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Outline

• cDNA microarrays
– Image analysis; 
– Normalization. 

• Affymetrix oligonucleotide chips
– Image analysis;
– Normalization;
– Expression measures.



cDNA microarrays



Terminology
• Target: DNA hybridized to the array, mobile 

substrate.
• Probe: DNA spotted on the array, 

aka. spot, immobile substrate.
• Sector: collection of spots printed using the same 

print-tip (or pin),
aka. print-tip-group, pin-group, spot matrix, grid.

• The terms slide and array are often used to refer to 
the printed microarray.

• Batch: collection of microarrays with the same 
probe layout.

• Cy3 = Cyanine 3 = green dye. 
• Cy5 = Cyanine 5 = red dye.



4 x 4 sectors
19 x 21 probes/sector
6,384 probes/array

Sector

RGB overlay of Cy3 and Cy5 images

Probe



Raw data

E.g. Human cDNA arrays
• ~43K spots;
• 16–bit TIFFs: ~ 20Mb per channel;
• ~ 2,000 x 5,500 pixels per image;
• Spot separation: ~ 136um;
• For a “typical” array, the spot area has

– mean = 43 pixels, 
– med = 32 pixels, 
– SD = 26 pixels.



Image analysis



Image analysis

• The raw data from a cDNA microarray
experiment consist of pairs of image files, 
16-bit TIFFs, one for each of the dyes.

• Image analysis is required to extract 
measures of the red and green 
fluorescence intensities, R and G, for each 
spot on the array.



Image analysis

1. Addressing. Estimate location 
of spot centers.

2. Segmentation. Classify pixels as 
foreground (signal) or background.
3. Information extraction. For 
each spot on the array and each 
dye

• foreground intensities;
• background intensities; 
• quality measures.

R and G for each spot on the array.



Segmentation

Adaptive segmentation, SRG Fixed circle segmentation

Spots usually vary in size and shape.



Seeded region growing

• Adaptive segmentation method.
• Requires the input of seeds, either individual pixels 

or groups of pixels, which control the formation of the 
regions into which the image will be segmented. 
Here, based on fitted foreground and background 
grids from the addressing step.

• The decision to add a pixel to a region is based on 
the absolute gray-level difference of that pixel’s 
intensity and the average of the pixel values in the 
neighboring region.

• Done on combined red and green images.
• Ref. Adams & Bischof (1994)



Local background

---- GenePix

---- QuantArray

---- ScanAnalyze



Morphological opening
• The image is probed with a structuring element, 

here, a square with side length about twice the spot-
to-spot distance.

• Erosion (Dilation): the eroded (dilated) value at a 
pixel x is the minimum (maximum) value of the 
image in the window defined by the structuring 
element when its origin is at x.

• Morphological opening: erosion followed by 
dilation.

• Done separately for the red and green images.
• Produces an image of the estimated background for 

the entire slide.



Background matters
Morphological opening Local background

M = log2R - log2G   vs.  A = (log2R + log2G)/2



Quality measures
• Spot quality

– Brightness: foreground/background ratio;
– Uniformity: variation in pixel intensities and ratios of 

intensities within a spot;
– Morphology: area, perimeter, circularity.

• Slide quality
– Percentage of spots with no signal;
– Range of intensities;
– Distribution of spot signal area, etc.

• How to use quality measures in subsequent 
analyses?



Spot image analysis software
• Software package Spot, built on the R language and 

environment for statistical computing and graphics.
• Batch automatic addressing.
• Segmentation. Seeded region growing (Adams & 

Bischof 1994): adaptive segmentation method, no 
restriction on the size or shape of the spots.

• Information extraction
– Foreground. Mean of pixel intensities within a spot.
– Background. Morphological opening: non-linear filter 

which generates an image of the estimated background 
intensity for the entire slide.

• Spot quality measures.



Normalization



Normalization

• Purpose. Identify and remove the effects of 
systematic variation in the measured 
fluorescence intensities, other than differential 
expression, for example 
– different labeling efficiencies of the dyes;
– different amounts of Cy3- and Cy5-labeled 

mRNA;
– different scanning parameters;
– print-tip, spatial, or plate effects, etc.



Normalization
• Normalization is needed to ensure that 

differences in intensities are indeed due to  
differential expression, and not some 
printing, hybridization, or scanning artifact.

• Normalization is necessary before any 
analysis which involves within or between 
slides comparisons of intensities, e.g., 
clustering, testing.



Normalization
• The need for normalization can be seen most 

clearly in self-self hybridizations, where the 
same mRNA sample is labeled with the Cy3 and 
Cy5 dyes.

• The imbalance in the red and green intensities is 
usually not constant across the spots within 
and between arrays, and can vary according to 
overall spot intensity, location, plate origin, etc.

• These factors should be considered in the 
normalization.



Single-slide data display
• Usually:  R vs. G

log2R vs. log2G.
• Preferred 

M  = log2R - log2G
vs.   A  = (log2R + log2G)/2.

• An MA-plot amounts to a 45o

counterclockwise rotation of a 
log2R vs. log2G plot followed by scaling.



Self-self hybridization

log2 R vs. log2 G M vs. A

M = log2R - log2G,   A = (log2R + log2G)/2

M vs. A



Self-self hybridization

Robust local regression
within sectors 
(print-tip-groups)
of intensity log-ratio M
on average log-intensity 
A.

M = log2R - log2G,   A = (log2R + log2G)/2

M vs. A



Swirl zebrafish experiment
• Goal. Identify genes with altered expression 

in Swirl mutants compared to wild-type 
zebrafish.

• 2 sets of dye-swap experiments (n=4).
• Arrays: 

– 8,448 probes (768 controls);
– 4 x 4 grid matrix; 
– 22 x 24 spot matrices.

• Data available in Bioconductor package 
marrayInput.



Diagnostic plots
• Diagnostics plots of spot statistics

E.g. red and green log-intensities, intensity log-
ratios M, average log-intensities A, spot area.
– Boxplots;
– 2D spatial images;
– Scatter-plots, e.g. MA-plots;
– Density plots.

• Stratify plots according to layout 
parameters, e.g. print-tip-group, plate.



2D spatial images

Cy3 background intensity Cy5 background intensity



2D spatial images

Intensity 
log-ratio, M



Boxplots by print-tip-group

Intensity 
log-ratio, M



MA-plot by print-tip-group

Intensity 
log-ratio, M

Average 
log-intensity, A

M = log2R - log2G,   A = (log2R + log2G)/2



Location normalization
log2R/G  ���� log2R/G – L(intensity, sector, …)

• Constant normalization. Normalization function 
L is constant across the spots, e.g. mean or 
median of the log-ratios M.

• Adaptive normalization. Normalization function 
L depends on a  number of predictor variables, 
such as spot intensity A, sector, plate origin.



Location normalization

• The normalization function can be 
obtained by robust locally weighted 
regression of the log-ratios M on predictor 
variables.
E.g. regression of M on A within sector.

• Regression method: e.g. lowess or loess 
(Cleveland, 1979; Cleveland & Devlin, 1988).



Location normalization
• Intensity-dependent normalization.

Regression of M on A (global loess).
• Intensity and sector-dependent normalization.

Same as above, for each sector separately 
(within-print-tip-group loess).

• 2D spatial normalization. 
Regression of M on 2D-coordinates. 

• Other variables: time of printing, plate, etc.
• Composite normalization. Weighted average of 

several normalization functions.



2D images of L values

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization



2D images of normalized M-L

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization



Boxplots of normalized M-L

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization



MA-plots of normalized M-L

Global median
normalization

Global loess
normalization

Within-print-tip-
group loess
normalization

2D spatial
normalization



Normalization
• Within-slide

– Location normalization - additive on log-
scale.

– Scale normalization - multiplicative on log-
scale.

– Which spots to use?
• Paired-slides (dye-swap experiments)

– Self-normalization.
• Between-slides.



Scale normalization
• The log-ratios M from different sectors, plates, or 

arrays may exhibit different spreads and some 
scale adjustment may be necessary.

log2R/G  ���� (log2R/G –L)/S

• Can use a robust estimate of scale such as the 
median absolute deviation (MAD)
MAD = median | M – median(M) |.



Scale normalization

• For print-tip-group scale normalization, 
assume all print-tip-groups have the same 
spread in M.

• Denote true and observed log-ratio by µij
and Mij, resp., where Mij = ai µij, and i 
indexes print-tip-groups and j spots. 
Robust estimate of ai is

where MADi is MAD of Mij in print-tip-group 

I I

i i

i
i

MAD

MADa
∏ =

=
1

ˆ



Which genes to use?
• All spots on the array: 

– Problem when many genes are differentially expressed.

• Housekeeping genes: Genes that are thought to 
be constantly expressed across a wide range of 
biological samples (e.g. tubulin, GAPDH). 
Problems:
– sample specific biases (genes are actually regulated),
– do not cover intensity range.



Which genes to use?

• Genomic DNA titration series:  
– fine in yeast,
– but weak signal for higher organisms with 

high intron/exon ratio (e.g. mouse, human).

• Rank invariant set (Schadt et al., 1999; 
Tseng et al., 2001): genes with same rank in 
both channels. Problems: set can be small.



Microarray sample pool
• Microarray Sample Pool, MSP: Control sample 

for normalization, in particular, when it is not 
safe to assume most genes are equally 
expressed in both channels.

• MSP: pooled all 18,816 ESTs from RIKEN 
release 1 cDNA mouse library.

• Six-step dilution series of the MSP.
• MSP samples were spotted in middle of first and 

last row of each sector.
• Ref. Yang et al. (2002).



Microarray sample pool
MSP control spots 
• provide potential probes for every target 

sequence;
• are constantly expressed across a wide range of 

biological samples;
• cover the intensity range;
• are similar to genomic DNA, but without intron

sequences � better signal than genomic DNA in 
organisms with high intron/exon ratio;

• can be used in composite normalization.



Microarray sample pool

MSP
Rank invariant
Housekeeping

Tubulin, GAPDH



Dye-swap experiment
• Probes

– 50 distinct clones thought to be differentially 
expressed in apo AI knock-out mice compared to 
inbred C57Bl/6 control mice (largest absolute t-
statistics in a previous experiment).

– 72 other clones.
• Spot each clone 8 times .

• Two hybridizations with dye-swap: 
Slide 1:  trt → red, ctl → green.
Slide 2:  trt → green, ctl → red.



Dye-swap experiment



Self-normalization
• Slide 1, M = log2 (R/G) - L
• Slide 2, M’ = log2 (R’/G’) - L’
Combine by subtracting the normalized log-ratios:

M – M’ 
= [ (log2 (R/G) - L) - (log2 (R’/G’) - L’) ] / 2
≈ [ log2 (R/G) + log2 (G’/R’) ] / 2
≈ [ log2 (RG’/GR’) ] / 2

provided L= L’.

Assumption: the normalization functions are the same for the two
slides.



Checking the assumption

MA-plot for slides 1 and 2



Result of self-normalization

(M - M’)/2 vs. (A + A’)/2



Summary
Case 1. Only a few genes are expected to change.
Within-slide

– Location: intensity + sector-dependent normalization.
– Scale: for each sector, scale by MAD.

Between-slides
– An extension of within-slide scale normalization. 

Case 2. Many genes are expected to change.
– Paired-slides: Self-normalization.
– Use of controls or known information, e.g. MSP.
– Composite normalization.



R software for normalization
cDNA microarrays

• Bioconductor R packages 
– marrayClasses: 

• class definitions for microarray data objects;
• basic methods for manipulation of microarray objects.

– marrayInput: 
• reading in intensity data and textual data describing probes 

and targets;
• automatic generation of microarray data objects;
• widgets for point & click interface.

– marrayPlots: diagnostic plots.
– marrayNorm: robust adaptive location and scale 

normalization procedures.



Oligonucleotide chips



Affymetrix files

• Main software from Affymetrix company 
MAS - MicroArray Suite, now version 5.

• DAT file: Image file, ~10^7 pixels, ~50 MB.
• CEL file: Cell intensity file, probe level PM 

and MM values.
• CDF file: Chip Description File. Describes 

which probes go in which probe sets 
(genes, gene fragments, ESTs).



Image analysis
• Raw data, DAT image files � CEL files
• Each probe cell: 10x10 pixels.
• Gridding: estimate location of probe cell 

centers.
• Signal: 

– Remove outer 36 pixels � 8x8 pixels.
– The probe cell signal, PM or MM, is the 75th

percentile of the 8x8 pixel values.
• Background: Average of the lowest 2% probe 

cell values is taken as the background value and 
subtracted.

• Compute also quality measures.



Data and notation
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Expression measures 
MAS 4.0
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Expression measures 
MAS 5.0
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– SB = Tukey Biweight (log(PM)-log(MM)) 
(log-ratio).

– log(MM*) = log(PM)-log(max(SB, +ve)).
• Tukey Biweight: B(x) = (1 – (x/c)^2)^2 if |x|<c, 0 ow.
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Expression measures 
Li & Wong
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where
– θθθθi: model based expression index (MBEI),
– φφφφj: probe sensitivity index.

• Maximun likelihood estimate of MBEI is used as 
expression measure for the gene in chip i.

• Need at least 10 or 20 chips.
• Current version works with PMs only.

),0(  , 2σεεφθ NMMPM ijijjiijij ∝+=−



Expression measures
• Most expression measures are based on PM-

MM, with the intention of correcting for non-
specific binding and background noise.

• Problems: 
– MMs are PMs for some genes, 
– removing the middle base does not make a difference 

for some probes .
• Why not simply average PM or log PM? Not 

good enough, still need to adjust for 
background.

• Also need to normalize.



Expression measures 
RMA
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1. Estimate background BG and use only 
background-corrected PM: log2(PM-BG).

2. Probe level normalization of log2(PM-
BG) for suitable set of chips.

3. Robust Multi-chip Analysis, RMA, of 
log2(PM-BG).



RMA background, I

Simple background estimation 
• Estimate log2(BG) as the mode of the 

log2(MM) distribution for a given chip 
(kernel density estimate).

• Quick fix when PM <= BG: use half of the 
minimum of log2(PM-BG) for PM > BG 
over all chips and probes.



RMA background, II
More refined background estimation 
• Model observed PM as the sum of a signal 

intensity SG and a background intensity BG
PM = SG + BG,

where it is assumed that SG is Exponential (α), 
BG is Normal (µ, σ2), and SG and BG are 
independent.

• Background adjusted PM values are then 
E(SG|PM).



Quantile normalization
• Probe level quantile normalization (Bolstad et 

al., 2002). 
• Co-normalize probe level intensities, e.g. PM-BG 

or just PM or MM, for n chips by averaging each 
quantile across chips.

• Assumption: same probe level intensity 
distribution across chips.

• No need to choose a baseline or work in a 
pairwise manner.

• Deals with non-linearity.



Curve-fitting normalization

• Astrand (2001). Generalization of M vs. A 
robust local regression normalization for 
cDNA arrays.

• For n chips, regress orthonormal contrasts 
of probe level statistics on the average of 
the statistics across chips.



RMA expression measures, I 
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RMA expression measures, II
• Robust regression method to estimate 

expression measure and SE from PM-BG 
values.
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successively removing row and column 
medians, and accumulating the terms, until the 
process stabilizes).

• Fine with n=2 or more chips.
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Conclusions
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R software for pre-processing 
of Affymetrix data

• Bioconductor R package affy.
• Background estimation.
• Probe-level normalization: quantile, curve-

fitting.
• Expression measures: AvDiff, Signal, Li & 

Wong (2001), RMA.
• Two main functions: ReadAffy, 
express.



Combining data across slides

Genes

Arrays

M = log2( Red intensity / Green intensity)
expression measure, e.g, RMA

0.46 0.30 0.80 1.51 0.90 ...
-0.10 0.49 0.24 0.06 0.46 ...
0.15 0.74 0.04 0.10 0.20 ...

-0.45 -1.03 -0.79 -0.56 -0.32 ...
-0.06 1.06 1.35 1.09 -1.09 ...

…           …           …           …           …

Data on G genes for n hybridizations

Array1   Array2     Array3      Array4 Array5 …

Gene2
Gene1

Gene3

Gene5
Gene4

G x n genes-by-arrays data matrix

…



Combining data across slides

D

F

BA

C

E

… but columns have structure
How can we design experiments and combine data 
across slides to provide accurate estimates of the 
effects of interest?

Experimental design
Regression analysis


