
Cluster analysis

Associated with each object is a set of G measurements w
the feature vector, X = (X1, . . . ,XG). The feature vect
belongs to a feature space X (e.g. <G).

The task is to identify groups of similar objects on the ba
set of feature vectors, X1 = x1, . . . ,Xn = xn.

Clustering involves several distinct steps. First, a suitable
between objects (based on the features) must be defined.
clustering algorithm must be selected and applied to the o
data. The results of a clustering procedure can include bo
number of clusters K (if not prespecified) and a set of n c
labels ∈ {1, . . . ,K} for the objects.
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Cluster analysis

Clustering is probably a more difficult problem than class
In general, all the issues that must be addressed for classi
must also be addressed for clustering.

With clustering there is generally no a priori notion of wh
features are important.

Often the number of clusters is unknown as well.

Additionally, the goals can be quite vague: Find some int
and important clusters in my data.

Most of the algorithms that are appealing are computatio
complex to have exact solutions. Approximate solutions a
instead and reproducibility becomes an issue.
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Cluster analysis

Clustering algorithms fall into two broad categories, hiera
methods and partitioning methods.

Hierarchical methods are either divisive or agglomerati
methods provide a hierarchy of clusters, from the smallest
all objects are in one cluster, through to the largest set, w
observation is in its own cluster.

Most methods used in practice are agglomerative hierarch
methods. In large part this is due to the fact that efficient
algorithms exist for performing these calculations.

Partitioning methods usually require the specification of t
number of clusters. Then, cluster centers must be determi
finally a mechanism for apportioning objects to the cluste
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Distance

The feature data are often transformed to an n× n dista
similarity matrix, D = (dij), between the n objects.

One of the most important factors that determines which
will be found is the choice of distance between objects.

Once a distance measure between individual observations
chosen, one must often also define a distance measure betw
clusters or groups of observations

Different choices here can greatly affect the outcome.

More details in the lecture Distances and expression meas
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Gene expression data

Most efforts to date have involved clustering only the exp
data collected on a number of different genes and samples

However, there is likely to be a need for incorporating oth
such as sample level covariates into the algorithm.

For example, a common task is to determine whether or n
expression data can reliably identify or classify different ty
disease. However, one might ask as well whether such dat
our ability to classify over already available sample level c
data.
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Gene expression data

Gene expression data on G genes (features) for n mRNA
(observations)

mRNA samples

XG×n =




x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xG1 xG2 . . . xGn




Genes

xgi = expression measure for gene g in mRNA samp

An array of conormalized arrays.
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Gene expression data

Features correspond to expression levels of different genes
correspond to, for e.g., tumor types (e.g. ALL, AML), clin
outcomes (survival, non–survival), and are labeled by {1, 2

Gene expression data on G genes (features) for n mRNA
(observations)

xi =
(
xi1, xi2, . . . , xiG

)

– gene expression profile / feature vector for s

yi = response for sample i, i = 1, . . . , n.

Other covariates such as age, sex may also be important and

included in the analysis. However, it is worth noting that the c

distance should reflect the covariates being used (e.g. the Eucl

distance is generally not suitable for categorical variables).
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Clustering gene expression data

• One can cluster genes and/or samples (arrays).

• Clustering leads to readily interpretable figures.

• Clustering strengthens the signal when averages are ta
within clusters of genes (Eisen et al., 1998).

• Clustering can be helpful for identifying gene expressi
patterns in time or space.

• Clustering is useful, perhaps essential, when seeking n
subclasses of cell samples (tumors, etc).
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Clustering gene expression data

Cluster genes (rows)

• to identify groups of co–regulated genes, e.g. using lar
numbers of yeast experiments;

• to identify spatial or temporal expression patterns;

• to reduce redundancy (cf. feature selection) in predict
models;

• for display purposes.

Transformations of the expression data matrix using linea
modeling as in the lecture Microarray experimental design
analysis may be useful in this context:

genes × arrays =⇒ genes × estimated effects.
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Clustering gene expression data

Cluster samples or arrays (columns)

• to identify new classes of biological samples, e.g. new
classes, new cell types;

• to detect experimental artifacts;

• for display purposes.

Cluster both rows and columns at once.
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Clustering gene expression data

Clustering can be gainfully employed in an exploratory m
The clusters that obtain from clustering samples/arrays sh
compared with different experimental conditions such as:

• batch or production order of the arrays;

• batch of reagents;

• technician;

• order.

Any relationships observed here should be considered as a
potentially serious source of bias.
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Tumor classification using gene expression da

A reliable and precise classification of tumors is essential f
successful diagnosis and treatment of cancer.

Current methods for classifying human malignancies rely
variety of morphological, clinical, and molecular variables.

In spite of recent progress, there are still uncertainties in d

Also, it is likely that the existing classes are heterogeneou
comprise diseases which are molecularly distinct and follow
different clinical courses.
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Tumor classification using gene expression da

DNA microarrays may be used to characterize the molecu
variations among tumors by monitoring gene expression p
a genomic scale.

This may lead to a finer and more reliable classification of
and to the identification of marker genes that distinguish
these classes.

Eventual clinical implications include an improved ability
understand and predict cancer survival.
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Tumor classification using gene expression da

There are three main types of statistical problems associa
tumor classification:

1. the identification of new tumor classes using gene exp
profiles – unsupervised learning;

2. the classification of malignancies into known classes –
supervised learning;

3. the identification of marker genes that characterize th
different tumor classes – feature selection.
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Example: Row and column clustering

Figure 1: Alizadeh et al. (2000). Distinct types of diff
B–cell lymphoma identified by gene expression profiling. N

18



Clustering gene expression data

Preliminary questions

• Which genes / arrays to use?

• Which transformation/standardization?

• Which distance function?

• Which clustering algorithm?

Answers will depend on the biological problem.
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Clustering gene expression data

Important questions (which are generic)

• How many clusters?

• How reliable are the clustering results?

– Statistical inference: distributional properties of cl
results.

– Assessing the strength/confidence of cluster assign
individual observations;

– Assessing cluster homogeneity.
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Partitioning methods

• Partition the data into a prespecified number K of m
exclusive and exhaustive groups.

• Iteratively reallocate the observations to clusters until
criterion is met, e.g. minimize within–cluster sums–of

• Examples:

– k–means; fuzzy k–means;

– Partitioning Around Medoids – PAM (Kaufman &
Rousseeuw, 1990);

– Self–Organizing Maps – SOM (Kohonen, 2001);

– model–based clustering,
e.g. Gaussian mixtures in Fraley & Raftery (1998,2
McLachlan et al. (2001).
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Partitioning around medoids

Partitioning around medoids or PAM of Kaufman an
Rousseeuw (1990) is a partitioning method which operate
distance matrix, e.g. Euclidean distance matrix.

For a prespecified number of clusters K, the PAM procedu
based on the search for K representative objects, or medo
among the observations to be clustered.

After finding a set of K medoids, K clusters are construct
assigning each observation to the nearest medoid.
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Partitioning around medoids

The goal is to find K medoids, M = (m1, . . . ,mK), which
minimize the sum of the distances of the observations to t
closest medoid, that is,

M∗ = argminM

∑
i

min
k

d(xi,mk).

PAM can be applied to general data types and tends to b
robust than k–means.
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Silhouette plots

Rousseeuw (1987) suggested a graphical display, the silho
plot, which can be used to: (i) select the number of cluste
(ii) assess how well individual observations are clustered.

The silhouette width of observation i is defined as

sili = (bi − ai)/max(ai, bi),

where ai denotes the average distance between i and all o
observations in the cluster to which i belongs, and bi deno
minimum average distance of i to objects in other clusters

Intuitively, objects with large silhouette width sili are
well–clustered, those with small sili tend to lie between cl
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Silhouette plots

For a given number of clusters K, the overall average sil
width for the clustering is simply the average of sili over
observations i, s̄il =

∑
i sili/n.

Kaufman & Rousseeuw suggest estimating the number of
K by that which gives the largest average silhouette width

Note that silhouette widths may be computed for the resu
partitioning clustering algorithm.
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Partitioning around medoids
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Silhouette plot for ALL AML data

Euclidean distance for scaled arrays, K=2, G=3,051 genes
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Figure 2: Golub et al. (1999) ALL AML data. Silhouett
PAM, red=ALL, blue=AML.
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PAMSIL

PAMSIL. van der Laan, Pollard, & Bryan (2001).

Replace PAM criteria function with average silhouette.

PAM PAMS

Criteria −∑
i mink d(xi,mk)

∑
i si

Algorithm Steepest ascent Steepest a

Starting values Build PAM, ran

K Given or data–adaptive Given or data

Overall performance ”Robust” ”Efficie

Splitting large clusters Yes No

Outliers Ignore Identi
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Hierarchical methods

• Hierarchical clustering methods produce a tree or
dendrogram.

• They avoid specifying how many clusters are appropri
providing a partition for each K. The partitions are o
from cutting the tree at different levels.

• The tree can be built in two distinct ways

– bottom–up: agglomerative clustering;

– top–down: divisive clustering.
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Hierarchical methods
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Hierachical clustering dengrogram for ALL AML data

Average linkage, Euclidean distance for scaled arrays, G=3,051 genes
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Figure 3: Golub et al. (1999) ALL AML data. Dendr
agglomerative hierarchical clustering.
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Agglomerative methods

• Start with n mRNA sample (or G gene) clusters.

• At each step, merge the two closest clusters using a m
between–cluster distance which reflects the shape of t
clusters.

• Between–cluster distance measures:

– Unweighted Pair Group Method with Arithmetic m
(UPGMA): average of pairwise distances;

– Single–link: minimum of pairwise distances;

– Complete–link: maximum of pairwise distances.

More details are given in the lecture Distances and expres
measures.
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Divisive methods

• Start with only one cluster.

• At each step, split clusters into two parts.

• Advantages: Obtain the main structure of the data, i.
on upper levels of dendrogram.

• Disadvantages: Computational difficulties when consid
possible divisions into two groups.

• Examples

– Self–Organizing Tree Algorithm – SOTA (Dopazo
Carazo, 1997);

– DIvisive ANAlysis – DIANA (Kaufman & Roussee
1990).
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Dendrograms

Dendrograms are often used to visualize the output of a
hierarchical clustering.

However, they can be criticized on a number of grounds.

Good graphics reveal structure that might not be found b
standard analytic methods.

Hierarchical clustering imposes structure, whether it is th
not. Dendrograms then reflect that imposed structure.

It will be important to determine whether the dendrogram
reasonable reflection of the structure in the data.
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Dendrograms

The cophenetic distance between two observations, i an
defined to be the intergroup distance at which observation
are first put into the same cluster.

These distances have a great deal of structure, there are m
and some other structure.

The extent to which the cophenetic distances reflect the t
distances (as decided by our choice of metric) determines
usefulness of the dendrogram as a tool for visualization.

The agreement can be assessed by the cophenetic corre
coefficient which is simply the correlation between the tr
distances and the cophenetic distances.
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Partitioning vs. hierarchical

• Partitioning

– Advantages: Provides clusters that satisfy an optim
criterion (approximately).

– Disadvantages: Need initial K, long computation t

• Hierarchical

– Advantages: Fast computation (for agglomerative
clustering).

– Disadvantages: Rigid, cannot correct later for erro
decisions made earlier.
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Estimating the number of clusters

• Internal indices. Statistics based on within– and
between–clusters matrices of sums–of–squares and
cross–products (30 methods reviewed in Milligan & C
(1985)). Estimate is the number of clusters K which m
or maximizes one of these indices.

• Average silhouette width. (Kaufman & Rousseeuw

• Model–based methods. EM algorithm for Gaussian
mixtures, Fraley & Raftery (1998,2000) and McLachla
(2001).

• Gap statistic. (Tibshirani et al., 2001). Resampling
for each K compare an observed internal index to its
value under a reference distribution and look for K w
maximizes the difference.
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MSS

Mean Silhouette Split – MSS. (Pollard & van der Laa

Given K clusters, consider each cluster k = 1, . . . ,K separ

• Apply the clustering algorithm to the elements of clus

• Choose the number of child clusters that maximizes t
average silhouette width. Call this maximum the spli
silhouette, SSk.

Define the mean split silhouette as a measure of averag
heterogeneity.

MSS(K) =
1
K

K∑
k=1

SSk.

Choose the number of clusters K which minimizes MSS(K
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MSS

• Identifies finer structure in gene expression data. Whe
clustering genes, existing criteria tend to identify glob
structure only.

• Provides a measure of cluster heterogeneity.

• Computationally easy.
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Clest

Clest. (Dudoit & Fridlyand 2001). Resampling method w
estimates the number of clusters based on prediction accu

• For each number of clusters k, repeatedly randomly d
original learning set into two non–overlapping sets, a
set Lb and a test set T b, b = 1, . . . , B.

– Apply the clustering algorithm to observations in the le

Lb.

– Build a classifier using the class labels from the cluster

– Apply the classifier to the test set T b.

– Compute a similarity score sk,b comparing the test set

labels from prediction and clustering.
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Clest

• The similarity score for k clusters is the median of the
similarity scores: tk = median(sk,1, · · · , sk,B).

• The number of clusters K is estimated by comparing
observed similarity score tk for each k to its expected
under a suitable reference distribution with K = 1.

Applies to any partitioning algorithm and any classifier.

Better suited for clustering samples than clustering genes.
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Inference

van der Laan & Bryan (2001).

General framework for statistical inference in cluster analy

View clustering as a deterministic rule that can be applied
parameters (or estimates thereof) of the distribution of ge
expression measures.

Parameters of interest include covariances between the exp
measures of different genes.

The parametric bootstrap can be used to study distributio
properties (bias, variance) of the clustering results.
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Outliers

In classification it has often been found useful to define a
outliers.

This does not seem to have been extended to clustering. H
outlier detection is an important issue since outliers can g
affect the between–cluster distances.

Simple tests for outliers, such as identifying observations t
responsible for a disproportionate amount of the within–c
sum–of–squares seems prudent.
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Hybrid method – HOPACH

Hierarchical Ordered Partitioning And Collapsing
– HOPACH (van der Laan & Pollard, 2001)

• Apply a partitioning algorithm iteratively to produce
hierarchical tree of clusters.

• At each node, a cluster is partitioned into two or mor
clusters. Splits are not restricted to be binary. E.g. ch
based on average silhouette.
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Hybrid method – HOPACH

• Hierarchical. Can look at clusters at increasing levels of

• Ordered. Ordering of the clusters and elements within cl

data–adaptive and unique, performing better than other h

algorithms. Clustering and ordering are based on the sam

function. The ordering of elements in any level can be use

reorder the data or distance matrices, and visualize the clu

structure.

• Partitioning. At each node, a cluster is split into two or

smaller clusters.

• Collapsing. Clusters can be collapsed at any level of the t

similar clusters and correct for errors made in the partitio

• Hybrid. Combines the strengths of both partitioning and

hierarchical clustering methods.
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Bagged clustering

Leisch (1999). Hybrid method combining partitioning a
hierarchical methods. A partitioning method is applied to
bootstrap learning sets and the resulting partitions are co
by performing hierarchical clustering of the cluster centers

Dudoit & Fridlyand (2001). Apply a partitioning clus
method to bootstrap samples of the learning set. Combine
resulting partitions by (i) voting or (ii) the creation of a n
distance matrix. Assess confidence in the clustering result
cluster votes.
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R clustering software

• class package: Self Organizing Maps (SOM).

• cluster package:

– AGglomerative NESting (agnes),

– Clustering LARe Applications (clara),

– DIvisive ANAlysis (diana),

– Fuzzy Analysis (fanny),

– MONothetic Analysis (mona),

– Partitioning Around Medoids (pam).

• e1071 package:

– Fuzzy C–means clustering (cmeans),

– Bagged clustering (bclust).

• mva package:

– Hierarchical clustering (hclust),

– k–means (kmeans).

Specialized summary, plot, and print methods for clustering results.
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