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number of (biological) replicates

variables (genes) are highly (?) correlated and data
does not follow normal distribution (many outliers,
heavy tails)

selecting a subset

select a statistic for “differential expression” and a cut
off / quality measure for subset selection

Multiple Hypothesis Testing

Empirical Bayes Thresholding, Bonferroni, FDR and
adjusted p-values

Enhancing FDR by wavelets
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DNA Microarrays

Exciting new technology for measuring gene
expression of thousands of genes simultaneously in a
single sample of cells.
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DNA Microarrays

Exciting new technology for measuring gene
expression of thousands of genes simultaneously in a
single sample of cells.

A multivariate quantitative way of measuring gene
expression.

The data can be organized into an m × n matrix Y,
where m is the number of genes and n is the number of
microarrays. The (i, j) entry of Y, say yij , is the

expression level for the ith gene on the jth microarray.

Several technologies – cDNA array, oligonucleotide
array, . . .
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Notation

Basic measurement: one each array, for each spot, we have:
y the log-ratio of the intensities of the (background
corrected and normalized) red and green channels.

Number of measurements:

i = 1, . . . , m genes

` = 1, . . . , E experiments (conditions)

k = 1, . . . , K slides per experiment (so n = KE)

Data: yi,(k,`) is log-ratio of intensities for gene i on slide k of

the experiment `.
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Microarray Data

n arrays, m genes

array 1 array 2 array 3 · · · array n

gene 1 1.23 -2.61 -3.87 · · · 5.26

gene 2 3.89 -0.76 1.73 · · · -2.43

· · · · · · · · · · · · · · · · · ·

gene m 0.846 3.78 1.37 · · · -2.94
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Question

Statistical inference: Suppose that we have n1 microarrays
taken from untreated cells and n2 microarrays taken from
treated cells (e.g., untreated=normal, treated=cancer);
n1 + n2 = n. Which genes show a statistically significant
difference in gene expression between these two types of
cells? Answering this question helps to narrow down the
search for genes involved in differentiating these cell types.

Notation:
θi indicates for every gene the change in expression
between the two conditions.

Question: What are the values of θi? Which of them are dif-

ferent from 0?
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Empirical Bayes thresholding models

The object of interest is a sequence of parameters θi on each
of which we have a single observation Yi subject to noise, so
that Yi = θi + εi where the εi’s are N(0, σ) random variables.

Without some knowledge of the θi we are not going to be
able to estimate them very efficiently. The method
implemented in the package EbayesThresh developed by
Johnstone and Silverman (2002) takes advantage of possible
sparsity in the sequence.

A natural approach to this problem is thresholding: if the
absolute value of a particular Yi exceeds some threshold t
then it is taken to correspond to a nonzero θi which is then
estimated, most simply by Yi itself. If |Yi| < t then the
coefficient θi is estimated to be zero.
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A Bayesian approach

Original motivation: function estimation via wavelets.

Within a Bayesian context:

sparsity ⇐⇒ suitable prior distribution for the θi’s.

Model: The θi’s have independent prior distributions each
given by the mixture

fprior(θ) = (1 − w)δ0(θ) + wγ(θ).

The nonzero part of the prior, γ, is assumed to be a fixed

unimodal symmetric density. Particular possibilities for the

function are the Laplace or the quasi–Cauchy distribution, for

which the procedures are entirely feasible computationally.
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Thresholding idea

θ with the previous prior and Y ∼ N(θ, σ). Find the

posterior distribution of θ conditional on Y = y. Let θ̂(y, w)
be the median of this posterior distribution:

for any fixed w, the estimation rule θ̂(y, w) will be a
monotonic function of y with the thresholding property, i.e.
there exists t(w) > 0 such that

θ̂(y, w) = 0 if and only if |y| ≤ t(w).

Once w has been specified, there are other possible estima-

tion rules, for example the posterior mean θ̃(y, w) of θ given

Y = y, or hard or soft thresholding with threshold t(w).
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Choice of w

Very important to make a good choice of mixing weight w,
or equivalently of threshold t(w).
JS approach is an Empirical Bayes: use the data once to
obtain the estimate ŵ by marginal maximum likelihood.
The same approach is used to estimate other parameters of
the prior.

When the variance of the data is not known, then the pack-

age allows for its estimation from the median absolute de-

viation from zero. Provided the sequence θi is reasonably

sparse, the median of the absolute deviations will not be af-

fected by those observations that have nonzero means θi.
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Multiple hypothesis testing

We conduct a statistical test for each gene g = 1, . . . , m
(t-test, Wilcoxon test, permutation test, . . . ).
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Multiple hypothesis testing

We conduct a statistical test for each gene g = 1, . . . , m
(t-test, Wilcoxon test, permutation test, . . . ).

This yields test statistics Tg, the rejection regions and

p-values pg.

pg is the probability under the null hypothesis that the

test statistic is at least as extreme as Tg. Under the null

hypothesis,

P(pg < α) = α.

Some statistical methods forthe identification of differentiallyexpressed genes – p.11/27



Statistical tests: Examples

t-test: assumes homoscedastic normally distributed
data in each class
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Statistical tests: Examples

t-test: assumes homoscedastic normally distributed
data in each class

Wilcoxon test: nonparametric, rank–based

permutation test: estimate the distribution of the test
statistic (e.g., the t-statistic) under the null hypothesis
by permutations of the sample labels:
The p–value pg is given as the fraction of permutations

yielding a test statistic that is at least as extreme as the
observed one.
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Example

Golubdata, 27 ALLvs. 11 AMLsamples, 3,051 genes.
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t-test: 1045 genes withp < 0.05.

Golub data
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Multiple testing: the problem

Problem: thousands of hypotheses are simultaneously

tested.

Increased chance of false positives. E. g. suppose you

have 10,000 genes on a chip and not a single one is

differentially expressed. You would expect

10000 × .01 = 100 of them to have a p–value < 0.01.
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Multiple testing: the problem

Problem: thousands of hypotheses are simultaneously

tested.

Increased chance of false positives. E. g. suppose you

have 10,000 genes on a chip and not a single one is

differentially expressed. You would expect

10000 × .01 = 100 of them to have a p–value < 0.01.

Individual p–values of e.g. 0.01 no longer correspond to

significant findings.

Need to adjust for multiple testing when assessing the statis-

tical significance of findings.
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Multiple hypothesis testing

Outcomes when testing m hypotheses:

Accept Reject Total

Null True U V m0

Alternative True T S m1

W R m
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Error measures

FamilyWise Error Rate (FWER). The FWER is defined
as the probability of at least one Type I error (false
positive): FWER = P(V > 0).
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Error measures

FamilyWise Error Rate (FWER). The FWER is defined
as the probability of at least one Type I error (false
positive): FWER = P(V > 0).

False discovery rate (FDR). The FDR (Benjamini &
Hochberg 1995) is the expected proportion of Type I
errors among the rejected hypotheses, including cases
where no hypotheses are significant:

FDR = E{V
R |R > 0}P(R > 0).

Positive false discovery rate (pFDR). The pFDR (Storey
2001) is the expected proportion of Type I errors
among the true rejected hypotheses, considering only
cases where at least one significant hypothesis is

found: pFDR = E{V
R |R > 0}.
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Interpretation

The FDR includes cases where no hypotheses are
significant – the ”proportion” is set to zero.
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Interpretation

The FDR includes cases where no hypotheses are
significant – the ”proportion” is set to zero.

The pFDR only considers cases where at least one
significant hypothesis is found.

If a procedure is applied to call hypotheses significant,
then a pFDR of 5%, for example, says that on average
the proportion of false positives among significant
hypotheses is 5%.

Loosely . . . if we find 100 significant genes under some
method with a pFDR of 5%, then we expect about 5
false positive genes.
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Controlling a type I error rate

Aim: For a given type I error rate α, use a procedure to
select a set of ”significant” genes that guarantees a
type I error rate α.
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Controlling a type I error rate

Aim: For a given type I error rate α, use a procedure to
select a set of ”significant” genes that guarantees a
type I error rate α.

The type I error is defined with respect to a given
configuration of true and false null hypotheses.

Weak control of type I error: only under the
assumption that all null hypotheses are true (complete
null hypothesis, H0).

Strong control of type I error: for all possible
configurations of true and false null hypotheses.

Some statistical methods forthe identification of differentiallyexpressed genes – p.18/27



FWER Procedures

Without loss of generality, we can assume the tests are

performed with p–values p1, . . . , pm and rejection regions of

the form [0, t] for 0 < t ≤ 1.

The Bonferroni correction: controls FWER; very

conservative.
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FWER Procedures

Without loss of generality, we can assume the tests are

performed with p–values p1, . . . , pm and rejection regions of

the form [0, t] for 0 < t ≤ 1.

The Bonferroni correction: controls FWER; very

conservative.

Westfall/Young procedures (Hochberg - Holm):

Improves Bonferroni by resampling.

Westfall/Young step–down multiple testing procedures

via permutations of adjusted p–values ( Dudoit et al.

2000).

All methods are implemented in the Bioconductor package multtest , with fast algorithms.
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Bonferroni correction

Use p̂i ≤ α where p̂i = min(mpi, 1)

FWER = P(V > 0) = P(at least one p̂i ≤ α|H0)

= P(at least one pi ≤ α/m|H0)

≤
m

∑
i=1

P(pi ≤ α/m|H0)

= m · α/m = α.

H0 denotes the complete null hypothesis that no gene is dif-

ferentially expressed.

Some statistical methods forthe identification of differentiallyexpressed genes – p.20/27



Bonferroni

Golub data, 27 ALL vs 11 AML samples, 3,051 genes
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98 genes with Bonferroni p̂i < 0.05 ↔ pi < 0.000016 (t-test)
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FWER: Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.
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Comparisons of FWER on 100 p–values

FWER conservative (lack of power) : many interesting genes
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Controlling the FDR

Suppose that we know FDR(t) for each rejection region [0, t].

How can we use these?

Pick a rejection region[0, t] a priori and note FDR(t).
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Controlling the FDR

Suppose that we know FDR(t) for each rejection region [0, t].

How can we use these?

Pick a rejection region[0, t] a priori and note FDR(t).

A priori pick a level α at which to control the FDR. Take

tα = max{t : FDR(t) ≤ α}. Reject all pi ≤ tα. This

controls FDR exactly at α.

Observe all rejection regions simultaneously, i.e. plot

FDR(t) versus t.

Or better, calculate the simultaneous controlling curves:

αFDR(t) = infs>t FDR(s), which gives the minimum

error rate attained when rejecting all p–values in [0, t].
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Estimation of the FDR (SAM)

Idea: Depending on the chosen cutoff-value for the p-value
pi of the test statistic Ti, estimate the expected proportion of
false positives in the resulting gene list. For a threshold t,
one may write

FDR(t) =
π0 · t

P(p ≤ t|R(t) > 0)

where π0 is the fraction of non-diff. genes among the m.

Estimates:

P̂(p ≤ t|R(t) > 0) =
max(#{pi : pi ≤ t}, 1)

m
π̂0 = ???
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Estimating π0

We expect the p-values near 1 to be mostly nulls. The number

of null p-values expected in [λ, 1] is (1 − λ) · m0. For some

”well chosen” λ (automatic ways for that), estimate π0 by:

π̂0 =
#{pi : pi > λ}

(1 − λ)m

Adjusted p–values estimate the FDR SCC at the p-values :

α̂FDR,λ = min
s≥pi

ˆFDRλ(pi)

Adjusted q–values estimate the FDR SCC at the p-values :

q̂λ = min
s≥pi

ˆpFDRλ(pi)

q-value = minimal FDR at which it appears significant.
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Enhanced FDR

EFDR is based on controlling FDR, but differs through its
reducing of the number of test statistics tested.

The number of hypotheses tested is decreased due to:

the test-statistic signal Ti, i = 1, . . . , m is represented
parsimoniously and decorrelated in the wavelet
domain,
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Enhanced FDR

EFDR is based on controlling FDR, but differs through its
reducing of the number of test statistics tested.

The number of hypotheses tested is decreased due to:

the test-statistic signal Ti, i = 1, . . . , m is represented
parsimoniously and decorrelated in the wavelet
domain,

an optimal selection of m∗ wavelets is made using an
empirical Bayes thresholding procedure.

The test statistic is significant if pw
(i) ≤ α·i

m∗ . Recall: Bonf.

pw
(i) ≤

α
m ; FDR: pw

(i) ≤
α·i
m .
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