
First analysis stepsFirst analysis steps
o quality control and optimization
o calibration and error modeling
o data transformations

Wolfgang Huber

Dep. of Molecular Genome 
Analysis (A. Poustka)

DKFZ Heidelberg



Acknowledgements
Anja von Heydebreck
Günther Sawitzki

Holger Sültmann, Klaus Steiner, Markus Vogt, 
Jörg Schneider, Frank Bergmann, Florian 
Haller, Katharina Finis, Stephanie Süß, Anke 
Schroth, Friederike Wilmer, Judith Boer, 
Martin Vingron, Annemarie Poustka

Sandrine Dudoit, Robert Gentleman, Rafael 
Irizarry and Yee Hwa Yang: Bioconductor 
short course, summer 2002

and many others



4 x 4 or 8x4 sectors

17...38 rows and 
columns per sector

ca. 4600�46000
probes/array

sector: corresponds 
to one print-tip

a microarray slide
Slide: 25x75 mm

Spot-to-spot: ca. 150-350 µm



Terminology
sample: RNA (cDNA) hybridized to the array, aka 

target, mobile substrate.
probe: DNA spotted on the array, aka spot, 

immobile substrate.
sector: rectangular matrix of spots printed using 

the same print-tip (or pin), aka print-tip-group
plate: set of 384 (768) spots printed with DNA 

from the same microtitre plate of clones
slide, array
channel: data from one color (Cy3 = cyanine 3 = 

green, Cy5 = cyanine 5 = red).
batch: collection of microarrays with the same 

probe layout.
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Raw data
scanner signal

resolution:
5 or 10 mm spatial, 
16 bit (65536) dynamical per channel

ca. 30-50 pixels per probe (60 µm spot size)
40 MB per array

Image Analysis

spot intensities
2 numbers per probe (~100-300 kB)
� auxiliaries: background, area, std dev, �
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Image analysis

2. Segmentation. Classify pixels 
as foreground (signal) or 
background. 

3. Information extraction. For 
each spot on the array and each 
dye

� foreground intensities;
� background intensities; 
� quality measures.

R and G for each spot on the array.

1. Addressing. Estimate 
location of spot centers.



Segmentation

adaptive segmentation
seeded region growing

fixed circle segmentation

Spots may vary in size and shape.



Local background

---- GenePix

---- QuantArray

---- ScanAlyze



Local background estimation by 
morphological opening

Image is probed with a window (aka structuring 
element), eg, a square with side length about twice 
the spot-to-spot distance.
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Local background estimation by 
morphological opening

Image is probed with a window (aka structuring 
element), eg, a square with side length about twice 
the spot-to-spot distance.

Erosion: at each pixel, replace its value by the 
minimum value in the window around it.

Dilation: same with maximum

followed by

Do this separately for red and green images. This 
'smoothes away' all structures that are smaller 
than the window

⇒ Image of the estimated background



What is (local) background? 
usual assumption:

total brightness = 
background brightness (adjacent to spot)

+ brightness from labeled sample cDNA
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Quality measures
Spot quality

� Brightness: foreground/background ratio
� Uniformity: variation in pixel intensities and ratios 

of intensities within a spot
� Morphology: area, perimeter, circularity.

Slide quality
� Percentage of spots with no signal
� Range of intensities
� Distribution of spot signal area, etc.

How to use quality measures in subsequent 
analyses?



spot intensity dataspot intensity data

two-color spotted arrays

Pr
ob
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n one-color arrays 
(Affymetrix, nylon)

conditions (samples)



Microarrays are measurement instruments
- have limited measurement precision (�error bars�)
- need calibration
- involve technology optimization and fine-tuning
- may fail or be mis-operated

Technology is complex and crossdisciplinary 
(biotechnology, nanotechnology, chemistry, physics, robotics; plus 
the application areas: molecular biology, oncology, pathology, 
medicine�)

Technology and the ways it is applied are still 
evolving

Computational statistics and data analysis can 
contribute



Raw data are not mRNA concentrations

o other array 
manufacturing-
related issues

o hybridization 
efficiency and 
specificity

o DNA-support 
binding

o reverse 
transcription 
efficiency

o �background� 
correction

o spotting 
efficiency

o amplification 
efficiency

o signal 
quantification

o PCR yield, 
contamination

o RNA 
degradation

o image 
segmentation

o clone 
identification and 
mapping

o tissue 
contamination



Raw data are not mRNA concentrations

o other array 
manufacturing-
related issues

o hybridization 
efficiency and 
specificity

o DNA-support 
binding

o reverse 
transcription 
efficiency

o �background� 
correction

o spotting 
efficiency

o amplification 
efficiency

o signal 
quantification

o PCR yield, 
contamination

o RNA 
degradation

o image 
segmentation

o clone 
identification and 
mapping

o tissue 
contamination

The problem is less that these 
steps are �not perfect�; it is 
that they may vary from array 
to array, experiment to 
experiment.
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Sources of variationSources of variation
amount of RNA in the biopsy 
efficiencies of
-RNA extraction
-reverse transcription 
-labeling
-photodetection

PCR yield
DNA quality
spotting efficiency,
spot size

cross-/unspecific hybridization
stray signal

Systematic
o similar effect on many 
measurements
o corrections can be 
estimated from data

Calibration

Stochastic
o too random to be ex-
plicitely accounted for 
o �noise�

Error model
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ik ik ik iky a b x= +

measured intensity of probe k in sample i

unspecific gain actual 
abundance

aik, bik all unknown: need to 
approximately determine from data
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ik ik ik iky a b x= +
Implications

data quantity of 
interest

No non-linear terms necessary: 

Saturation can be avoided in the experiments.

Data from well-performed experiments shows no evidence for gross 
deviations from affine linearity.

The flexibility (and complexity) lies in the number of parameters:
twice the number of data points!

⇒ parameters must not all be independent
⇒ need to make simplifiying assumptions, to reduce the effective 
number of independent parameters to manageable size.

Quality control: verify that assumptions hold for the data at hand
Normalization, calibration: estimate parameters for the data at 
hand
Error modeling: control the error bars both of measured yik and of 
estimated normalization parameters aik, bik
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ik ik ik iky a b x= +

A typical set of assumptions

bi per-sample
normalization factor

bk sequence-wise
labeling efficiency

log ηik ~ N(0,s2
2)

�multiplicative noise�

iik k ikb b b η=

ik ikb x+

iik ik ika a L ε= + +
ai per-sample offset

Lik local background 
provided by image 
analysis

εik ~ N(0, bi
2s1

2)
�additive noise�

ik iky a=



Discussion and extensions
Sequence-wise factors bk need not be 

explicitely determined if only interested in 
relative expression levels

The simplifying assumptions bring down number 
of parameters from 2dn to ~2d - the 'rest' 
is modeled as stochastic, aka noise.

Here, array calibration terms ai, bi same for 
all probes on array - can extend this to 
include print-tip or plate effects

Here, probe affinities bk same for all arrays -
can extend this to include batch effects



Quality control: 
diagnostic plots 
and artifacts



Scatterplot, colored by PCR-plate
Two RZPD Unigene II filters (cDNA nylon membranes)

PCR platesPCR plates



PCR platesPCR plates



PCR plates: boxplotsPCR plates: boxplots



array batchesarray batches



print-tip effectsprint-tip effects
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spotting pin quality declinespotting pin quality decline

after delivery of 3x105 spots

after delivery of 5x105 spots

H. Sueltmann DKFZ/MGA



spatial effectsspatial effects

R Rb R-Rb
color scale by rank

spotted cDNA arrays, Stanford-type

another 
array: 

print-tip

color 
scale ~ 
log(G)

color 
scale ~ 
rank(G)
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Batches: array to array differences dij = madk(hik -hjk)

arrays i=1�63; roughly sorted by time



Density representation of the scatterplot
(76,000 clones, RZPD Unigene-II filters)
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Calibration 
(aka normalization)

Calibration 
(aka normalization)

o Correction for systematic variations
(e.g. dye efficiencies Cy3/Cy5, detector gain, sample mass)

o A parameter estimation task

Raw data is heteroskedastic, i.e. variance is not 
constant ('different data points have different 
error bars') 
⇒ need for either weighted regression or 
variance stabilizing data transformation

Outliers, long-tailed distributions 
⇒ need for robust methods that do not 
sensitively depend on e.g. normality
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Ordinary regressionOrdinary regression

( )2ik
( , ) ( )

residual
i slides channels k probes

SoS = ∑ ∑
Minimize the sum of squares

residual: "fit" - "data"

Problem: all data points get the same weight, even 
if they come with different variance ('precision') -
this may greatly distort the fit! 

Solution: weight them accordingly (some weights 
may be zero)



Weighted regressionWeighted regression

( )2ik ik
( , ) ( )

w residual
i slides channels k probes

SoS = ×∑ ∑

If wik = 1/varik, then minimizing SoS produces the 
maximum-likelihood estimate for a model with 
normal errors.



Weighted regressionWeighted regression

( )2ik ik
( , ) ( )

w residual
i slides channels k probes

SoS = ×∑ ∑

If wik = 1/varik, then minimizing SoS produces the 
maximum-likelihood estimate for a model with 
normal errors.

Least Median Sum of Squares Regression:

ik1/ variance if residual median(residuals)
0 otherwise
ik

ikw
≤

=



Least trimmed sum of squares regressionLeast trimmed sum of squares regression

0 2 4 6 8

0
2

4
6

8

x

y

( )
2"median"

n
( )n ny f x−∑

minimize

- least sum of squares
- least trimmed sum of squares



But what is the variance of a 
measured spot intensity?

To estimate the variance of an individual probe, need 
many replicates from biologically identical samples. 
Often unrealistic.

Idea:

o use pooled estimate from several probes who we 
expect to have about the same true (unknown) variance

varpooled = mean (var individual probes)
o there is an obvious dependence of the variance on the 
mean intensity, hence stratify (group) probes by that.



dependence of variance on meandependence of variance on mean
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iik ik ika a L ε= + +
ai per-sample offset

Lik local background 
provided by image 
analysis

εik ~ N(0, bi
2s1

2)
�additive noise�

bi per-sample
normalization factor

bk sequence-wise
labeling efficiency

log ηik ~ N(0,s2
2)

�multiplicative noise�

iik k ikb b b η=

ik ik ik iky a b x= +

Decomposition:
signal = 

(true concentration 
x gain factor 
x multiplicative noise)

+ additive offset
+ additive noise



variance-vs-mean dependencevariance-vs-mean dependence

model ⇒
quadratic depen-
dence of  
v≡Var(Yik) on 
u≡E(Yik)

2 2 2

( )v u
c u s

=

+

data (cDNA slide)



variance stabilizationvariance stabilization

Xu a family of random variables with 
EXu=u, VarXu=v(u). 

Define

⇒var f(Xu ) ≈ independent of u

1( )
v( )

x

f x du
u

= ∫

�stabilized�
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Advantage:
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transformed scale, all data have 
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the arsinh transformationthe arsinh transformation

- - - log u

��� arsinh((u+uo)/c)

( )
( )

2arsinh( ) log 1

arsinh log log 2 0lim
x

x x x

x x
→∞

= + +

− − =

intensity
-200 0 200 400 600 800 1000
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the transformed model: 
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the transformed model: 
estimation of parameters from data

2Yarsinh , (0, )iki
ki ki ki

i

a N c
b

µ ε ε− = + ∼

o for exact replicates: straightforward by 
maximum likelihood. But we also want to process 
data sets that involve different samples!

o solution: if most (more than half) genes are 
unchanged, that's almost as good

o minority: act as outliers. Use robust variant of 
ML estimator, à la Least Trimmed Sum of 
Squares regression.



effects of different data transformationseffects of different data transformations



loglog

cDNA slide
data from 
H. Sueltmann

generalized 
log 

(variance 
stabilizing)

generalized 
log 

(variance 
stabilizing)



SummarySummary

log-ratio

'generalized' log-ratio

o advantages of variance-stabilizing data-transformation: 
generally better applicability of statistical methods 
(hypothesis testing, ANOVA, clustering, classification�)

o R package vsn

1 21 2

1 2

Y Yarsinh arsinhk ka a
b b
− −−

1 21 2

1 2

Y Ylog logk ka a
b b
− −−



Oligonucleotide chips



Affymetrix files
Main software from Affymetrix:

MAS - MicroArray Suite.
DAT file: Image file, ~10^7 pixels, ~50 
MB.

CEL file: probe intensities, ~400000 
numbers

CDF file: Chip Description File. Describes 
which probes go in which probe sets 
(genes, gene fragments, ESTs).



Image analysis
DAT image files ! CEL files
Each probe cell: 10x10 pixels.
Gridding: estimate location of probe cell 

centers.
Signal: 

� Remove outer 36 pixels ! 8x8 pixels.
� The probe cell signal, PM or MM, is the 
75th percentile of the 8x8 pixel values.

Background: Average of the lowest 2% probe 
cells is taken as the background value and 
subtracted.

Compute also quality values.



Data and notationData and notation
PMijg , MMijg = Intensity for perfect match and 

mismatch probe j for gene g in chip i. 
i = 1,�, n one to hundreds of chips
j = 1,�, J usually 16 or 20 probe pairs
g = 1,�, G 8�20,000 probe sets.

Tasks:
calibrate (normalize) the measurements from 

different chips (samples)
summarize for each probe set the probe level data, 

i.e., 20 PM and MM pairs, into a single 
expression measure.

compare between chips (samples) for detecting 
differential expression.



expression measures: 
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expression measures: 
MAS 4.0

Affymetrix GeneChip MAS 4.0 
software uses AvDiff, a trimmed 
mean:

o sort dj = PMj -MMj
o exclude highest and lowest value
o J := those pairs within 3 standard 
deviations of the average

1 ( )
# j j

j J
AvDiff PM MM

J ∈

= −∑



Expression measures 
MAS 5.0

Expression measures 
MAS 5.0

Instead of MM, use "repaired" version CT
CT= MM if MM<PM

= PM / "typical log-ratio" if MM>=PM

"Signal" =
Tukey.Biweight (log(PM-CT))  

(� ≈median)

Tukey Biweight: B(x) = (1 � (x/c)^2)^2 if |x|<c, 0 otherwise



Affymetrix: IPM = IMM + Ispecific ?

log(PM/MM)
0From: R. Irizarry et al., 

Biostatistics 2002



Expression measures: 
Li & Wong

Expression measures: 
Li & Wong

dChip fits a model for each gene

where
� θi: expression index for gene i
� φj: probe sensitivity

Maximum likelihood estimate of MBEI is used as 
expression measure of the gene in chip i.

Need at least 10 or 20 chips.

Current version works with PMs only.

2, (0, )ij ij i j ij ijPM MM Nθ φ ε ε σ− = + ∝



Expression measures 
RMA: Irizarry et al. (2002)

Expression measures 
RMA: Irizarry et al. (2002)

o Estimate one global background value 
b=mode(MM). No probe-specific 
background! 

o Assume: PM = strue + b
Estimate s≥0 from PM and b as a 
conditional expectation E[strue|PM, b].

o Use log2(s).
o Nonparametric nonlinear calibration 

('quantile normalization') across a set 
of chips.



RMA expression measures, 
I 

Simple measure

with A a set of  “suitable” pairs.

∑
∈

−
Α

=
Aj

jj BGPM )(log1 RMA 2



RMA expression measures, 
II

� Robust regression methods to estimate 
expression measure and SE from PM-BG values.

� Assume additive model 

� Estimate RMA = ai for chip i using robust method, 
such as median polish (fit iteratively, 
successively removing row and column medians, 
and accumulating the terms, until the process 
stabilizes).

� Fine with n=2 or more chips.

ijjiij baBGPM ε++=− )(log2



Software for pre-processing 
of Affymetrix data

� Bioconductor R package affy.
� Background estimation.
� Probe-level normalization: quantile, 

curve- fitting.
� Expression measures: AvDiff, Signal, 

Li & Wong (2001), RMA.
� Two main functions: ReadAffy, 

express.
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