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Multiple hypothesis testing

[1 Suppose we want to find genes that are differentially expressed
between different conditions/phenotypes

[1 We conduct a statistical test for each gene g = 1,...,m (t-test,
Wilcoxon test, permutation test, .. .).

[J This yields test statistics T, p-values p,.

0 p, Is the probability under the null hypothesis that the test
statistic Is at least as extreme as 7,. Under the null hypothesis,

Pr(p, < a) = a.



Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.
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t-test: 1045 genes with p < 0.05.



Multiple testing: the problem

Multiplicity problem: thousands of hypotheses are tested
simultaneously.

e Increased chance of false positives.

e E.g. suppose you have 10,000 genes on a chip and not a single
one is differentially expressed. You would expect 10000+ 0.01 = 100
of them to have a p-value < 0.01.

¢ Individual p—values of e.g. 0.01 no longer correspond to significant
findings.

Need to adjust for multiple testing  when assessing the statistical
significance of findings.



Multiple hypothesis testing

# true null hypotheses
(non-diff. genes)

# false null hypotheses
(diff. genes)

From Benjamini & Hochberg (1995).

# non—rejected # rejected

hypotheses  hypotheses
U V
Type | error
T S
Type |l error
m— R R



Type | error rates

1. Family—wise error rate (FWER) . The FWER is defined as the
probability of at least one Type | error (false positive):

FWER = Pr(V > 0).

2. False discovery rate (FDR) . The FDR (Benjamini & Hochberg
1995) is the expected proportion of Type | errors among the
rejected hypotheses:

FDR = E(Q),
with

0 — V/R, ifR >0,

{O, If R =0.



Multiple testing: Controlling a type | error rate

[1 Aim: For a given type | error rate «, use a procedure to select a
set of “significant” genes that guarantees a type | error rate < «.

[1 The type | error is defined with respect to a given configuration
of true and false null hypotheses.

[ Weak control of type | error: only under the assumption that all
null hypotheses are true (complete null hypothesis, H).

[1 Strong control of type | error: for all possible configurations of
true and false null hypotheses.



FWER: The Bonferroni correction

Suppose we conduct a hypothesis test for eachgene g =1,...,m,
producing

an observed test statistic: 7},

an unadjusted p—value: p,.

Bonferroni adjusted p—values:

~

Dg = min(mpg, 1).



FWER: The Bonferroni correction

Chosing all genes with p, < o controls the FWER at level a:

FWER = Pr(V > 0)

Pr(at least one p, < a|H))

Pr(at least one p, < a/m|H))
> g1 Pr(pg < a/m|Hy)

m*x a/m = q.

VAN

Here, H, denotes the complete null hypothesis that no gene is
differentially expressed.



Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

Histogram of t histogram of p—values

lnn n
|
5

t P

80 100 120
I I |

60
|
Frequency

Frequency

40
I

100 200 300 400 500 600

(

20
I

98 genes with Bonferroni-adjusted p, < 0.05 < p, < 0.000016
(t-test)



More Is not always better

[1 Suppose you produce a small array with 500 genes you are
particularly interested in.

[1 If a gene on this array has an unadjusted p-value of 0.0001, the
Bonferroni-adjusted p-value is still 0.05.

[1 If instead you use a genome-wide array with, say, 50,000 genes,
this gene would be much harder to detect, because roughly 5 genes
can be expected to have such a low p-value by chance.



FWER: Improvements to Bonferroni
(Westfall/Younq)

[1 The minP adjusted p-values (Westfall and Young):
O pg = Pr(ming—1....m Pr < pg|Ho).

[0 Chosing all genes with p, < o & p, < ¢, controls the FWER at
level a:

FWER = Pr(V >0)= Pr(atleastone p, < «a|Hy)
= Pr(minp, < a|Hj)
= Pr(minp, < co|Hop)

— .

But how to obtain the probabilities p,?



Estimation of minP-adjusted p-values through
resampling

] Forb=1,...,B, (randomly) permute the sample labels.

[J For each gene, compute the unadjusted p-values p,;, based on
the permuted sample labels.

[0 Estimate p, = Pr(ming=1,...m Pr < py|Ho) by

#{b s minpy, < py}/B.



Example

[] Suppose pnin = 0.0003 (the minimal unadjusted p-value).

[1 Among the randomized data sets (permuted sample labels),
count how often the minimal p-value is smaller than 0.0003. If this

appears e.g. in 4% of all cases, p,,;» = 0.04.

[1 If there Is a positive dependence between the non-diff. genes,
this procedure can yield better results than the Bonferroni

correction.



FWER control

[1 The Bonferroni and Westfall/Young methods give strong control
of the FWER under mild assumptions.

[] Step-down procedure (Holm): Enhancement for Bonferroni
and Westfall/'Young: same adjustment for the smallest p-value,
successively smaller adjustment for larger ones.

[1 ldea: Compare the kth-smallest p-value to the kth-smallest
under the complete null hypothesis.



Westfall/Young FWER control

[1 Advantage: The method takes the dependence structure
between genes into account, which gives in many cases higher
power.

[1 Computationally intensive if the unadjusted p-values arise from
permutation tests.

[1 Similar method (maxT) under the assumption that the statistics
T, are equally distributed under the null hypothesis - replace p, by
'T,| and min by max. Computationally less intensive.

[1 All methods are implemented in the Bioconductor package
multtest, with a fast algorithm for the minP method.



FWER: Comparison of different methods

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.
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The FWER Is a conservative criterion: many interesting genes may
be missed.



Estimation of the FDR (SAM, Storey 2001)

ldea: Depending on the chosen cutoff-value for the test statistic 7,
estimate the expected proportion of false positives in the resulting
gene list through a permutation scheme.

1. Estimate the number mq of non-diff. genes.

2. For each permutation b, compute the number of significant genes.
The average of these numbers, multiplied with my/m, gives an
estimate of the number of false positives E(V).

A

3. Estimate the FDR E(V/R) by E(V)/R.



FDR - 1.Estimating the number m of invariant
genes

[1 Consider the distribution of histogram of p-values
p-values: A gene with p > 0.5

IS likely to be not differentially g -
expressed.
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2 .Estimation of the FDR

0 For b = 1,...,B, (randomly) permute the sample labels,
compute test statistics 7}, under the complete null hypothesis.

[1 For any threshold ¢, of the test statistic, compute the numbers
ny Of genes with T,, > ¢y (numbers of false positives).

[ The estimation of the FDR is based on the mean of these
numbers, but the median or 90%-quantile may also be interesting.



Estimation of the FDR: Example

Golub data

500 selected genes: numbers of false positives in random permutations
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Estimation of the FDR

[1 The procedure takes the dependence structure between genes
Into account.

[1 It Is assumed that the distribution of the test statistic is the
same for all genes that are not differentially expressed (may be a
reasonable assumption for something like the ¢-statistic).

[1 The g-value of a gene is defined as the minimal FDR at which it
appears significant.



FWER or FDR?

[1 Chose control of the FWER if high confidence in all selected
genes is desired. Loss of power due to large number of tests: many
differentially expressed genes may not appear as significant.

[1 If a certain proportion of false positives is tolerable: Procedures
based on FDR are more flexible; the researcher can decide how
many genes to select, based on practical considerations.



Prefiltering

[1 What about prefiltering genes (according to intensity, variance
etc.) to reduce the proportion of false positives - e.g. genes with
consistently low intensity may not be considered interesting?

[1 Can be useful, but:

[1 The criteria for filtering have to be chosen before the analysis -
not dependent on the results of the analysis.

[1 The criteria have to be independent of the distribution of the test
statistic under the null hypothesis - otherwise no control of the type
| error.
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