## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set( comment = "##", warning = FALSE, dev = "png" ) ## ----quickstart, eval=FALSE, echo=TRUE---------------------------------------- # ## Example code only, not run: # # # Load up the data # # (use load_data_genes() for RNA Polymerase occupancy data) # input <- load_data_peaks( # binding_profiles_path = "path/to/binding_profile_bedgraphs", # peaks_path = "path/to/peak_gffs_or_beds" # # add quantile_norm = TRUE if appropriate # ) # # # Determine differential binding # # (use differential_accessibility() for CATaDa chromatin accessibility data) # input.diff <- differential_binding( # input, # cond = c( # "Display name 1" = "Condition 1 identifying string in filenames", # "Display name 2" = "Condition 2 identifying string in filenames" # ) # ) # # # The result 'input.diff' is a formal S4 object. # # You can see a summary by typing its name: # input.diff # # # View the proportion of differentially bound loci # plot_venn(input.diff) # # # Plot the differential binding, labelling associated genes with outliers # plot_volcano(input.diff) # # # Analyse GO enrichment in peaks associated with one condition # analyse_go_enrichment( # input.diff, # direction = "Condition 1 identifier set with differential_binding() above" # ) # # # View the differentially bound loci in an Shiny/IGV browser web app, # # with an interactive, searchable, sortable table of bound regions # browse_igv_regions(input.diff) # # # Apply additional functions on the differential binding results # my_custom_function(analysisTable(input.diff)) ## ----load_library------------------------------------------------------------- library(damidBind) ## ----data_files--------------------------------------------------------------- data_dir <- system.file("extdata", package = "damidBind") # Show the files present for clarity in this vignette example: files <- list.files(data_dir) print(files) ## ----load_data---------------------------------------------------------------- input.bsh <- load_data_peaks( binding_profiles_path = data_dir, peaks_path = data_dir, quantile_norm = TRUE, plot_diagnostics = TRUE # No need to call this in an in interactive Rstudio session: # diagnostics are shown in interactive sessions by default ) ## ----load_data_granges-------------------------------------------------------- # Locate bedGraph and peaks example files bedgraph_files <- list.files(data_dir, pattern = "\\.bedgraph\\.gz$", full.names = TRUE) peak_files <- list.files(data_dir, pattern = "\\.bed\\.gz$", full.names = TRUE) # Obtain unique sample names from the filenames (specific to these example files) sample_names <- gsub("-ext300-vs-Dam.kde-norm.gatc.*", "", basename(bedgraph_files)) # Load the bedgraph files into a named list of GRanges objects binding_gr_list <- lapply(bedgraph_files, rtracklayer::import) names(binding_gr_list) <- sample_names # Similarly, load the peak files into a named list of GRanges objects peak_gr_list <- lapply(peak_files, rtracklayer::import) names(peak_gr_list) <- sample_names # Now, call load_data_peaks() using the GRanges lists instead of file paths input.bsh_from_gr <- load_data_peaks( binding_profiles = binding_gr_list, peaks = peak_gr_list, quantile_norm = TRUE ) # The resulting object can now be used for differential analysis, # just as in the examples below. ## ----differential_binding----------------------------------------------------- diff.bsh <- differential_binding( input.bsh, cond = c("L4 neurons" = "L4", "L5 neurons" = "L5"), plot_diagnostics = TRUE # No need to call this in an in interactive Rstudio session: # diagnostics are shown in interactive sessions by default ) ## ----show_object-------------------------------------------------------------- # See a summary of the results object diff.bsh ## ----venn, fig.cap="A venn diagram of significantly bound loci by Bsh in L4 and L5 neurons. The exclusive parts of each set represent regions that are differentially bound between the two conditions.", fig.small=TRUE, message=FALSE---- plot_venn(diff.bsh) ## ----volcanoPlotSimple, fig.cap="Differential binding of Bsh in L4 and L5 neuronal subtypes. Genes associated with differentially bound peaks are displayed; the limitations of label overlaps means that only outliers are labelled. (Dataset from chromosome 2L only)"---- plot_volcano( diff.bsh ) ## ----volcanoPlotCleanNames, fig.cap="Differential binding of Bsh in L4 and L5 neuronal subtypes. Genes associated with differentially bound peaks are displayed, after some common, but less useful, gene label classes are removed. (Dataset from chromosome 2L only)"---- plot_volcano( diff.bsh, label_config = list(clean_names = TRUE) ) ## ----volcanoPlotHighlightedGenes, fig.cap="Differential binding of Bsh in L4 and L5 neuronal subtypes. Genes that are specifically expressed in L4 neurons are highlighted. (Dataset from chromosome 2L only)"---- L4_only_genes <- c("Mp", "tnc", "grn", "rut", "mtd", "rdgB", "Octbeta2R", "msi", "Octbeta3R", "beat-IIIb", "ap", "Fili", "LRP1", "CG7378", "CG13698", "twit", "CG9336", "tok", "CG12991", "dpr1", "CG42339", "beat-IIb", "mav", "CG34377", "alpha-Man-IIb", "Pli", "CG32428", "osp", "Pka-R2", "CG15202", "CG8916", "CG15894", "side", "CG42258", "CHES-1-like", "SP2353", "CG44838", "Atg1", "Traf4", "DIP-beta", "KCNQ", "metro", "nAChRalpha1", "path", "CG10527", "Pde8", "CG30116", "CG7985", "CG1688", "dpr12", "pigs", "Eip63F-1", "CG14795", "2mit", "CG42340", "BicD", "CG18265", "hppy", "5-HT1A", "Chd64", "CG33090", "Dyb", "Btk29A", "Apc", "Rox8", "nAChRalpha5", "CG42748", "CG3257", "CG2269", "beat-IV", "CG8086", "glec", "CG31688", "oaf", "Drl-2", "CG8188", "aos", "CG31676", "REPTOR", "RabX4", "alt", "Pura", "DIP1", "ewg", "side-VIII", "nAChRalpha7", "Alh", "kug", "Ca-Ma2d", "bru2", "CG43737", "lncRNA:CR44024", "lncRNA:CR46006", "Had1", "CG3961", "comm", "Toll-6", "CG13685", "tow", "CG10019") plot_volcano( diff.bsh, label_config = NULL, highlight = list( "L4 specific" = L4_only_genes ), highlight_config = list( size = 2 ) ) ## ----volcanoPlotHighlightedGenesLHS, fig.cap="Differential binding of Bsh in L4 and L5 neuronal subtypes. Genes that are specifically expressed in L4 neurons are highlighted. (Dataset from chromosome 2L only). Legend is now displayed on the LHS within the plot."---- plot_volcano( diff.bsh, label_config = NULL, highlight = list( "L4 specific" = L4_only_genes ), highlight_config = list( size = 2, legend_inside_pos = 'l' ) ) ## ----volcannoPlotMultipleHighlights, fig.cap="Differential binding of Bsh in L4 and L5 neuronal subtypes. Genes that are specifically expressed in each subtype are highlighted. (Dataset from chromosome 2L only)"---- L5_only_genes <- c("Ptth", "Nep2", "kek1", "CG4168", "kek3", "CG6959", "Dtg", "ND-23", "Scp2", "Octalpha2R", "Hs6st", "CG16791", "SKIP", "LpR1", "RpL34a", "Ald1", "CG10011", "heph", "nolo", "Act42A", "Fkbp12", "Pkc53E", "AstC-R1", "Muc14A", "CG33543", "ChAT", "Act5C", "Ptpmeg2", "fabp", "CG31221", "Octbeta1R", "CG14669", "sdk", "Shawl", "side-V", "NaCP60E", "sif", "OtopLc", "side-II", "kuz", "CG42540", "Dscam3", "haf", "CG42673", "pdm3", "tinc", "CG42750", "sdt", "Nuak1", "Hk", "scrib", "tsr", "dpr20", "GluRIB", "CG43902", "CG44242", "Dscam2", "CG44422", "lncRNA:CR45312", "Scsalpha1", "Rop", "Con", "Hsc70-3", "dpr8", "eag", "ND-18", "Nrt", "CG17839", "fz", "CG32137", "Rh7", "Sod1", "CG32052", "dpr6", "Hsp67Ba", "axed", "GluRIA", "robo2") plot_volcano( diff.bsh, label_config = NULL, highlight = list( "L4 specific" = L4_only_genes, "L5 specific" = L5_only_genes ), highlight_config = list( size = 2, legend_inside_pos = 'l', text_col = TRUE, text_luminosity = 40 ) ) ## ----igv_shiny---------------------------------------------------------------- ## Interactive, blocking session, uncomment to run # browse_igv_regions(diff.bsh) ## ----igv-shiny-example, echo=FALSE, out.width="100%", fig.cap="The interactive IGV browser window. The interface allows for rapid exploration of differentially bound regions in their genomic context. The table of significant loci is interactive and controls the genome browser view."---- img_path <- if (knitr::is_html_output()) { "figures/damidBind_igv_example_2025-11-29_18-20.gif" } else { "figures/damidBind_igv_example_2025-11-29_18-20.png" } knitr::include_graphics(img_path) ## ----goterms, fig.cap="Enriched GO terms for genes associated with differential Bsh binding in L5 neuron. Dataset from chromosome 2L only."---- go.bsh_l4 <- analyse_go_enrichment( diff.bsh, direction = "L5", org_db = org.Dm.eg.db::org.Dm.eg.db ) ## ----sessionInfo, echo=FALSE-------------------------------------------------- sessionInfo()