An introduction to the bambu package using NanoporeRNASeq data

Introduction

NanoporeRNASeq contains RNA-Seq data from the K562 and MCF7 cell lines that were generated by the SG-NEx project (https://github.com/GoekeLab/sg-nex-data). Each of these cell line has three replicates, with 1 direct RNA sequencing data and 2 cDNA sequencing data. The files contains reads aligned to the human genome (Grch38) chromosome 22 (1:25500000).

Accessing NanoporeRNASeq data

Load the NanoporeRNASeq package

library("NanoporeRNASeq")

List the samples

data("SGNexSamples")
SGNexSamples
##> DataFrame with 6 rows and 6 columns
##>                sample_id    Platform    cellLine    protocol cancer_type
##>              <character> <character> <character> <character> <character>
##> 1 K562_directcDNA_repl..      MinION        K562  directcDNA   Leukocyte
##> 2 K562_directcDNA_repl..     GridION        K562  directcDNA   Leukocyte
##> 3 K562_directRNA_repli..     GridION        K562   directRNA   Leukocyte
##> 4 MCF7_directcDNA_repl..      MinION        MCF7  directcDNA      Breast
##> 5 MCF7_directcDNA_repl..     GridION        MCF7  directcDNA      Breast
##> 6 MCF7_directRNA_repli..     GridION        MCF7   directRNA      Breast
##>                fileNames
##>              <character>
##> 1 NanoporeRNASeq/versi..
##> 2 NanoporeRNASeq/versi..
##> 3 NanoporeRNASeq/versi..
##> 4 NanoporeRNASeq/versi..
##> 5 NanoporeRNASeq/versi..
##> 6 NanoporeRNASeq/versi..

List the available BamFile

library(ExperimentHub)
NanoporeData <- query(ExperimentHub(), c("NanoporeRNA", "GRCh38", "Bam"))
bamFiles <- Rsamtools::BamFileList(NanoporeData[["EH3808"]], NanoporeData[["EH3809"]],
    NanoporeData[["EH3810"]], NanoporeData[["EH3811"]], NanoporeData[["EH3812"]],
    NanoporeData[["EH3813"]])

Get the annotation GRangesList

data("HsChr22BambuAnnotation")
HsChr22BambuAnnotation
##> GRangesList object of length 1500:
##> $ENST00000043402
##> GRanges object with 2 ranges and 2 metadata columns:
##>       seqnames            ranges strand | exon_rank exon_endRank
##>          <Rle>         <IRanges>  <Rle> | <integer>    <integer>
##>   [1]       22 20241415-20243110      - |         2            1
##>   [2]       22 20268071-20268531      - |         1            2
##>   -------
##>   seqinfo: 1 sequence from an unspecified genome; no seqlengths
##> 
##> $ENST00000086933
##> GRanges object with 3 ranges and 2 metadata columns:
##>       seqnames            ranges strand | exon_rank exon_endRank
##>          <Rle>         <IRanges>  <Rle> | <integer>    <integer>
##>   [1]       22 19148576-19149095      - |         3            1
##>   [2]       22 19149663-19149916      - |         2            2
##>   [3]       22 19150025-19150283      - |         1            3
##>   -------
##>   seqinfo: 1 sequence from an unspecified genome; no seqlengths
##> 
##> $ENST00000155674
##> GRanges object with 8 ranges and 2 metadata columns:
##>       seqnames            ranges strand | exon_rank exon_endRank
##>          <Rle>         <IRanges>  <Rle> | <integer>    <integer>
##>   [1]       22 17137511-17138357      - |         8            1
##>   [2]       22 17138550-17138738      - |         7            2
##>   [3]       22 17141059-17141233      - |         6            3
##>   [4]       22 17143098-17143131      - |         5            4
##>   [5]       22 17145024-17145117      - |         4            5
##>   [6]       22 17148448-17148560      - |         3            6
##>   [7]       22 17149542-17149745      - |         2            7
##>   [8]       22 17165209-17165287      - |         1            8
##>   -------
##>   seqinfo: 1 sequence from an unspecified genome; no seqlengths
##> 
##> ...
##> <1497 more elements>

Visualizing gene of interest from a single bam file

We can visualize the one sample for a single gene ENST00000215832 (MAPK1)

library(ggbio)
range <- HsChr22BambuAnnotation$ENST00000215832
# plot mismatch track
library(BSgenome.Hsapiens.NCBI.GRCh38)
# plot annotation track
tx <- autoplot(range, aes(col = strand), group.selfish = TRUE)
# plot coverage track
coverage <- autoplot(bamFiles[[1]], aes(col = coverage), which = range)

# merge the tracks into one plot
tracks(annotation = tx, coverage = coverage, heights = c(1, 3)) + theme_minimal()

Running Bambu with NanoporeRNASeq data

Load the bambu package

library(bambu)
genomeSequenceData <- query(ExperimentHub(), c("NanoporeRNA", "GRCh38", "FASTA"))
genomeSequence <- genomeSequenceData[["EH7260"]]

Run bambu

Applying bambu to bamFiles

se <- bambu(reads = bamFiles, annotations = HsChr22BambuAnnotation, genome = genomeSequence)

bambu returns a SummarizedExperiment object

se
##> class: RangedSummarizedExperiment 
##> dim: 1542 6 
##> metadata(2): incompatibleCounts warnings
##> assays(4): counts CPM fullLengthCounts uniqueCounts
##> rownames(1542): BambuTx1 BambuTx2 ... ENST00000641933 ENST00000641967
##> rowData names(11): TXNAME GENEID ... txid eqClassById
##> colnames(6): 4bfec3bca2028_3844 4bfec1e1b9664_3846 ...
##>   4bfec6019de29_3852 4bfec4e5b450d_3854
##> colData names(1): name

Visualizing gene examples

We can visualize the annotated and novel isoforms identified in this gene example using plot functions from bambu

plotBambu(se, type = "annotation", gene_id = "ENSG00000099968")

##> [[1]]
##> TableGrob (4 x 1) "arrange": 4 grobs
##>   z     cells    name                grob
##> 1 1 (2-2,1-1) arrange      gtable[layout]
##> 2 2 (3-3,1-1) arrange      gtable[layout]
##> 3 3 (4-4,1-1) arrange      gtable[layout]
##> 4 4 (1-1,1-1) arrange text[GRID.text.285]
sessionInfo()
##> R Under development (unstable) (2025-10-20 r88955)
##> Platform: x86_64-pc-linux-gnu
##> Running under: Ubuntu 24.04.3 LTS
##> 
##> Matrix products: default
##> BLAS:   /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so 
##> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
##> 
##> locale:
##>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##>  [3] LC_TIME=en_GB              LC_COLLATE=C              
##>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
##> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
##> 
##> time zone: America/New_York
##> tzcode source: system (glibc)
##> 
##> attached base packages:
##> [1] stats4    stats     graphics  grDevices utils     datasets  methods  
##> [8] base     
##> 
##> other attached packages:
##>  [1] bambu_3.13.0                          
##>  [2] SummarizedExperiment_1.41.0           
##>  [3] Biobase_2.71.0                        
##>  [4] MatrixGenerics_1.23.0                 
##>  [5] matrixStats_1.5.0                     
##>  [6] BSgenome.Hsapiens.NCBI.GRCh38_1.3.1000
##>  [7] BSgenome_1.79.0                       
##>  [8] rtracklayer_1.71.0                    
##>  [9] BiocIO_1.21.0                         
##> [10] ggbio_1.59.0                          
##> [11] ggplot2_4.0.0                         
##> [12] Rsamtools_2.27.0                      
##> [13] Biostrings_2.79.1                     
##> [14] XVector_0.51.0                        
##> [15] GenomicRanges_1.63.0                  
##> [16] IRanges_2.45.0                        
##> [17] S4Vectors_0.49.0                      
##> [18] Seqinfo_1.1.0                         
##> [19] NanoporeRNASeq_1.21.0                 
##> [20] ExperimentHub_3.1.0                   
##> [21] AnnotationHub_4.1.0                   
##> [22] BiocFileCache_3.1.0                   
##> [23] dbplyr_2.5.1                          
##> [24] BiocGenerics_0.57.0                   
##> [25] generics_0.1.4                        
##> 
##> loaded via a namespace (and not attached):
##>   [1] DBI_1.2.3                bitops_1.0-9             RBGL_1.87.0             
##>   [4] gridExtra_2.3            httr2_1.2.1              formatR_1.14            
##>   [7] rlang_1.1.6              magrittr_2.0.4           biovizBase_1.59.0       
##>  [10] compiler_4.6.0           RSQLite_2.4.3            GenomicFeatures_1.63.1  
##>  [13] png_0.1-8                vctrs_0.6.5              reshape2_1.4.4          
##>  [16] ProtGenerics_1.43.0      stringr_1.5.2            pkgconfig_2.0.3         
##>  [19] crayon_1.5.3             fastmap_1.2.0            backports_1.5.0         
##>  [22] labeling_0.4.3           rmarkdown_2.30           graph_1.89.0            
##>  [25] UCSC.utils_1.7.0         purrr_1.1.0              bit_4.6.0               
##>  [28] xfun_0.54                cachem_1.1.0             cigarillo_1.1.0         
##>  [31] GenomeInfoDb_1.47.0      jsonlite_2.0.0           blob_1.2.4              
##>  [34] DelayedArray_0.37.0      BiocParallel_1.45.0      parallel_4.6.0          
##>  [37] cluster_2.1.8.1          VariantAnnotation_1.57.0 R6_2.6.1                
##>  [40] bslib_0.9.0              stringi_1.8.7            RColorBrewer_1.1-3      
##>  [43] rpart_4.1.24             xgboost_1.7.11.1         jquerylib_0.1.4         
##>  [46] Rcpp_1.1.0               knitr_1.50               base64enc_0.1-3         
##>  [49] Matrix_1.7-4             nnet_7.3-20              tidyselect_1.2.1        
##>  [52] rstudioapi_0.17.1        dichromat_2.0-0.1        abind_1.4-8             
##>  [55] yaml_2.3.10              codetools_0.2-20         curl_7.0.0              
##>  [58] lattice_0.22-7           tibble_3.3.0             plyr_1.8.9              
##>  [61] withr_3.0.2              KEGGREST_1.51.0          S7_0.2.0                
##>  [64] evaluate_1.0.5           foreign_0.8-90           pillar_1.11.1           
##>  [67] BiocManager_1.30.26      filelock_1.0.3           checkmate_2.3.3         
##>  [70] OrganismDbi_1.53.2       RCurl_1.98-1.17          ensembldb_2.35.0        
##>  [73] BiocVersion_3.23.1       scales_1.4.0             glue_1.8.0              
##>  [76] lazyeval_0.2.2           Hmisc_5.2-4              tools_4.6.0             
##>  [79] data.table_1.17.8        GenomicAlignments_1.47.0 XML_3.99-0.19           
##>  [82] grid_4.6.0               tidyr_1.3.1              AnnotationDbi_1.73.0    
##>  [85] colorspace_2.1-2         restfulr_0.0.16          htmlTable_2.4.3         
##>  [88] Formula_1.2-5            cli_3.6.5                rappdirs_0.3.3          
##>  [91] S4Arrays_1.11.0          dplyr_1.1.4              AnnotationFilter_1.35.0 
##>  [94] gtable_0.3.6             sass_0.4.10              digest_0.6.37           
##>  [97] SparseArray_1.11.1       rjson_0.2.23             htmlwidgets_1.6.4       
##> [100] farver_2.1.2             memoise_2.0.1            htmltools_0.5.8.1       
##> [103] lifecycle_1.0.4          httr_1.4.7               bit64_4.6.0-1