
Package ‘CaDrA’
June 23, 2025

Type Package

Title Candidate Driver Analysis

Version 1.7.0

Description Performs both stepwise and backward heuristic search for
candidate (epi)genetic drivers based on a binary multi-omics dataset.
CaDrA's main objective is to identify features which, together, are
significantly skewed or enriched pertaining to a given vector of
continuous scores (e.g. sample-specific scores representing a phenotypic
readout of interest, such as protein expression, pathway activity, etc.),
based on the union occurence (i.e. logical OR) of the events.

Depends R (>= 4.4.0)

LazyData false

License GPL-3 + file LICENSE

URL https://github.com/montilab/CaDrA/

Encoding UTF-8

RoxygenNote 7.3.2

Imports doParallel, ggplot2, gplots, graphics, grid, gtable, knnmi,
MASS, methods, misc3d, plyr, ppcor, R.cache, reshape2, stats,
SummarizedExperiment

Suggests BiocManager, devtools, knitr, pheatmap, rmarkdown, testthat
(>= 3.1.6)

Config/testthat/edition 3

biocViews Microarray, RNASeq, GeneExpression, Software,
FeatureExtraction

VignetteBuilder knitr

BugReports https://github.com/montilab/CaDrA/issues

git_url https://git.bioconductor.org/packages/CaDrA

git_branch devel

git_last_commit 6f4dc2e

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-06-23

1

https://github.com/montilab/CaDrA/
https://github.com/montilab/CaDrA/issues

2 BRCA_GISTIC_MUT_SIG

Author Reina Chau [aut, cre] (ORCID: <https://orcid.org/0000-0003-3012-1404>),
Katia Bulekova [aut] (ORCID: <https://orcid.org/0000-0003-1560-2146>),
Vinay Kartha [aut],
Stefano Monti [aut] (ORCID: <https://orcid.org/0000-0002-9376-0660>)

Maintainer Reina Chau <rchau88@bu.edu>

Contents

BRCA_GISTIC_MUT_SIG . 2
CaDrA . 3
calc_rowscore . 6
candidate_search . 9
CCLE_MUT_SCNA . 12
CTNBB1_reporter . 12
generate_permutations . 13
meta_plot . 14
permutation_plot . 15
perm_res . 15
prefilter_data . 16
sim_FS . 17
sim_Scores . 18
TAZYAP_BRCA_ACTIVITY . 18
topn_best . 19
topn_list . 19
topn_plot . 20

Index 22

BRCA_GISTIC_MUT_SIG Genomic Data from TCGA BRCA MUT + GISTIC

Description

A SummarizedExperiment object consists of 16,873 genomic features across 951 samples.

Usage

data(BRCA_GISTIC_MUT_SIG)

Format

An object of class SummarizedExperiment from SummarizedExperiment package containing an
assay of 16,873 rows (features) and 951 columns (samples) see SummarizedExperiment for more
details.

Value

a SummarizedExperiment object

https://orcid.org/0000-0003-3012-1404
https://orcid.org/0000-0003-1560-2146
https://orcid.org/0000-0002-9376-0660

CaDrA 3

References

Kartha VK, Kern JG, Sebastiani P, Zhang L, Varelas X, Monti S (2019) CaDrA: A computational
framework for performing candidate driver analyses using binary genomic features. (Frontiers in
Genetics)

CaDrA CaDrA Search

Description

Perform permutation-based testings on a sample of permuted input scores using candidate_search
as the main iterative function for each run.

Usage

CaDrA(
FS,
input_score,
method = c("ks_pval", "ks_score", "wilcox_pval", "wilcox_score", "revealer", "knnmi",

"correlation", "custom"),
method_alternative = c("less", "greater", "two.sided"),
cmethod = c("spearman", "pearson"),
custom_function = NULL,
custom_parameters = NULL,
weights = NULL,
search_start = NULL,
top_N = 1,
search_method = c("both", "forward"),
max_size = 7,
n_perm = 1000,
perm_alternative = c("one.sided", "two.sided"),
obs_best_score = NULL,
smooth = TRUE,
plot = FALSE,
ncores = 1,
cache = FALSE,
cache_path = NULL,
verbose = FALSE

)

Arguments

FS a matrix of binary features or a SummarizedExperiment class object from Sum-
marizedExperiment package where rows represent features of interest (e.g. genes,
transcripts, exons, etc...) and columns represent the samples. The assay of FS
contains binary (1/0) values indicating the presence/absence of omics features.

input_score a vector of continuous scores representing a phenotypic readout of interest such
as protein expression, pathway activity, etc.
NOTE: input_score object must have names or labels that match the column
names of FS object.

https://www.frontiersin.org/articles/10.3389/fgene.2019.00121/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00121/full

4 CaDrA

method a character string specifies a scoring method that is used in the search. There
are 6 options: ("ks_pval" or ks_score or "wilcox_pval" or wilcox_score
or "revealer" (conditional mutual information from REVEALER) or "knnmi"
(K-Nearest Neighbor Mutual Information Estimator from knnmi) or "correlation"
or "custom" (a user-defined scoring method)). Default is ks_pval.

method_alternative

a character string specifies an alternative hypothesis testing ("two.sided" or
"greater" or "less"). Default is less for left-skewed significance testing.
NOTE: This argument only applies to ks_pval and wilcox_pval method

cmethod correlation method to use - spearman or pearson. Default is "spearman".
NOTE: This argument only applies to correlation method

custom_function

If method is "custom", specifies a user-defined function here. Default is NULL.
NOTE: custom_function must take FS and input_score as its input argu-
ments and its final result must return a vector of row-wise scores where its labels
or names match the row names of FS object.

custom_parameters

If method is "custom", specifies a list of additional arguments (excluding FS and
input_score) to be passed to custom_function. For example: custom_parameters
= list(alternative = "less"). Default is NULL.

weights If method is ks_score or ks_pval, specifying a vector of weights will perform
a weighted-KS testing. Default is NULL.
NOTE: weights must have names or labels that match the labels of input_score.

search_start a vector of character strings (separated by commas) specifies feature names in
the FS object to start the search with. If search_start is provided, then top_N
parameter will be ignored and vice versa. Default is NULL.

top_N an integer specifies the number of features to start the search over. By default, it
starts with the feature that has the highest best score (top_N = 1).
NOTE: If top_N is provided, then search_start parameter will be ignored and
vice versa. If top_N > 10, it may result in a longer search time.

search_method a character string specifies an algorithm to filter out the best candidates ("forward"
or "both"). Default is both (i.e., backward and forward).

max_size an integer specifies a maximum size that a meta-feature can extend to do for a
given search. Default is 7.

n_perm an integer specifies the number of permutations to perform. Default is 1000.
perm_alternative

an alternative hypothesis type for calculating permutation-based p-value. Op-
tions: one.sided, two.sided. Default is one.sided.

obs_best_score a numeric value corresponding to the best observed score. This value is used
to compare against the n_perm calculated best scores. Default is NULL. If set to
NULL, we will compute the observed best score based on the given parameters.

smooth a logical value indicates whether or not to add a smoothing factor of 1 to the
calculation of permutation-based p-value. This option is used to avoid a returned
p-value of 0. Default is TRUE.

plot a logical value indicates whether or not to plot the empirical null distribution of
the permuted best scores. Default is FALSE.

ncores an integer specifies the number of cores to perform parallelization for permutation-
based testing. Default is 1.

CaDrA 5

cache a logical value determines whether or not to cache the permuted best scores. This
helps to save time for future loading instead of re-computing the permutation-
based testing every time. Default is FALSE.

cache_path a path to cache permuted best scores. Default is NULL. If NULL, the cache path
is set to system home directory (e.g. $HOME/.Rcache) for future loading.

verbose a logical value indicates whether or not to print the diagnostic messages. Default
is FALSE.

Value

a list of 4 objects: key, perm_best_scores, obs_best_score, perm_pval

-key: a list of parameters that was used to cache the results of the permutation-based testing. This
is useful as the permuted best scores can be recycled to save time for future loading.

-perm_best_scores: a vector of permuted best scores obtained by performing candidate_search
over n_perm iterations of permuted input scores.

-obs_best_score: a user-provided best score or an observed best score obtained by performing
candidate_search on a given dataset and input parameters. This value is later used to compare
against the permuted best scores (perm_best_scores).

perm_pval: a permutation-based p-value obtained by calculating sum(perm_best_scores > obs_best_score)/n_perm

NOTE: If smooth = TRUE, a smoothing factor of 1 will be added to the calculation of perm_pval.

e.g. (sum(perm_best_scores > obs_best_score) + 1) / (n_perm + c)

This is just to not return a p-value of 0

Examples

Load pre-computed feature set
data(sim_FS)

Load pre-computed input-score
data(sim_Scores)

Set seed for permutation
set.seed(21)

Define additional parameters and start the search function
cadra_result <- CaDrA(

FS = sim_FS, input_score = sim_Scores, method = "ks_pval",
weights = NULL, method_alternative = "less", top_N = 1,
search_start = NULL, search_method = "both", max_size = 7,
n_perm = 10, perm_alternative = "one.sided", plot = FALSE,
smooth = TRUE, obs_best_score = NULL,
ncores = 1, cache = FALSE, cache_path = NULL

)

6 calc_rowscore

calc_rowscore Calculate row-wise scores of a given binary feature set based on a
given scoring method

Description

Calculate row-wise scores of a given binary feature set based on a given scoring method

Usage

calc_rowscore(
FS,
input_score,
meta_feature = NULL,
method = c("ks_pval", "ks_score", "wilcox_pval", "wilcox_score", "revealer", "knnmi",

"correlation", "custom"),
method_alternative = c("less", "greater", "two.sided"),
cmethod = c("spearman", "pearson"),
custom_function = NULL,
custom_parameters = NULL,
weights = NULL,
do_check = TRUE,
verbose = FALSE,
...

)

Arguments

FS a matrix of binary features or a SummarizedExperiment class object from Sum-
marizedExperiment package where rows represent features of interest (e.g. genes,
transcripts, exons, etc...) and columns represent the samples. The assay of FS
contains binary (1/0) values indicating the presence/absence of omics features.

input_score a vector of continuous scores representing a phenotypic readout of interest such
as protein expression, pathway activity, etc.
NOTE: input_score object must have names or labels that match the column
names of FS object.

meta_feature a vector of one or more features representing known causes of activation or
features associated with a response of interest (e.g. input_score). Default is
NULL.

method a character string specifies a scoring method that is used in the search. There
are 6 options: ("ks_pval" or ks_score or "wilcox_pval" or wilcox_score
or "revealer" (conditional mutual information from REVEALER) or "knnmi"
(k-Nearest Neighbor Mutual Information Estimator from knnmi) or "correlation"
(based on simple correlation - pearson or spearman) or "custom" (a user-defined
scoring method)). Default is ks_pval.

method_alternative

a character string specifies an alternative hypothesis testing ("two.sided" or
"greater" or "less"). Default is less for left-skewed significance testing.
NOTE: This argument only applies to ks_pval and wilcox_pval method

calc_rowscore 7

cmethod correlation method to use - spearman or pearson. Default is "spearman" #’
NOTE: This argument only applies to correlation method only

custom_function

if method is "custom", specifies a user-defined function here. Default is NULL.
NOTE: custom_function must take FS and input_score as its input argu-
ments, and its final result must return a vector of row-wise scores where its
labels or names matched the row names of FS object.

custom_parameters

if method is "custom", specifies a list of additional arguments (excluding FS and
input_score) to be passed to custom_function. For example: custom_parameters
= list(alternative = "less"). Default is NULL.

weights If method is ks_score or ks_pval, specifying a vector of weights will perform
a weighted-KS testing. Default is NULL.
NOTE: weights must have names or labels that match the names or labels of
input_score.

do_check a logical value indicates whether or not to validate if the given parameters (FS
and input_score) are valid inputs. Default is TRUE.

verbose a logical value indicates whether or not to print the diagnostic messages. Default
is FALSE.

... additional parameters to be passed to custom_function

Value

return a vector of row-wise positive scores where it is ordered from most significant to least signif-
icant (e.g. from highest to lowest values) and its labels or names must match the row names of FS
object

Examples

Create a feature matrix
mat <- matrix(c(1,0,1,0,0,0,0,0,1,0,

0,0,1,0,1,0,1,0,0,0,
0,0,0,0,1,0,1,0,1,0), nrow=3)

colnames(mat) <- 1:10
row.names(mat) <- c("TP_1", "TP_2", "TP_3")

Create a vector of observed input scores
set.seed(42)
input_score = rnorm(n = ncol(mat))
names(input_score) <- colnames(mat)

Run the ks method
ks_rowscore_result <- calc_rowscore(

FS = mat,
input_score = input_score,
meta_feature = NULL,
method = "ks_pval",
method_alternative = "less",
weights = NULL

)

Run the wilcoxon method

8 calc_rowscore

wilcox_rowscore_result <- calc_rowscore(
FS = mat,
input_score = input_score,
meta_feature = NULL,
method = "wilcox_pval",
method_alternative = "less"

)

Run the revealer method
revealer_rowscore_result <- calc_rowscore(

FS = mat,
input_score = input_score,
meta_feature = NULL,
method = "revealer"

)

Run the revealer method
knnmi_rowscore_result <- calc_rowscore(

FS = mat,
input_score = input_score,
meta_feature = NULL,
method = "knnmi"

)

Run the correlation method
corr_result <- calc_rowscore(
FS = mat,
input_score = input_score,
meta_feature = NULL,
method = "correlation",
cmethod = "spearman"

)

A customized function using ks-test function
customized_ks_rowscore <- function(FS, input_score, meta_feature=NULL, alternative="less"){

Check if meta_feature is provided
if(!is.null(meta_feature)){
Getting the position of the known meta features
locs <- match(meta_feature, row.names(FS))

Taking the union across the known meta features
if(length(locs) > 1) {

meta_vector <- as.numeric(ifelse(colSums(FS[locs,]) == 0, 0, 1))
}else{

meta_vector <- as.numeric(FS[locs,])
}

Remove the meta features from the binary feature matrix
and taking logical OR btw the remaining features with the meta vector
FS <- base::sweep(FS[-locs, , drop=FALSE], 2, meta_vector, `|`)*1

Check if there are any features that are all 1s generated from
taking the union between the matrix
We cannot compute statistics for such features and thus they need
to be filtered out
if(any(rowSums(FS) == ncol(FS))){

candidate_search 9

warning("Features with all 1s generated from taking the matrix union ",
"will be removed before progressing...\n")

FS <- FS[rowSums(FS) != ncol(FS), , drop=FALSE]
}

}

KS is a ranked-based method
So we need to sort input_score from highest to lowest values
input_score <- sort(input_score, decreasing=TRUE)

Re-order the matrix based on the order of input_score
FS <- FS[, names(input_score), drop=FALSE]

Compute the scores using the KS method
ks <- apply(FS, 1, function(r){

x = input_score[which(r==1)];
y = input_score[which(r==0)];
res <- ks.test(x, y, alternative=alternative)
return(c(res$statistic, res$p.value))

})

Obtain score statistics
stat <- ks[1,]

Obtain p-values and change values of 0 to the machine lowest value
to avoid taking -log(0)
pval <- ks[2,]
pval[which(pval == 0)] <- .Machine$double.xmin

Compute the -log(pval)
Make sure scores has names that match the row names of FS object
scores <- -log(pval)
names(scores) <- rownames(FS)

return(scores)

}

Search for best features using a custom-defined function
custom_rowscore_result <- calc_rowscore(

FS = mat,
input_score = input_score,
meta_feature = NULL,
method = "custom",
custom_function = customized_ks_rowscore,
custom_parameters = NULL

)

candidate_search Candidate Search

Description

Performs heuristic search on a set of binary features to determine whether there are features whose
union is more skewed (enriched at the extremes) than either features alone. This is the main func-

10 candidate_search

tionality of the CaDrA package.

Usage

candidate_search(
FS,
input_score,
method = c("ks_pval", "ks_score", "wilcox_pval", "wilcox_score", "revealer", "knnmi",

"correlation", "custom"),
method_alternative = c("less", "greater", "two.sided"),
cmethod = c("spearman", "pearson"),
custom_function = NULL,
custom_parameters = NULL,
weights = NULL,
search_start = NULL,
top_N = 1,
search_method = c("both", "forward"),
max_size = 7,
best_score_only = FALSE,
do_plot = FALSE,
verbose = FALSE

)

Arguments

FS a matrix of binary features or a SummarizedExperiment class object from Sum-
marizedExperiment package where rows represent features of interest (e.g. genes,
transcripts, exons, etc...) and columns represent the samples. The assay of FS
contains binary (1/0) values indicating the presence/absence of omics features.

input_score a vector of continuous scores representing a phenotypic readout of interest such
as protein expression, pathway activity, etc.
NOTE: input_score object must have names or labels that match the column
names of FS object.

method a character string specifies a scoring method that is used in the search. There
are 7 options: ("ks_pval" or ks_score or "wilcox_pval" or wilcox_score
or "revealer" (conditional mutual information from REVEALER) or "knnmi"
(K-Nearest Neighbor Mutual Information Estimator from knnmi) or "correlation"
(based on simple correlation - pearson or spearman) or "custom" (a user-defined
scoring method)). Default is ks_pval.

method_alternative

a character string specifies an alternative hypothesis testing ("two.sided" or
"greater" or "less"). Default is less for left-skewed significance testing.
NOTE: This argument only applies to ks_pval and wilcox_pval method

cmethod correlation method to use - spearman or pearson. Default is "spearman".
NOTE: This argument only applies to correlation method only

custom_function

if method is "custom", specifies a user-defined function here. Default is NULL.
NOTE: custom_function must take FS and input_score as its input arguments
and its final result must return a vector of row-wise scores where its labels or
names match the row names of FS object.

candidate_search 11

custom_parameters

if method is "custom", specifies a list of additional arguments (excluding FS
and input_score) to be passed to the custom_function. For example: cus-
tom_parameters = list(alternative = "less"). Default is NULL.

weights if method is ks_score or ks_pval, specifying a vector of weights will perform
a weighted-KS testing. Default is NULL.
NOTE: weights must have names or labels that match the labels of input_score.

search_start a vector of character strings (separated by commas) specifies feature names in
the FS object to start the search with. If search_start is provided, then top_N
parameter will be ignored and vice versa. Default is NULL.

top_N an integer specifies the number of features to start the search over. By default, it
starts with the feature that has the highest best score (top_N = 1).
NOTE: If top_N is provided, then search_start parameter will be ignored and
vice versa. If top_N > 10, it may result in a longer search time.

search_method a character string specifies an algorithm to filter out the best features ("forward"
or "both"). Default is both (i.e. backward and forward).

max_size an integer specifies a maximum size that a meta-feature can extend to do for a
given search. Default is 7.

best_score_only

a logical value indicates whether or not to return the best score corresponding to
each top N searches only. Default is FALSE.

do_plot a logical value indicates whether or not to plot the overlapping features of the
resulting meta-feature matrix.
NOTE: plot can only be produced if the resulting meta-feature matrix contains
more than 1 feature (e.g. length(search_start) > 1 or top_N > 1). Default is
FALSE.

verbose a logical value indicates whether or not to print the diagnostic messages. Default
is FALSE.

Details

NOTE: The legacy function topn_eval is equivalent to the recommended candidate_search func-
tion

Value

If best_score_only = TRUE, the heuristic search will return the best feature whose its union meta-
feature matrix has the highest score among the top_N feature searches. If best_score_only =
FALSE, a list of objects pertaining to top_N feature searches will be returned. For each top_N feature
search, the candidate search will contain 7 objects: (1) its best meta-feature matrix (feature_set),
(2) its observed input scores (input_score), (3) its corresponding best score pertaining to the
union meta-feature matrix (score), (4) names of the best meta-features (best_features), (5)
rank of the best meta-features in term of their best scores (best indices), (6) marginal scores of
the best meta-features (marginal_best_scores), (7) cumulative scores of the best meta-features
(cumulative_best_scores).

Examples

Load pre-computed feature set
data(sim_FS)

12 CTNBB1_reporter

Load pre-computed input scores
data(sim_Scores)

Define additional parameters and run the function
candidate_search_result <- candidate_search(

FS = sim_FS, input_score = sim_Scores,
method = "ks_pval", method_alternative = "less", weights = NULL,
search_start = NULL, top_N = 3, search_method = "both",
max_size = 7, best_score_only = FALSE

)

CCLE_MUT_SCNA Genomic Data from CCLE MUT + SCNA

Description

A SummarizedExperiment object consists of 17,724 genomic features across 82 samples.

Usage

data(CCLE_MUT_SCNA)

Format

An object of class SummarizedExperiment from SummarizedExperiment package containing a
matrix of 17,724 rows (features) and 82 columns (samples). See SummarizedExperiment for more
details.

Value

a SummarizedExperiment object

References

Kim, J., Botvinnik, O., Abudayyeh, O. et al. Characterizing genomic alterations in cancer by com-
plementary functional associations. Nat Biotechnol 34, 539–546 (2016). https://doi.org/10.1038/nbt.3527

CTNBB1_reporter Transcriptional Activity of Beta-Catenin in Cancers

Description

A vector of continuous scores represents the activation of B-catenin across multiple cancer cell lines

Usage

data(CTNBB1_reporter)

https://doi.org/10.1038/nbt.3527

generate_permutations 13

Format

Consists of a vector of continuous scores of B-catenin activity across 82 cancer cell lines. The
mutation and copy number associated with this sample cohorts can be found in CCLE_MUT_SCNA
dataset.

Value

a vector of continuous scores

References

Kim, J., Botvinnik, O., Abudayyeh, O. et al. Characterizing genomic alterations in cancer by com-
plementary functional associations. Nat Biotechnol 34, 539–546 (2016). https://doi.org/10.1038/nbt.3527

generate_permutations Random permutation matrix generator

Description

Produces a random permutation score matrix given a vector of sample-specific scores representing
a phenotypic readout of interest such as protein expression, pathway activity, etc.

Usage

generate_permutations(input_score, n_perm)

Arguments

input_score a vector of continuous scores of a molecular phenotype of interest such as pro-
tein expression, pathway activity, etc. NOTE: The input_score object must
have names or labels to track samples by.

n_perm a number of permutations to generate. This determines the number of rows in
the permutation matrix.

Value

a matrix of values where each row contains scores of a single permuted input_score.

Examples

Load pre-simulated scores
data(sim_Scores)

Set seed for permutation
set.seed(123)

Define number of permutations
n_perm = 1000

Generate permuted scores
perm_matrix <- generate_permutations(

input_score = sim_Scores,

https://doi.org/10.1038/nbt.3527

14 meta_plot

n_perm = n_perm
)

meta_plot Candidate Drivers Search Plot

Description

By utilizing the top N results obtained from candidate_search, we can find the best meta-feature
among the top N searches using topn_best. meta_plot is then used to produce graphics including
a tile plot for the top meta-features that associated with a molecular phenotype of interest (e.g.
input_score), the KS enrichment plot of the meta-features, and lastly, a density diagram of the
distribution of the observed input scores sorted from largest to smallest at the top.

Usage

meta_plot(topn_best_list, input_score_label = NULL, plot_title = NULL)

Arguments

topn_best_list a list of objects returned from candidate_search corresponding to the search
of top N features given by top_N value. The topn_best_list contains the best
meta-feature matrix, its corresponding best score, its observed input scores, rank
of the best features based on their scores, marginal best scores, and cumulative
best scores.

input_score_label

a label that references to the input_score variable that was used to compute
the top N best features. Default is NULL.

plot_title a title to the plot. Default is NULL.

Value

3 plots stacked on top of each other: 1. a density diagram of observed input scores sorted from
highest to lowest 2. a tile plot of the top features within the meta-feature set 3. a KS enrichment
plot of the meta-feature set (this correspond to the logical OR of the features)

Examples

Load pre-computed Top-N list generated for sim_FS dataset
data(topn_list)

With the results obtained from top-N evaluation,
We can find the combination of features that gives the best score in
top N searches
topn_best_meta <- topn_best(topn_list = topn_list)

Now we can plot this set of best meta-feature
meta_plot(topn_best_list = topn_best_meta)

permutation_plot 15

permutation_plot Permutation Best Scores Plot

Description

Plot the Empirical Null Distribution of Permutation Best Scores returned from CaDrA function

Usage

permutation_plot(perm_res)

Arguments

perm_res a list of objects returned from CaDrA function. The returning object contains
a list of key parameters that are used to run the permutation-based testing, a
vector of permuted best scores for a given n_perm, an observed best score, and
a computed permutation p-value.

Value

a density plot

Examples

Load pre-computed permutation results
data(perm_res)

Plot the permutation results
permutation_plot(perm_res)

perm_res Pre-computed permutation results for simulated data (sim_FS)

Description

The permutation result returned from CaDrA using pre-simulated dataset (FS = sim_FS), pre-simulated
input scores (input_score = sim_Scores), top_N = 7, method = "ks_pval", alternative = "less",
search_method = "both", max_size = 10, obs_best_score = NULL and n_perm = 1000 as inputs
to the function.

Usage

data(perm_res)

16 prefilter_data

Format

A list of objects returned from CaDrA function. The resulting object contains a list of key parameters
that was used to run the permutation-based testing, a vector of permuted best scores for a given
n_perm, an observed best score, and a permuted p-value.

To visualize the Empirical Null Distribution of the permuted best scores over n_perm iterations, just
pass the resulting list to permutation_plot.

See permutation_plot for more details.

Value

a list of objects returned from CaDrA function

References

Kartha VK, Kern JG, Sebastiani P, Zhang L, Varelas X, Monti S (2017) CaDrA: A computational
framework for performing candidate driver analyses using binary genomic features. (Frontiers in
Genetics)

Examples

Load the pre-computed permutation results for sim_FS
data(perm_res)

Plot the Empirical Null Distribution of the permuted best scores
against its observed best score
permutation_plot(perm_res = perm_res)

prefilter_data Pre-filter features

Description

Pre-filter a dataset prior running candidate_search to avoid testing features that are too prevalent
or too sparse across samples in the dataset

Usage

prefilter_data(FS, max_cutoff = 0.6, min_cutoff = 0.03, verbose = FALSE)

Arguments

FS a matrix of binary features or a SummarizedExperiment class object from Sum-
marizedExperiment package where rows represent features of interest (e.g. genes,
transcripts, exons, etc...) and columns represent the samples. The assay of FS
contains binary (1/0) values indicating the presence/absence of ‘omics’ features.

max_cutoff a numeric value between 0 and 1 describing the absolute prevalence of a feature
across all samples in the FS object which the feature will be filtered out. Default
is 0.6 (feature that occur in 60 percent or more of the samples will be removed)

https://www.frontiersin.org/articles/10.3389/fgene.2019.00121/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00121/full

sim_FS 17

min_cutoff a numeric value between 0 and 1 describing the absolute prevalence of a feature
across all samples in the FS object which the feature will be filtered out. Default
is 0.03 (feature that occur in 3 percent or less of the samples will be removed)

verbose a logical value indicates whether or not to print the diagnostic messages. Default
is FALSE.

Value

A SummarizedExperiment object with only the filtered-in features given the filtered thresholds

Examples

Load pre-computed feature set
data(sim_FS)

Filter out features having < 3% and > 60% prevalence across all samples
by (default)
sim_FS_filt1 <- prefilter_data(FS = sim_FS)

Change the min cut-off to 1% prevalence, instead of the default of 3%
sim_FS_filt2 <- prefilter_data(FS = sim_FS, min_cutoff = 0.01)

Change the max cut-off to 65% prevalence, instead of the default of 60%
sim_FS_filt3 <- prefilter_data(FS = sim_FS, max_cutoff = 0.65)

sim_FS Simulated Genomic Data

Description

A simulated SummarizedExperiment object that comprises of 1000 genomic features (rows) and
100 sample profiles (columns). Each row is represented by a vector of binary values (1/0) indicating
the presence/absence of the feature in the samples. This simulated data includes 10 left-skewed (i.e.
True Positive or TP) and 990 uniformly-distributed (i.e. True Null or TN) features.

Usage

data(sim_FS)

Format

An object of class SummarizedExperiment from SummarizedExperiment package containing an
assay of 1000 rows (features) and 100 columns (samples). Each row is represented by a vector of
binary values (1/0) indicating the presence/absence of the feature in the samples.

See ?SummarizedExperiment for more details.

Value

a SummarizedExperiment object

18 TAZYAP_BRCA_ACTIVITY

References

Kartha VK, Kern JG, Sebastiani P, Zhang L, Varelas X, Monti S (2019) CaDrA: A computational
framework for performing candidate driver analyses using binary genomic features. (Frontiers in
Genetics)

sim_Scores Simulated Input Scores

Description

A simulated vector of continuous scores generated from rnorm(n=ncol(sim_FS), mean=0, sd=1)
with set.seed(123) based on the number of samples in the simulated dataset (sim_FS)

Usage

data(sim_Scores)

Format

A vector of continuous scores randomly generated from rnorm(n=ncol(sim_FS), mean=0, sd=1)
with set.seed(123) based on the number of samples in the simulated dataset (sim_FS)

Value

a vector of continuous scores

References

Kartha VK, Kern JG, Sebastiani P, Zhang L, Varelas X, Monti S (2019) CaDrA: A computational
framework for performing candidate driver analyses using binary genomic features. (Frontiers in
Genetics)

TAZYAP_BRCA_ACTIVITY YAP/TAZ Activity in TCGA BRCA dataset

Description

A vector of continuous scores represents oncogenic YAP/TAZ activity in human breast carcinomas

Usage

data(TAZYAP_BRCA_ACTIVITY)

Format

consists of a vector of continuous scores of YAP/TAZ activity across 951 profiles. The mutation and
copy number associated with this sample cohorts can be found in BRCA_GISTIC_MUT_SIG dataset.

Value

a vector of continuous scores

https://www.frontiersin.org/articles/10.3389/fgene.2019.00121/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00121/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00121/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00121/full

topn_best 19

References

Kartha VK, Kern JG, Sebastiani P, Zhang L, Varelas X, Monti S (2019) CaDrA: A computational
framework for performing candidate driver analyses using binary genomic features. (Frontiers in
Genetics)

topn_best Top ’N’ Best Meta-Features

Description

Take the resulting list of meta-features returned from candidate_search over top N feature searches
and fetch the meta-feature with the best score.

Usage

topn_best(topn_list)

Arguments

topn_list A nested list of objects that are returned from candidate_search using the
following parameters: FS = sim_FS, input_score = sim_Scores, top_N = 7,
method = "ks_pval", alternative = "less", search_method = "both", max_size
= 10, and best_score_only = FALSE.

Value

A list of objects containing the best meta-feature matrix, its corresponding best score, its observed
input scores, rank of best meta-features based on their scores, its marginal and cumulative best
scores.

Examples

Load pre-computed Top-N list generated for sim_FS dataset
data(topn_list)

Get the best meta-features list
topn_best_meta <- topn_best(topn_list = topn_list)

topn_list Top-N Results for Simulated Data (sim_FS)

Description

A list of objects returned from candidate_search using simulated dataset FS = sim_FS, input_score
= sim_Scores, top_N = 7, method = "ks_pval", alternative = "less", search_method = "both",
max_size = 10, and best_score_only = FALSE.

Usage

data(topn_list)

https://www.frontiersin.org/articles/10.3389/fgene.2019.00121/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00121/full

20 topn_plot

Format

A list of objects returned from candidate_search including a set of best meta-feature matrix, its
corresponding best score, its observed input scores, rank of the best features based on their scores,
marginal best scores, and cumulative best scores. pertaining to each top N feature searches.

See candidate_search for more information.

Details

NOTE: max_size is set to 10 as we would like to account for the presence of 10 left-skewed (i.e.
true positive or TP) features in sim_FS dataset.

Value

a list of objects returned from candidate_search function

References

Kartha VK, Kern JG, Sebastiani P, Zhang L, Varelas X, Monti S (2019) CaDrA: A computational
framework for performing candidate driver analyses using binary genomic features. (Frontiers in
Genetics)

Examples

Load pre-computed Top-N list generated for sim_FS and sim_Scores dataset
data(topn_list)

Fetch the first meta-feature
topn_list[[1]]$feature_set

Fetch the second meta-feature
topn_list[[2]]$feature_set

Retrieve the meta-feature with the best score among top_N = 7 runs
topn_best_meta <- topn_best(topn_list = topn_list)

Visualize the best meta-feature using meta_plot function
meta_plot(topn_best_list = topn_best_meta)

Visualize overlap of meta-features across top_N = 7
using topn_plot function
topn_plot(topn_list = topn_list)

topn_plot Top ’N’ Plot

Description

Generate a heatmap representation of overlapping meta-features across top N feature searches using
candidate_search function

https://www.frontiersin.org/articles/10.3389/fgene.2019.00121/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.00121/full

topn_plot 21

Usage

topn_plot(topn_list)

Arguments

topn_list a list of objects obtained from candidate_search using the following parame-
ters: FS = sim_FS, input_score = sim_Scores, top_N = 7, method = "ks_pval",
alternative = "less", search_method = "both", max_size = 10, and best_score_only
= FALSE.

Value

a heatmap of overlapping meta-features across top N feature searches

Examples

Load pre-computed Top-N list generated for sim_FS dataset
data(topn_list)

Get the overlapping top N plot
topn_plot(topn_list = topn_list)

Index

∗ datasets
BRCA_GISTIC_MUT_SIG, 2
CCLE_MUT_SCNA, 12
CTNBB1_reporter, 12
perm_res, 15
sim_FS, 17
sim_Scores, 18
TAZYAP_BRCA_ACTIVITY, 18
topn_list, 19

BRCA_GISTIC_MUT_SIG, 2

CaDrA, 3
calc_rowscore, 6
candidate_search, 9, 20
CCLE_MUT_SCNA, 12
CTNBB1_reporter, 12

generate_permutations, 13

meta_plot, 14

perm_res, 15
permutation_plot, 15
prefilter_data, 16

sim_FS, 17
sim_Scores, 18

TAZYAP_BRCA_ACTIVITY, 18
topn_best, 19
topn_list, 19
topn_plot, 20

22

	BRCA_GISTIC_MUT_SIG
	CaDrA
	calc_rowscore
	candidate_search
	CCLE_MUT_SCNA
	CTNBB1_reporter
	generate_permutations
	meta_plot
	permutation_plot
	perm_res
	prefilter_data
	sim_FS
	sim_Scores
	TAZYAP_BRCA_ACTIVITY
	topn_best
	topn_list
	topn_plot
	Index

