Package ‘AnnotationFilter’
November 14, 2025

Title Facilities for Filtering Bioconductor Annotation Resources
Version 1.35.0

URL https://github.com/Bioconductor/AnnotationFilter

BugReports https://github.com/Bioconductor/AnnotationFilter/issues

Description This package provides class and other infrastructure to
implement filters for manipulating Bioconductor annotation
resources. The filters will be used by ensembldb, Organism.dplyr,
and other packages.

Depends R (>=3.4.0)

Imports utils, methods, GenomicRanges, lazyeval

Suggests BiocStyle, knitr, testthat, RSQLite, org.Hs.eg.db, rmarkdown
VignetteBuilder knitr

License Artistic-2.0

biocViews Annotation, Infrastructure, Software

Encoding UTF-8

LazyData true

RoxygenNote 6.0.1

Collate 'AllGenerics.R' 'AnnotationFilter.R' 'AnnotationFilterList.R'
'translate-utils.R'

git_url https://git.bioconductor.org/packages/AnnotationFilter
git_branch devel

git_last_commit f5cf226

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2025-11-14

Author Martin Morgan [aut],
Johannes Rainer [aut],
Joachim Bargsten [ctb],
Daniel Van Twisk [ctb],
Bioconductor Package Maintainer [cre]

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

1

https://github.com/Bioconductor/AnnotationFilter
https://github.com/Bioconductor/AnnotationFilter/issues

2 AnnotationFilter

Contents
AnnotationFilter L 2
AnnotationFilterList 5
GenenameFilter 7
Index 9
AnnotationFilter Filters for annotation objects
Description

The filters extending the base AnnotationFilter class represent a simple filtering concept for
annotation resources. Each filter object is thought to filter on a single (database) table column using
the provided values and the defined condition.

Filter instances created using the constructor functions (e.g. GeneIdFilter).

supportedFilters() lists all defined filters. It returns a two column data.frame with the fil-
ter class name and its default field. Packages using AnnotationFilter should implement the
supportedFilters for their annotation resource object (e.g. for object = "EnsDb" in the ensembldb
package) to list all supported filters for the specific resource.

condition() get the condition value for the filter object.
value() get the value for the filter object.

field() get the field for the filter object.

not () get the not for the filter object.

feature() get the feature for the GRangesFilter object.

Converts an AnnotationFilter object to a character (1) giving an equation that can be used as
input to a dplyr filter.

AnnotationFilter translates a filter expression such as ~ gene_id == "BCL2" into a filter object

extending the AnnotationFilter class (in the example a GeneIdFilter object) or an AnnotationFilterList
if the expression contains multiple conditions (see examples below). Filter expressions have to be

written in the form ~ <field> <condition><value>, with <field> being the default field of the

filter class (use the supportedFilter function to list all fields and filter classes), <condition> the

logical expression and <value> the value for the filter.

Usage
CdsStartFilter(value, condition = "==", not = FALSE)
CdsEndFilter(value, condition = "==", not = FALSE)
ExonIdFilter(value, condition = "==" not = FALSE)
ExonNameFilter(value, condition = "==", not = FALSE)
ExonRankFilter(value, condition = "=="] not = FALSE)
ExonStartFilter(value, condition = "==" not = FALSE)
ExonEndFilter(value, condition = "==", not = FALSE)

GeneldFilter(value, condition = "==", not = FALSE)

AnnotationFilter 3

GeneNameFilter(value, condition = "=="] not = FALSE)
GeneBiotypeFilter(value, condition = "==", not = FALSE)
GeneStartFilter(value, condition = "==", not = FALSE)
GeneEndFilter(value, condition = "==", not = FALSE)
EntrezFilter(value, condition = "==" not = FALSE)
SymbolFilter(value, condition = "==", not = FALSE)
TxIdFilter(value, condition = "==" not = FALSE)
TxNameFilter(value, condition = "==", not = FALSE)
TxBiotypeFilter(value, condition = "==", not = FALSE)
TxStartFilter(value, condition = "==" not = FALSE)
TxEndFilter(value, condition = "==", not = FALSE)
ProteinIdFilter(value, condition = "==" not = FALSE)
UniprotFilter(value, condition = "==", not = FALSE)
SegNameFilter(value, condition = "==", not = FALSE)
SeqStrandFilter(value, condition = "=="] not = FALSE)

S4 method for signature 'AnnotationFilter'
condition(object)

S4 method for signature 'AnnotationFilter'
value(object)

S4 method for signature 'AnnotationFilter'
field(object)

S4 method for signature 'AnnotationFilter'
not(object)

GRangesFilter(value, feature = "gene", type = c("any", "start”, "end",
"within", "equal”))

feature(object)

S4 method for signature 'AnnotationFilter,missing'’
convertFilter(object)

S4 method for signature 'missing'’
supportedFilters(object)

AnnotationFilter (expr)

Arguments
object An AnnotationFilter object.
value character(), integer(), or GRanges() value for the filter
feature character (1) defining on what feature the GRangesFilter should be applied.

non

Choices could be "gene”, "tx" or "exon".

type

expr

condition

not

Details

AnnotationFilter

character (1) indicating how overlaps are to be filtered. See findOverlaps in
the IRanges package for a description of this argument.

A filter expression, written as a formula, to be converted to an AnnotationFilter
or AnnotationFilterList class. See below for examples.

character (1) defining the condition to be used in the filter. For IntegerFilter

orDoubleFilter, one of "==","1="">" "<" ">="or "<=", For CharacterFilter,
one of "==","!=" "startsWith”, "endsWith” or "contains”. Default con-
dition is "==".

logical (1) whether the AnnotationFilter is negated. TRUE indicates is negated
(). FALSE indicates not negated. Default not is FALSE.

By default filters are only available for tables containing the field on which the filter acts (i.e. that
contain a column with the name matching the value of the field slot of the object). See the vignette
for a description to use filters for databases in which the database table column name differs from
the default field of the filter.

Filter expressions for the AnnotationFilter class have to be written as formulas, i.e. starting with

a-~.

Value

The constructor function return an object extending AnnotationFilter. For the return value of the
other methods see the methods’ descriptions.

character (1) that can be used as input to a dplyr filter.

AnnotationFilter returns an AnnotationFilter or an AnnotationFilterList.

Note

Translation of nested filter expressions using the AnnotationFilter function is not yet supported.

See Also

AnnotationFilterList for combining AnnotationFilter objects.

Examples

filter by GRanges

GRangesFilter(GenomicRanges: :GRanges("chr10:87869000-87876000"))
Create a SymbolFilter to filter on a gene's symbol.

sf <- SymbolFilter("BCL2")

sf

Create a GeneStartFilter to filter based on the genes' chromosomal start

coordinates

gsf <- GeneStartFilter(10000, condition = ">")

gsf

filter <- SymbolFilter(”ADA”, "=="

AnnotationFilterList 5

result <- convertFilter(filter)
result
supportedFilters()

Convert a filter expression based on a gene ID to a GeneldFilter
gnf <- AnnotationFilter(~ gene_id == "BCL2")
gnf

Same conversion but for two gene IDs.
gnf <- AnnotationFilter(~ gene_id %in% c("BCL2", "BCL2L11"))
gnf

Converting an expression that combines multiple filters. As a result we
get an AnnotationFilterList containing the corresponding filters.
Be aware that nesting of expressions/filters does not work.
flt <- AnnotationFilter(~ gene_id %in% c("BCL2", "BCL2L11") &
tx_biotype == "nonsense_mediated_decay” |
seq_name == "Y")
flt

AnnotationFilterList Combining annotation filters

Description

The AnnotationFilterList allows to combine filter objects extending the AnnotationFilter
class to construct more complex queries. Consecutive filter objects in the AnnotationFilterList
can be combined by a logical and (&) or or (|). The AnnotationFilterList extends list, indi-
vidual elements can thus be accessed with [[.

value() get a 1ist with the AnnotationFilter objects. Use [[to access individual filters.
logicOp() gets the logical operators separating successive AnnotationFilter.
not() gets the logical operators separating successive AnnotationFilter.

Converts an AnnotationFilterList objectto a character (1) giving an equation that can be used
as input to a dplyr filter.
Usage
AnnotationFilterList(..., logicOp = character(), logOp = character(),
not = FALSE, .groupingFlag = FALSE)

S4 method for signature 'AnnotationFilterList'
value(object)

S4 method for signature 'AnnotationFilterList'
logicOp(object)

6 AnnotationFilterList

S4 method for signature 'AnnotationFilterList'
not(object)

S4 method for signature 'AnnotationFilterList'
distributeNegation(object,
.prior_negation = FALSE)

S4 method for signature 'AnnotationFilterList,missing’
convertFilter(object)

S4 method for signature 'AnnotationFilterList'

show(object)
Arguments

individual AnnotationFilter objects or a mixture of AnnotationFilter and
AnnotationFilterList objects.

logicOp character of length equal to the number of submitted AnnotationFilter ob-
jects - 1. Each value representing the logical operation to combine consecutive
filters, i.e. the first element being the logical operation to combine the first and
second AnnotationFilter, the second element being the logical operation to
combine the second and third AnnotationFilter and so on. Allowed values
are "&" and "|". The function assumes a logical and between all elements by
default.

logOp Deprecated; use logicOp=.

not logical of length one. Indicates whether the grouping of AnnotationFilters

are to be negated.
.groupingFlag Flag desginated for internal use only.
object An object of class AnnotationFilterList.
.prior_negation

logical(1) unused argument.

Value

AnnotationFilterList returns an AnnotationFilterList.

value() returns a 1ist with AnnotationFilter objects.

“|77

logicOp() returns a character() vector of “&” or “I” symbols.

“l”

not () returns a character() vector of “&” or “I” symbols.

AnnotationFilterList object with DeMorgan’s law applied to it such that it is equal to the orig-
inal AnnotationFilterList object but all !’s are distributed out of the AnnotationFilterList
object and to the nested AnnotationFilter objects.

character (1) that can be used as input to a dplyr filter.

Note

The AnnotationFilterList does not support containing empty elements, hence all elements of
length == 0 are removed in the constructor function.

GenenameFilter 7

See Also

supportedFilters for available AnnotationFilter objects

Examples

Create some AnnotationFilters
gf <- GeneNameFilter(c("BCL2", "BCL2L11"))
tbtf <- TxBiotypeFilter("protein_coding”, condition = "!=")

Combine both to an AnnotationFilterList. By default elements are combined
using a logical "and” operator. The filter list represents thus a query
like: get all features where the gene name is either (”"BCL2" or "BCL2L11")
and the transcript biotype is not "protein_coding”.

afl <- AnnotationFilterList(gf, tbtf)

afl

Access individual filters.

af1[[1]1]

Create a filter in the form of: get all features where the gene name is
either ("BCL2" or "BCL2L11") and the transcript biotype is not

"protein_coding” or the seqg_name is "Y". Hence, this will get all feature
also found by the previous AnnotationFilterList and returns also all

features on chromosome Y.

afl <- AnnotationFilterList(gf, tbtf, SegNameFilter("Y"),

logicOp = c("&", "|"))
afl

afl <- AnnotationFilter(~!(symbol == 'ADA' | symbol %startsWith% 'SNORD'))
afl <- distributeNegation(afl)

afl

afl <- AnnotationFilter(~symbol=="ADA" & tx_start > "400000")
result <- convertFilter(afl)
result

GenenameFilter DEPRECATED Gene name filter

Description

The GenenameFilter class and functions are deprecated. Please use the GeneNameFilter() in-
stead.

Usage

GenenameFilter(value, condition = "==", not = FALSE)

8 GenenamekFilter

Arguments
value character () value for the filter
condition character (1) defining the condition to be used in the filter. One of "==", " =",
"startsWith”, "endsWith” or "contains”. Default condition is "==".
not logical(1) whether the AnnotationFilter is negated. TRUE indicates is negated
(1). FALSE indicates not negated. Default not is FALSE.
Value

The constructor function return a GenenameFilter.

Index

.GRangesFilter (AnnotationFilter), 2

AnnotationFilter, 2,2, 4-7
AnnotationFilter-class
(AnnotationFilter), 2
AnnotationFilterList, 2,4, 5
AnnotationFilterList-class
(AnnotationFilterList), 5

CdsEndFilter (AnnotationFilter), 2
CdsEndFilter-class (AnnotationFilter), 2
CdsStartFilter (AnnotationFilter), 2
CdsStartFilter-class
(AnnotationFilter), 2
CharacterFilter-class
(AnnotationFilter), 2
condition (AnnotationFilter), 2
condition,AnnotationFilter-method
(AnnotationFilter), 2
convertFilter (AnnotationFilterList), 5

convertFilter,AnnotationFilter,missing-method

(AnnotationFilter), 2

convertFilter,AnnotationFilterList,missing—meg

(AnnotationFilterList), 5

distributeNegation
(AnnotationFilterList), 5

ExonRankFilter (AnnotationFilter), 2
ExonRankFilter-class
(AnnotationFilter), 2
ExonStartFilter (AnnotationFilter), 2
ExonStartFilter-class
(AnnotationFilter), 2

feature (AnnotationFilter), 2

field (AnnotationFilter), 2

field,AnnotationFilter-method
(AnnotationFilter), 2

GeneBiotypeFilter (AnnotationFilter), 2

GeneBiotypeFilter-class
(AnnotationFilter), 2

GeneEndFilter (AnnotationFilter), 2

GeneEndFilter-class (AnnotationFilter),
2

GeneldFilter, 2

GeneldFilter (AnnotationFilter), 2

GeneldFilter-class (AnnotationFilter), 2

%g%NameFilter(AnnotationFilter),Z

enenameFilter, 7

GeneNameFilter(), 7

GeneNameFilter-class
(AnnotationFilter), 2

distributeNegation,AnnotationFilterList-metho@enenameFilter-class (GenenameFilter), 7

(AnnotationFilterList), 5
DoubleFilter-class (AnnotationFilter), 2

EntrezFilter (AnnotationFilter), 2
EntrezFilter-class (AnnotationFilter), 2
ExonEndFilter (AnnotationFilter), 2
ExonEndFilter-class (AnnotationFilter),
2
ExonIdFilter (AnnotationFilter), 2
ExonIdFilter-class (AnnotationFilter), 2
ExonNameFilter (AnnotationFilter), 2
ExonNameFilter-class
(AnnotationFilter), 2

GeneStartFilter (AnnotationFilter), 2

GeneStartFilter-class
(AnnotationFilter), 2

GRangesFilter (AnnotationFilter), 2

GRangesFilter-class (AnnotationFilter),
2

IntegerFilter-class (AnnotationFilter),
2

logicOp (AnnotationFilterList), 5
logicOp,AnnotationFilterList-method
(AnnotationFilterList), 5

10

not (AnnotationFilterList), 5

not,AnnotationFilter-method
(AnnotationFilter), 2

not,AnnotationFilterList-method
(AnnotationFilterList), 5

ProteinIdFilter (AnnotationFilter), 2
ProteinIdFilter-class
(AnnotationFilter), 2

SegNameFilter (AnnotationFilter), 2

SegNameFilter-class (AnnotationFilter),
2

SeqStrandFilter (AnnotationFilter), 2

SegStrandFilter-class
(AnnotationFilter), 2

show,AnnotationFilter-method
(AnnotationFilter), 2

show,AnnotationFilterList-method
(AnnotationFilterList), 5

show, CharacterFilter-method
(AnnotationFilter), 2

show,DoubleFilter-method
(AnnotationFilter), 2

show, GRangesFilter-method
(AnnotationFilter), 2

show, IntegerFilter-method
(AnnotationFilter), 2

supportedFilters, 7

supportedFilters (AnnotationFilter), 2

supportedFilters,missing-method
(AnnotationFilter), 2

SymbolFilter (AnnotationFilter), 2

SymbolFilter-class (AnnotationFilter), 2

TxBiotypeFilter (AnnotationFilter), 2
TxBiotypeFilter-class
(AnnotationFilter), 2
TxEndFilter (AnnotationFilter), 2
TxEndFilter-class (AnnotationFilter), 2
TxIdFilter (AnnotationFilter), 2
TxIdFilter-class (AnnotationFilter), 2
TxNameFilter (AnnotationFilter), 2
TxNameFilter-class (AnnotationFilter), 2
TxStartFilter (AnnotationFilter), 2
TxStartFilter-class (AnnotationFilter),
2

UniprotFilter (AnnotationFilter), 2

INDEX

UniprotFilter-class (AnnotationFilter),
2

value (AnnotationFilter), 2

value,AnnotationFilter-method
(AnnotationFilter), 2

value,AnnotationFilterList-method
(AnnotationFilterList), 5

	AnnotationFilter
	AnnotationFilterList
	GenenameFilter
	Index

