## ----message=F, warning=F, results=F------------------------------------------ library(scRNAseq) library(ggplot2) lung <- ZilionisLungData() immune <- lung$Used & lung$used_in_NSCLC_immune lung <- lung[,immune] lung <- lung[,1:5000] exp.mat <- Matrix::Matrix(counts(lung),sparse = TRUE) colnames(exp.mat) <- paste0(colnames(exp.mat), seq(1,ncol(exp.mat))) ## ----message=F, warning=F, results=F------------------------------------------ library(Seurat) seurat.object <- CreateSeuratObject(counts = exp.mat, project = "Zilionis_immune") seurat.object <- NormalizeData(seurat.object) ## ----------------------------------------------------------------------------- signatures <- list( CD8T = c("CD8A+","CD8B+","CD4-"), CD4 = c("TRAC+","CD4+","CD40LG+","CD8A-","CD8B-"), NK = c("KLRD1+","NCR1+","NKG7+","CD3D-","CD3E-") ) ## ----------------------------------------------------------------------------- library(UCell) seurat.object <- AddModuleScore_UCell(seurat.object, features=signatures, w_neg = 1.0, name = NULL) scores <- seurat.object[[names(signatures)]] head(scores,15) ## ----message=F, warning=F, results=F------------------------------------------ VlnPlot(seurat.object, features="nFeature_RNA", pt.size = 0, log = TRUE) ## ----------------------------------------------------------------------------- seurat.object <- AddModuleScore_UCell(seurat.object, features=signatures, maxRank=1000) ## ----------------------------------------------------------------------------- signatures <- list( Myeloid = c("LYZ","CSF1R","not_a_gene") ) seurat.object <- AddModuleScore_UCell(seurat.object, features=signatures, missing_genes="impute") scores1 <- seurat.object$Myeloid_UCell seurat.object <- AddModuleScore_UCell(seurat.object, features=signatures, missing_genes="skip") scores2 <- seurat.object$Myeloid_UCell scores <- cbind(scores1, scores2) head(scores) ## ----------------------------------------------------------------------------- seurat.object <- AddModuleScore_UCell(seurat.object, features=signatures, chunk.size=500) ## ----------------------------------------------------------------------------- BPPARAM <- BiocParallel::MulticoreParam(workers=1) seurat.object <- AddModuleScore_UCell(seurat.object, features=signatures, BPPARAM=BPPARAM) ## ----message=F, warning=F----------------------------------------------------- seurat.object <- NormalizeData(seurat.object) seurat.object <- FindVariableFeatures(seurat.object, selection.method = "vst", nfeatures = 500) seurat.object <- ScaleData(seurat.object) seurat.object <- RunPCA(seurat.object, npcs = 20, features=VariableFeatures(seurat.object)) seurat.object <- RunUMAP(seurat.object, reduction = "pca", dims = 1:20, seed.use=123) ## ----------------------------------------------------------------------------- signatures <- list( Tcell = c("CD3D","CD3E","CD3G","CD2","TRAC"), Myeloid = c("CD14","LYZ","CSF1R","FCER1G","SPI1","LCK-"), NK = c("KLRD1","NCR1","NKG7","CD3D-","CD3E-"), Plasma_cell = c("MZB1","DERL3","CD19-") ) seurat.object <- AddModuleScore_UCell(seurat.object, features=signatures, name=NULL) ## ----------------------------------------------------------------------------- seurat.object <- SmoothKNN(seurat.object, reduction="pca", signature.names = names(signatures), k=3, suffix = "_kNN3") seurat.object <- SmoothKNN(seurat.object, reduction="pca", signature.names = names(signatures), k=100, suffix = "_kNN100") ## ----fig.wide=TRUE, dpi=60---------------------------------------------------- FeaturePlot(seurat.object, reduction = "umap", features = c("Tcell","Tcell_kNN3")) & theme(aspect.ratio = 1) FeaturePlot(seurat.object, reduction = "umap", features = c("Tcell","Tcell_kNN100")) & theme(aspect.ratio = 1) ## ----------------------------------------------------------------------------- seurat.object <- SmoothKNN(seurat.object, reduction="pca", signature.names = names(signatures), k=100, decay=0.001, suffix = "_decay0.001") seurat.object <- SmoothKNN(seurat.object, reduction="pca", signature.names = names(signatures), k=100, decay=0.5, suffix = "_decay0.5") ## ----fig.wide=TRUE, dpi=60---------------------------------------------------- FeaturePlot(seurat.object, reduction = "umap", features = c("Tcell_decay0.5","Tcell_decay0.001")) & theme(aspect.ratio = 1) ## ----------------------------------------------------------------------------- sessionInfo()