
Penalized Logistic Regression and
Classification of Microarray Data

Milan, May 2003

Anestis Antoniadis

Laboratoire IMAG-LMC

University Joseph Fourier

Grenoble, France

Penalized Logistic Regression andClassification of Microarray Data – p.1/32

mailto: antonia@imag.fr


Outline

Logistic regression

Penalized Logistic Regression andClassification of Microarray Data – p.2/32



Outline

Logistic regression

Classical

Penalized Logistic Regression andClassification of Microarray Data – p.2/32



Outline

Logistic regression

Classical

Multicollinearity

Penalized Logistic Regression andClassification of Microarray Data – p.2/32



Outline

Logistic regression

Classical

Multicollinearity

Overfitting

Penalized Logistic Regression andClassification of Microarray Data – p.2/32



Outline

Logistic regression

Classical

Multicollinearity

Overfitting

Penalized Logistic Regression

Penalized Logistic Regression andClassification of Microarray Data – p.2/32



Outline

Logistic regression

Classical

Multicollinearity

Overfitting

Penalized Logistic Regression

Ridge

Penalized Logistic Regression andClassification of Microarray Data – p.2/32



Outline

Logistic regression

Classical

Multicollinearity

Overfitting

Penalized Logistic Regression

Ridge

Other penalization methods

Penalized Logistic Regression andClassification of Microarray Data – p.2/32



Outline

Logistic regression

Classical

Multicollinearity

Overfitting

Penalized Logistic Regression

Ridge

Other penalization methods

Classification

Penalized Logistic Regression andClassification of Microarray Data – p.2/32



Outline

Logistic regression

Classical

Multicollinearity

Overfitting

Penalized Logistic Regression

Ridge

Other penalization methods

Classification

An example of application

Penalized Logistic Regression andClassification of Microarray Data – p.2/32



Introduction

Logistic regression provides a good method for
classification by modeling the probability of
membership of a class with transforms of linear
combinations of explanatory variables.
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Introduction

Logistic regression provides a good method for
classification by modeling the probability of
membership of a class with transforms of linear
combinations of explanatory variables.

Classical logistic regression does not work for
microarrays because there are far more variables than
observations.

Particular problems are multicollinearity and
overfitting

A solution: use penalized logistic regression.
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Two-class classification

Situation: A number of biological samples have been
collected, preprocessed and hybridized to microarrays.
Each sample can be in one of two classes. Suppose that we
have n1 microarrays taken from one of the classes and n2

microarrays taken from the other (e.g., 1=ALL, 2=AML);
n1 + n2 = n.

Question: Find a statistical procedure that uses the
expression profiles measured on the arrays to compute the
probability that a sample belongs to one of the two classes
and use it to classify any new array that comes along.

Solution: Logistic regression?
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Logistic regression

Let Yj indicate the status of array j, j = 1, . . . , n and let xij,

i = 1, . . . , m be the normalized and scaled expressions of
the m genes on that array.

Imagine that one specific gene has been selected as a good
candidate for discrimination between the two classes (say
y = 0 and y = 1).

If X is the expression measured for this gene, let p(x) be the

probabilty that an array with measured expression X = x

represents a class of type Y = 1.
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A simple regression model would be

p(x) = α + βx

with α and β estimated with a standard linear regression
procedure.

Not a good idea!

p(x) may be estimated with negative values
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A simple regression model would be

p(x) = α + βx

with α and β estimated with a standard linear regression
procedure.

Not a good idea!

p(x) may be estimated with negative values

p(x) may be larger than 1
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Solution

Transform p(x) to η(x):

η(x) = log
p(x)

1 − p(x)
= α + βx.

The curve that computes p(x) from η(x),

p(x) =
1

1 + exp(−η(x))

is called the logistic curve.
This a special case of the generalized linear model. Fast and
stable algorithms to estimate the parameters exist (glm
package in R).
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Example from the ALL/AML data
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Simple Logistic Regression

The estimated curve gives the probability of y = 1 (AML) for a given value of x. error rate = 13.16 %
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It is straightforward to extend the model with more
variables (genes expressions), introducing explanatory
variables x1, x2, . . . , xp:

η(x1, x2, . . . , xp) = log
p(x)

1 − p(x)
= α +

p

∑
i=1

βixi

The maximum likelihood algorithm for glm’s can be
extended to this case very easily.

So why not use all expressions on an array to build a logistic

regression model for class prediction?
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Rule of thumb

A rule of thumb, for a moderate number of explanatory
variables (less than 15), is that the number of observations n
should at least be five times or more the number of
explanatory variables. Here n << m! So there are many
more unknowns than equations and infinitely many
solutions exist.

Another problem is a perfect fit to the data (no bias but
high variance). This is something to distrust because the
large variability in the estimates produces a prediction
formula for discrimination with almost no power!

Moreover the algorithm may be highly instable due to
multicollinearities in the x’s.

Is logistic regression doomed to failure?
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Penalized logistic regression

Consider first a classical multiple linear regression model

Y = µ + ε = Xβ + ε,

where Y, µ are n × 1 and X is a n × m matrix. The n
components of the mean µ of Y are modeled as linear
combinations of the m columns of X.
The regression coefficients are estimated by minimizing

S =
1

n

n

∑
i=1

(yi −
m

∑
j=1

xijβ j)
2,

leading to

β̂ = (X′X)−1X′Y

A large m may lead to serious overfitting.
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A remedy

The key idea in penalization methods is that overfitting is
avoided by imposing a penalty on large fluctuations on the
estimated parameters and thus on the fitted curve.
Denote

Sn(β) =
1

n

n

∑
i=1

(yi −
m

∑
j=1

xijβ j)
2 + λJ(β),

where J(β) is penalty that discourages high values of the
elements of β.

When J(β) = ‖β‖2
2 = ∑

m
j=1 β2

j the method is called quadratic

regularization or ridge regression, and leads, for λ > 0, to

the unique solution β̂λ = (X′X + λIm)−1X′Y.
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Penalizing logistic regression

ηi =
pi

1 − pi
= α +

m

∑
j=1

xijβ j

In the GLM jargon:

η is the linear predictor.
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Penalizing logistic regression

ηi =
pi

1 − pi
= α +

m

∑
j=1

xijβ j

In the GLM jargon:

η is the linear predictor.

the logistic function log(x/(1 − x)) is the canonical
link function for the binomial family.

`(y, β) = ∑
n
i=1 yi log pi + ∑

n
i=1(1 − yi) log(1 − pi) is the log-

likelihood and −` + λ
2 J(β) is the penalized negative log-

likelihood
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Denote by u the vector of ones in R
n. By differentiation of

the penalized -log-likelihood with respect to α and the β j’s

follows

u′(y − p) = 0

X′(y − p) = λβ

The equations are nonlinear because of the nonlinear
relation between p and α and β. A first order Taylor
expansion gives

pi ∼ p̃i +
∂pi

∂α
(α − α̃) +

m

∑
j=1

∂pi

∂β j
(β j − β̃ j)
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Now

∂pi

∂α
= pi(1 − pi)

∂pi

∂β j
= pi(1 − pi)xij

Using it and setting W = diag(pi(1 − pi)) we have

u′W̃uα + u′W̃Xβ = u′(y − p̃ − W̃η̃),

X′W̃uα + (X′W̃X + λI)β = X′(y − p̃ − W̃η̃)

Suitable starting values are α̃ = log(ȳ/(1 − ȳ)) and β̃ = 0.
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Choosing λ

The choice of λ is crucial! Need a procedure that estimates
the ”optimal” value of the smoothing or ridge parameter λ
from the data.
Cross-validation: set apart some of the data, fit a model to
the rest and see how well it predicts. Several schemes can
be conceived. One is to set apart, say, one third of the data.
More complicated is "leave-one-out" cross-validation: each
of the n observations is set apart in turn and the model is
fitted to the m − 1 remaining ones. This is rather expensive
as the amount of work is proportional to m(m − 1).

The performance of cross-validation one may use either the

fraction of misclassification or the strength of log-likelihood

prediction ∑i(yi log p̂−i + (1 − yi) log(1 − p̂−i)).
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AIC

Akaike’s Information Criterion (AIC). Choose λ that
balances rightly the complexity of the model and the
fidelity to the data. AIC is defined as

AIC = Dev(y|p̂) + 2effdim,

where Dev(·) is the deviance ( equal to −2`) and effdim is
the effective dimension of the model. Hastie and Tibshirani
estimate this by

effdim = trace(Z(Z′WZ + λR)−1WZ′)

where Z = [u|X] and R is the m + 1 × m + 1 identity matrix

with r11 = 0.
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Other choices of J

The behavior of the resulting estimate not only depends on
λ but also on the form of the penalty function J(β).
Another form that one could consider is

J(β) = ∑
k

γkψ(βk) where γk > 0.

Several penalty functions have been used in the literature.
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Penalties

Typical examples are:

The L1 penalty ψ(β) = |β| results in LASSO (first
proposed by Donoho and Johnstone (1994) in the
wavelet setting and extended by Tibshirani (1996) for
general least squares settings).
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Penalties

Typical examples are:

The L1 penalty ψ(β) = |β| results in LASSO (first
proposed by Donoho and Johnstone (1994) in the
wavelet setting and extended by Tibshirani (1996) for
general least squares settings).

More generally, the Lq (0 ≤ q ≤ 1) ψ(β) = |β|q leads to

bridge regression (see Frank and Friedman (1993)).

Such penalties have the feature that many of the components

of β are shrunk all the way to 0. In effect, these coefficients

are deleted. Therefore, such procedures perform a model se-

lection.
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Conditions on ψ

Usually, the penalty function ψ is chosen to be symmetric and

increasing on [0, +∞). Furthermore, ψ can be convex or

non-convex, smooth or non-smooth.

In the wavelet setting, Antoniadis and Fan (2001) provide

some insights into how to choose a penalty function. A good

penalty function should result in

unbiasedness,
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Conditions on ψ

Usually, the penalty function ψ is chosen to be symmetric and

increasing on [0, +∞). Furthermore, ψ can be convex or

non-convex, smooth or non-smooth.

In the wavelet setting, Antoniadis and Fan (2001) provide

some insights into how to choose a penalty function. A good

penalty function should result in

unbiasedness,

sparsity

stability.
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Examples

Penalty function Convexity Smoothness at 0 Authors

ψ(β) = |β| yes ψ′(0+) = 1 (Rudin 1992)

ψ(β) = |β|α , α ∈ (0, 1) no ψ′(0+) = ∞ (Saquib 1998)

ψ(β) = α|β|/(1 + α|β|) no ψ′(0+) = α (Geman 92, 95)

ψ(0) = 0, ψ(β) = 1, ∀β 6= 0 no discontinuous Leclerc 1989

ψ(β) = |β|α , α > 1 yes yes Bouman 1993

ψ(β) = αβ2/(1 + αβ2) no yes McClure 1987

ψ(β) = min{αβ2 , 1} no yes Geman 1984

ψ(β) =
√

α + β2 yes yes Vogel 1987

ψ(β) = log(cosh(αβ)) yes yes Green 1990

ψ(β) =







β2/2 if |β| ≤ α,

α|β| − α2/2 if |β| > α.
yes yes Huber 1990

Examples of penalty functions
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An example

As in Eilers et al. (2002):

The Golub data set preprocessed as in Dudoit et al.

(2002)
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An example

As in Eilers et al. (2002):

The Golub data set preprocessed as in Dudoit et al.

(2002)

Prefilter the expressions in X with a floor of 100 and a

ceiling of 1600.

Eliminate columns of X with max/min ≤ 5 and

max− min ≤ 500.

Take logarithms to base 10.

We are left with m = 3571 genes and 38 arrays, 25 of them consisting of ALL and 11 of AML.

To find λ AIC was used. The range of λ was considered on a logarithmic scale grid from 0 to

5. The optimal value was λ = 400 and effdim corresponding to 4.5.
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The choice of λ
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One can get an impression of the estimated coefficients by
doing a sequence plot of them.

In order to get the same weight for the coefficients one also
may display them by multiplying them by the standard
deviation of the corresponding column of X in order to
produce a scale invariant plot.
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Estimated coefficients
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Without any knowledge of the expressions, but knowing
that a fraction ȳ of the arrays is from AML cases, one would
classify an array as AML with probability ȳ.

Thus a very simple decision rule would be to compute p̂
and see if it is lower of higher than ȳ.

The real test is the classification of new data, that were not
used for the estimation of the model. The test set consist of
20 cases of ALL and 14 of AML. This rule would put three
arrays in the wrong class.
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Classification
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Same example with prefiltering

This time we have used Dudoit et al. (2002) procedures.

We pre-filter and select the 280 most discriminant genes (on
the learning set).

To perform the computations we have used the lrm.fit
function in the Design package.

Penalized Logistic Regression andClassification of Microarray Data – p.28/32



Estimated coefficients (280)
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Classification (LS)
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Classification (TS)
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