)

and Σj = Var(Z|Y = j), j = 0, 1, denote the conditional

means and variances, respectively, for the binary
response Y , and let

ν = µ1 − µ0, ∆ = Σ1 − Σ0

The main results by Cook and Lee (1999) state that

SSAVE = S(ν, ∆) ⊂ SY|Z and also showed that SSIR =

S(ν) ⊂ SY|Z.
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Implementation

In implementing the method, ν and ∆ are replaced by the
corresponding sample moments,

ν̂ = Σ̂−1/2
x (x̄1 − x̄0)

and

∆̂ = Σ̂−1/2
x (Σ̂x|1 − Σ̂x|0)Σ̂−1/2

x

to yield ŜSAVE = S(ν̂, ∆̂), a k × (k + 1) matrix, and ŜSIR =

S(ν̂), a k × 1 vector. The latter has obviously dimension

of at most 1.
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Estimating d
The test statistic for dimension is given by

Λd = n ∑
k
`=d+1 λ̂2

`
, where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂k are the

singular values of the estimated kernel matrix

M̂SAVE = (ν̂, ∆̂), or M̂SIR = ν̂ , depending on the method

used.

In both cases, the estimation is carried out by performing a

series of tests for testing H0 : d = m against Ha : d > m,

starting at m = 0, which corresponds to independence of Y

and Z.

The test statistic for SAVE has an asymptotic weighted

chisquared distribution. The SIR test statistic for

dimension has an asymptotic chi-squared distribution (Li,

1991).
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Remarks

SIR and SAVE can be applied to problems with
multinomial or multi-valued responses.
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Remarks

SIR and SAVE can be applied to problems with
multinomial or multi-valued responses.

When X are normally distributed, SIR is equivalent
to Linear Discriminant Analysis in the sense that
they both estimate the same discriminant linear
combinations of the predictors.

In binary regression both LDA and SIR estimate at
most one direction in the central dimension
reduction subspace.

When X is a normal vector, SAVE is equivalent to
Quadratic Discriminant Analysis.
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SIR example

Dir1


Dir2


Applying SIR to the BRCA data.
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MAVE

A regression-type model for dimension reduction can be
written as

Y = g(ηTX) + ε

where g is an unknown smooth link function, η =

(β1, . . . , βD) is is a p × k orthogonal matrix (ηT η = Ik)

with k < p and E(ε|X) = 0 almost surely. The last condi-

tion allows ε to be dependent on X and covers, in partic-

ular, the binary regression case.
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The MAVE algorithm of Xia et al. (2002) is devoted to the

estimation of the matrix η in E(Y|X) = g(ηTX) with g an
unknown smooth function.
The estimated η is a solution to

min
B

E{Y − E(Y|BTX)}2 = E(σ2
B(BTX)),

subject to BTB = I. To minimize the above expression
one has first to estimate the conditional variance
σ2

B(BTX) = E[{Y − E(Y|BTX)}2|BTX]. Let

gB(v) = E(Y|BTX = v).
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Given a sample {Xi, Yi} a local linear fit is applied to
estimate gB(·) and the EDR directions are estimated by
solving the minimization problem

min
B,aj,bj

(

n

∑
j=1

n

∑
i=1

(Yi − [aj + bT
j BT(Xi − Xj)])

2wij

)

,

where wij = Kh{BT(Xi − Xj)}/ ∑
n
`=1 Kh{BT(X` − Xj)} are

multidimensional kernel weights.
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We start with the identity matrix as an initial estimator of
B to be used in the kernel weights. Then iteratively, we
use the multidimensional kernel weights to obtain an

estimator B̂ by minimization and refine the kernel
weights with the updated value of B and iterate until
convergence.

The choices of the bandwidth h and the EDR dimension d

are implemented through a cross-validation technique.
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Results

We demonstrate the usefulness of the proposed
methodology described above on a well known data set:
the leukemia data first analyzed in Golub et al. (1999). It
consists of absolute measurements from Affymetrix
high-density oligonucleotide arrays and contains n = 72
tissue samples on p = 7, 129 genes (47 cases of acute
lymphoblastic leukemia (ALL) and 25 cases of acute
myeloid leukemia (AML)) .

Dimension reduction techniquesfor classification – p.45/53



We have used the MATLAB software environment for
preprocessing the data and to implement the
classification methodology. The suite of MATLAB
functions implementing the procedure is freely available
at the URL
http://www-lmc.imag.fr/SMS/Software/mi-
croarrays/.
We followed exactly the protocol in Dudoit et al. (2002)
to pre-process the data by thresholding, filtering, a base
10 logarithmic transformation and standardization, so
that the final data is summarized by a 3571 × 72 matrix
X = (xij), where xij denotes the base 10 logarithm of the

expression level for gene i in mRNA sample j.
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The data are already divided into a learning set of 38
mRNA samples and a test set of 34 mRNA samples. The
observations in the two sets came from different labs and
were collected at different times.
When training the rule and for the pre-selection of genes,
we first reduced the set of available genes to the top
p∗ = 50, 100 and 200 genes as ranked in terms of a
BSS/WSS criterion and used by Dudoit et al. (2002).
To compare our results we have also applied the two
discriminant analysis procedures DLDA et DQDA
described in Dudoit et al. (2002)
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Table 1: Classification rates by the four methods for the

leukemia data set with 38 training samples (27 ALL, 11

AML) and 34 test samples (20 ALL, 14 AML). Given are

the number of correct classification out of 38 and 34 for the

training and test samples respectively.

Training Data

(Leave-out-one CV)

p∗ MAVE-LD DLDA DQDA MAVE-NPLD

50 37 38 37 37

100 38 38 37 38

200 38 38 36 38
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Test Data

(Out-of-sample)

p∗ MAVE-LD DLDA DQDA MAVE-NPLD

50 33 33 33 33

100 33 33 33 33

200 32 33 32 32
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