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<

a microarray

Slide: 25x75 mm

Spot-to-spot: ca. 150-350 um

>

slide

4 x 4 or 8x4 sectors

17...38 rows and
columns per sector

ca. 4600...46000
probes/array

sector: corresponds
to one print-tip




Terminology
sample: RNA (cDNA) hybridized to the array, aka
target, mobile substrate.

probe: DNA spotted on the array, aka spoft,
immobile substrate.

sector: rectangular matrix of spots printed using
the same print-tip (or pin), aka print-tip-group

plate: set of 384 (768) spots printed with DNA
from the same microtitre plate of clones

slide, array

channel: data from one color (Cy3 = cyanine 3 =
green, Cy5 = cyanine 5 = red).

batch: collection of microarrays with the same
probe layout.



Raw data

scanner signal
resolution:
5 or 10 mm spatial,
16 bit (65536) dynamical per channel
ca. 30-50 pixels per probe (60 um spot size)
40 MB per array
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Raw data

scanner signal
resolution:
5 or 10 mm spatial,
16 bit (65536) dynamical per channel
ca. 30-50 pixels per probe (60 um spot size)
40 MB per array

Image Analysis

spot intensities
2 numbers per probe (~100-300 kB)

.. auxiliaries: background, area, std dev, ..



Image analysis

1. Addressing. Estimate
location of spot centers.
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Image analysis

1. Addressing. Estimate
location of spot centers.

2. Segmentation. Classify pixels
as foreground (signal) or
background.

3. Information extraction. For
each spot on the array and each
dye

- foreground intensities;

- background intensities;

* quality measures.

—> R and G for each spot on the array.



Segmentation

adaptive segmentation fixed circle segmentation
seeded region growing

Spots may vary in size and shape.



Local background

---- GenePix

---- QuantArray

---- ScanAlyze



Local background estimation by
morphological opening
Image is probed with a window (aka structuring

element), eg, a square with side length about twice
the spot-to-spot distance.
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Local background estimation by
morphological opening
Image is probed with a window (aka structuring

element), eg, a square with side length about twice
the spot-to-spot distance.

Erosion: at each pixel, replace its value by the
minimum value in the window around it.

followed by

Dilation: same with maximum

Do this separately for red and green images. This
'smoothes away' all structures that are smaller
than the window

—> Image of the estimated background




What is (local) background?

usual assumption:

total brightness =
background brightness (adjacent to spot)
+ brightness from labeled sample cDNA



What is (local) background?

usual assumption:

total brightness =
background brightness (adjacent to spot)
+ brightness from labeled sample cDNA




Quality measures

Spot quality
- Brightness: foreground/background ratio

- Uniformity: variation in pixel intensities and ratios
of intensities within a spot

- Morphology: area, perimeter, circularity.
Slide quality

- Percentage of spots with no signal

- Range of intensities

- Distribution of spot signal area, etc.

How to use quality measures in subsequent
analyses?



Probes (genes)

two-co

spot intensity data |

or spotted arrays n one-color arrays

(Affymetrix, nylon)

———————————————————————
conditions (samples)



Microarrays are measurement instruments

- have limited measurement precision (‘error bars’)
- need calibration

- involve technology optimization and fine-tuning

- may fail or be mis-operated

Technology is complex and crossdisciplinary
(biotechnology, nanotechnology, chemistry, physics, robotics:; plus
the application areas: molecular biology, oncology, pathology,
medicine...)

Technology and the ways it is applied are still
evolving

Computational statistics and data analysis can
contribute



Raw data are not mRNA concentrations

o tissue
contamination

o RNA
degradation

o amplification
efficiency

0 reverse
transcription
efficiency

o hybridization
efficiency and
specificity

o clone

identification and

mapping

o PCR vyield,
contamination
o spotting
efficiency

o DNA-support
binding

o other array
manufacturing-
related issues

o image
segmentation

o signal
quantification

o 'background’
correction



Raw data are not mRNA concentrations

o tissue o clone o image
Cor

R :
Zec The problem is less that these
o a steps are 'not perfect’; it is
eff that they may vary from array
f; " to array, experiment to

r .
of experiment.
o)
ef

specificit'y related issues
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measurements

o corrections can be
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Calibration

PCR yield
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Sources of variation |

amount of RNA in the biopsy PCR vyield
efficiencies of DNA quality
-RNA extraction spotting efficiency,
-reverse transcription spot size
-labeling cross-/unspecific hybridization
-photodetection stray signal
Systematic Stochastic
o similar effeC'l' on many o too random to be ex-
measurements plicitely accounted for
o corrections can be o “noise”

estimated from data

Cali%ion Err%odel



measured intensity of probe k in sample i
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unspecific gain actual
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measured intensity of probe k in sample i

l

Yi = a, + b, x,

/ 7N
unspecific gain actual
abundance

a,, b, all unknown: need to
approximately determine from data
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Implications

. — ' uantity of
data }/’k - a’k T b’k ’Y’k ?m“er'esz

No non-linear terms necessary:
Saturation can be avoided in the experiments.

Data from well-performed experiments shows no evidence for gross
deviations from affine linearity.

The flexibility (and complexity) lies in the number of parameters:
twice the number of data points!

— parameters must not all be independent
— need to make simplifiying assumptions, to reduce the effective
number of independent parameters to manageable size.

Quality control: verify that assumptions hold for the data at hand
Normalization, calibration: estimate parameters for the data at
hand

Error modeling: control the error bars both of measured y, and of
estimated normalization parameters q,, b,
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b; per-sample
normalization factor

b, sequence-wise
labeling efficiency

log 7y ~ MO, s5)
“multiplicative noise”



A typical set of assumptions

Yi = a + b, x,

/

a,=a+L, +e, b, =0b b n,
a; per-sample offset b; per-sample
normalization factor
L, local background .
provided by image b, sequence-wise
analysis labeling efficiency

Epe ™ N(O, b,'ZSIZ) Iog Nik ~ N(O, SZZ)

“additive noise” "multiplicative noise”



Discussion and extensions

Sequence-wise factors b, need not be
explicitely determined if only interested in
relative expression levels

The simplifying assumptions bring down number
of parameters from 2dn to ~2d - the 'rest’
is modeled as stochastic, aka noise.

Here, array calibration terms a;, b, same for
all probes on array - can extend this to
include print-tip or plate effects

Here, probe affinities b, same for all arrays -
can extend this to include batch effects



Quality control:
diagnostic plots
and artifacts
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PCR plates
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PCR plates: boxplots |
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PCR plates: tumor
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print-tip effects |

41 (a42-u07639vene.txt) by spotting pin
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4 spotting pin quality declinel

after delivery of 5x10° spots

SMP3 (026 ul uptake) |~

H. Sueltmann DKFZ/MGA



spatial effects |

max

omin

R Rb R-Rb another color color

ar'r'ay: |e ~ SCQ'C n
color scale by rank ot sca
i prine-tip log(6)  rank(6)

spotted cDNA arrays, Stanford-type



Batches: array to array differences d;; = mad,(h; -hy)

14
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0.8

0.6

10 20 30 40 50 60

1:nrhyb >
arrays i=1..63; roughly sorted by time



Density representation of the scatterplot
(76,000 clones, RZPD Unigene-II filters)

NO — normal
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Calibration
(aka normalization)

o Correction for systematic variations
(e.g. dye efficiencies Cy3/Cy5, detector gain, sample mass)

o A parameter estimation task

Raw data is heteroskedastic, i.e. variance is not
constant ('different data points have different
error bars')

— need for either weighted regression or
variance stabilizing data transformation

Outliers, long-tailed distributions
= need for robust methods that do not
sensitively depend on e.g. normality
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Ordinary regression |

Minimize the sum of squares

S0S5 = > Y (residual, )’

i/ (slides,channels) k( probes)
residual: "fit" - "data"

Problem: all data points get the same weight, even
if they come with different variance ('precision') -
this may greatly distort the fit!

Solution: weight them accordingly (some weights
may be zero)



Weighted regression |

S0S = > Y w, x(residual,)’

i (slides ,channels) k(probes)

If wy, = 1/var,, then minimizing SoS produces the
maximum-likelihood estimate for a model with
normal errors.



Weighted regression |

S0S = > Y w, x(residual,)’

i (slides ,channels) k(probes)

If wy, = 1/var,, then minimizing SoS produces the
maximum-likelihood estimate for a model with
normal errors.

Least Median Sum of Squares Regression:

1/ variance, if residual, < median(residuals)

W, = ,
k O otherwise



Least trimmed sum of squares r'egr'essionl

minimize

"median"” 2

> (v, — F(x,)

n

- least sum of squares
- least trimmed sum of squares



But what is the variance of a
measured spot intensity?

To estimate the variance of an individual probe, need
many replicates from biologically identical samples.
Often unrealistic.

Idea:

o use pooled estimate from several probes who we
expect to have about the same true (unknown) variance

Var'pooled = mean (VOI" individual probes)

o there is an obvious dependence of the variance on the
mean intensity, hence stratify (group) probes by that.



dependence of variance on mean
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/

a,=a +L,+¢&,

/
a; per-sample offset

L, local background

provided by image

analysis

Eik ~ N(O, b/zs.lz)
“additive noise”

Yi = a, + b, x,

b, =b b, n,

/

b; per-sample
normalization factor

b, sequence-wise
labeling efficiency

log 77 ~ N(O,s5)
"multiplicative noise”



Decomposition:
signal =
(true concentration
x gain factor
x multiplicative noise)
+ additive offset
+ additive noise

“additive noise” "multiplicative noise”




variance-vs-mean dependence |

data (cDNA slide) model =
- | quadratic depen-
g dence of
i v=Var(Y,) on
> 8 _
& U:E(yik)
g T . v(u) =
° | | : "fh' | : CZUZ + 52

0 100 200 300 400 500

U




variance stabilization |

X, a family of random variables with
EX,=u, VarX=v(u).

Define f !’ 1 d
(x) = j N

=var f(X,) = independent of u
“stabilized”




variance stabilizing transformations |

y = true value + add. noise Y
y = true value + add. noise + h
offset Y
y = true value x mult. noise log 2
C
y = true value x mult. noise + y - b
log
offset c
y = true value x mult. noise + y — b
arsinh

add. noise + offset c




variance stabilizing transformations |

Advantage:

~<‘~<

eliminates the need to explicitely
account for the variance-mean
dependence through weighted
regression (cumbersome) - on the
transformed scale, all data have
the same weight

<] <]

<




the arsinh transformation |

-—
-
-——
-—
-—
P

- - -logu

arsinh((u+u,)/c)

-200 0 200 400 600 800 1000
Intensity

arsinh(x) = Iog(x + X%+ 1)

lim (arsinh x — log x —log2) = O

X —>oo



the transformed model:
estimation of parameters from data

yki; a _ Hi + € € ~ N(O, %)

/

arsinh




the transformed model:
estimation of parameters from data
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/

arsinh

o for exact replicates: straightforward by
maximum likelihood. But we also want to process
data sets that involve different samples!
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the transformed model:
estimation of parameters from data

Ykib_. a’ — ll'l/(i + 8/(1" gkl' ~ N(O' CZ)

/

arsinh

o for exact replicates: straightforward by
maximum likelihood. But we also want to process
data sets that involve different samples!

o solution: if most (more than half) genes are
unchanged, that's almost as good

o minority: act as outliers. Use robust variant of
ML estimator, a la Least Trimmed Sum of
Squares regression.




effects of different data transformations I
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log R —log G

h(R) - h(G)

h(R) + h{G)

15

generalized
log

(variance
stabilizing)

cDNA slide
data from
H. Sueltmann



Summary |

log-ratio T —a
log A — log B
'generalized’ log-ratio
arsinh 6.~ % _ gpsinh k2 — %
b b,

o advantages of variance-stabilizing data-transformation:
generally better applicability of statistical methods
(hypothesis testing, ANOVA, clustering, classification...)

o R package vsn



Oligonucleotide chips




Affymetrix files

Main software from Affymetrix:
MAS - MicroArray Suite.
DAT file: Image file, ~10"7 pixels, ~50
MB.

CEL file: probe intensities, ~400000
numbers

CDF file: Chip Description File. Describes
which probes go in which probe sets
(genes, gene fragments, ESTs).



Image analysis

DAT image files = CEL files
Each probe cell: 10x10 pixels.

Gridding: estimate location of probe cell
centers.

Signal:
- Remove outer 36 pixels = 8x8 pixels.

- The probe cell signal, PM or MM, is the
75 percentile of the 8x8 pixel values.

Background: Average of the lowest 2% probe
cells is taken as the background value and
subtracted.

Compute also quality values.



Data and notation I

PM,-Jy, MM, = Intensity for perfect match and
mismatch probe j for gene g in chip 7.
f=1,., n one to hundreds of chips
Jj=1,.J usually 16 or 20 probe pairs
g-=1,., 6 8..20,000 probe sets.

Tasks:

calibrate (normalize) the measurements from
different chips (samples)

summarize for each probe set the probe level data,
i.,e., 20 PM and MM pairs, into a single
expression measure.

compare between chips (samples) for detecting
differential expression.



expression measures:
MAS 4.0

Affymetrix GeneChip MAS 4.0
software uses AvDiff, a trimmed
mean:

AvDiff = D> (PM, —MM))
# Je.f

o sort af, = PMJ- -MMJ-

o exclude highest and lowest value

o J := those pairs within 3 standard
deviations of the average




Expression measures
MAS 5.0

Instead of MM, use "repaired" version CT
CT= MM if MM<PM
PM / "typical log-ratio" 7if MM>=PM

"Signal" =
Tukey.Biweight (log(PM-CT))
(... =median)

Tukey Biweight: B(x) = (1 - (x/c)"2)"2 if |x|<c, O otherwise



Affymetr'ix . IpM = IMM + Ispecific ?

&) wery (#5%—-100%) high abundan

J‘II'IIL.__

=7 51 44 A48 A1 25 1434 1.2 -ﬂ

L[4 ]4]

G

]

200

2 04 15 21 284 34 441 47 54

Iog(PM/MM)

From: R. Irizarry et al., O
Biostatistics 2002



Expression measures:
Li & Won

dchip fits a model for each gene
PM, -MM; =60, +¢;, ¢, =< N(0,0°)

where
- 6: expression index for gene i
- ¢; probe sensitivity

Maximum likelihood estimate of MBETI is used as
expression measure of the gene in chip /.

Need at least 10 or 20 chips.

Current version works with PMs only.



Expression measures
RMA: Irizarry et al. (2002)
o Estimate one global background value

b=mode(MM). No probe-specific
background!

o Assume: PM =s. .  + b

Estimate s>0 from PM and b as a
conditional expectation E[s,..|PM, b].

o Use log,(s).

o Nonparametric nonlinear calibration
('quantile normalization') across a set
of chips.



RMA expression measures,
I

Simple measure
1

RMA =
A

Zlogz(PMj—BGj)

je A

with A a set of “suitable” pairs.



RMA expression measures,
IT

* Robust regression methods to estimate
expression measure and SE from PM-BG values.

- Assume additive model

log,(PM,—BG)=a,+b, +&,

+ Estimate RMA = q; for chip /using robust method,
such as median polish (fit iteratively,
successively removing row and column medians,
and accumulating the terms, until the process
stabilizes).

* Fine with #=2 or more chips.



Software for pre-processing
of Affymetrix data

» Bioconductor R package affy.

* Background estimation.

* Probe-level normalization: quantile,
curve- fitting.

+ Expression measures: AvDiff, Signal,
Li & Wong (2001), RMA.

- Two main functions: ReadAffy,
express.
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