scider is an user-friendly R package providing functions to model the global density of cells in a slide of spatial transcriptomics data. All functions in the package are built based on the SpatialExperiment object, allowing integration into various spatial transcriptomics-related packages from Bioconductor. After modelling density, the package allows for serveral downstream analysis, including colocalization analysis, boundary detection analysis and differential density analysis.
if (!require("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("scider")The development version of scider can be installed from GitHub:
In this vignette, we will use a subset of a Xenium Breast Cancer dataset.
In the data, we have quantification of 541 genes from 10000 cells.
## class: SpatialExperiment
## dim: 541 10000
## metadata(0):
## assays(1): counts
## rownames(541): ENSG00000121270 ENSG00000213088 ... BLANK_0444
## BLANK_0447
## rowData names(3): ID Symbol Type
## colnames(10000): cell_212124 cell_120108 ... cell_252054 cell_568560
## colData names(21): cell_id transcript_counts ... cell_type sample_id
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):
## spatialCoords names(2) : x_centroid y_centroid
## imgData names(1): sample_id
We also have cell-type annotations of these cells, there are 4 cell types.
##
## B cells Breast cancer Fibroblasts T cells
## 643 3550 4234 1573
We can use the function plotSpatial to visualise the cell position and color the cells by cell types.
scider can conduct grid-based density analysis for spatial transcriptomics data.
We can perform density calculation for each cell type using function gridDensity. The calculated density and grid information are saved in the metadata of the SpatialExperimnet object.
## [1] "grid_density" "grid_info"
## DataFrame with 12319 rows and 10 columns
## x_grid y_grid node_x node_y node density_b_cells
## <numeric> <numeric> <numeric> <numeric> <character> <numeric>
## 1 280.937 155.873 1 1 1-1 0.00161274
## 2 380.937 155.873 2 1 2-1 0.00211721
## 3 480.937 155.873 3 1 3-1 0.00277295
## 4 580.937 155.873 4 1 4-1 0.00364209
## 5 680.937 155.873 5 1 5-1 0.00482578
## ... ... ... ... ... ... ...
## 12315 9480.94 11067.8 93 127 93-127 0.001135422
## 12316 9580.94 11067.8 94 127 94-127 0.000741773
## 12317 9680.94 11067.8 95 127 95-127 0.000466692
## 12318 9780.94 11067.8 96 127 96-127 0.000284044
## 12319 9880.94 11067.8 97 127 97-127 0.000167953
## density_breast_cancer density_fibroblasts density_t_cells density_overall
## <numeric> <numeric> <numeric> <numeric>
## 1 5.08804e-05 0.00290209 0.000991062 0.00555677
## 2 9.86082e-05 0.00414279 0.001464630 0.00782324
## 3 1.89630e-04 0.00583797 0.002155848 0.01095640
## 4 3.59094e-04 0.00810256 0.003155203 0.01525895
## 5 6.65018e-04 0.01104941 0.004584676 0.02112489
## ... ... ... ... ...
## 12315 0.01190884 0.01354203 2.00058e-05 0.02660629
## 12316 0.00737930 0.00901015 9.48948e-06 0.01714072
## 12317 0.00452586 0.00581520 4.56708e-06 0.01081232
## 12318 0.00275608 0.00365773 2.28099e-06 0.00670013
## 12319 0.00167020 0.00225250 1.20181e-06 0.00409186
We can visualise the overall cell density of the whole tissue using function plotDensity.
We can also visualise the density of individual cell type, e.g., fibroblast cells.
After obtaining grid-based density for each COI, we can then detect regions-of-interest (ROIs) based on density or select by user.
To detect ROIs automatically, we can use the function findROI.
The detected ROIs are saved in the metadata of the SpatialExperiment object.
Here we identify ROIs based on the fibroblasts cell density.
## DataFrame with 1833 rows and 6 columns
## component members x y xcoord ycoord
## <factor> <character> <character> <character> <numeric> <numeric>
## 1 1 38-34 38 34 4030.94 3013.76
## 2 1 39-34 39 34 4130.94 3013.76
## 3 1 40-34 40 34 4230.94 3013.76
## 4 1 41-34 41 34 4330.94 3013.76
## 5 1 42-34 42 34 4430.94 3013.76
## ... ... ... ... ... ... ...
## 1829 8 66-124 66 124 6830.94 10808
## 1830 8 67-124 67 124 6930.94 10808
## 1831 8 68-124 68 124 7030.94 10808
## 1832 8 69-124 69 124 7130.94 10808
## 1833 8 70-124 70 124 7230.94 10808
We can visualise the ROIs with function plotROI.
Alternatively, users can select ROIs based on their own research interest (drawn by hand). This can be done using function selectRegion. This function will open an interactive window with an interactive plot for users to zoom-in/-out and select ROI using either a rectangular or lasso selection tool. Users can also press the Export selected points button to save the ROIs as object in the R environment.
After closing the interactive window, the selected ROI has been saved as a data.frame object named sel_region in the R environment.
We can then use the postSelRegion to save the ROI in the metadata of the SpatialExperiment object.
Similarly, we can plot visualise the user-defined ROI with function plotROI.
After defining ROIs, we can then test the relationship between any two cell types within each ROI or overall but account for ROI variation using a cubic spline or a linear fit. This can be done with function corrDensity.
We can see the correlation between each pair of cell types in each fibroblasts ROI.
## DataFrame with 48 rows and 9 columns
## celltype1 celltype2 ROI ngrid cor.coef t
## <character> <character> <character> <numeric> <numeric> <numeric>
## 1 B cells Breast cancer 1 31 0.338005 0.755462
## 2 B cells Breast cancer 2 160 -0.913986 -2.483606
## 3 B cells Breast cancer 3 325 -0.482294 -1.722597
## 4 B cells Breast cancer 4 369 -0.425421 -1.203010
## 5 B cells Breast cancer 5 87 0.437659 0.817755
## ... ... ... ... ... ... ...
## 44 Fibroblasts T cells 4 369 0.06743410 0.2466458
## 45 Fibroblasts T cells 5 87 0.60889057 2.2109896
## 46 Fibroblasts T cells 6 173 0.18793427 0.5924011
## 47 Fibroblasts T cells 7 315 -0.16143840 -0.6815605
## 48 Fibroblasts T cells 8 373 0.00536088 0.0298639
## df p.Pos p.Neg
## <numeric> <numeric> <numeric>
## 1 4.42476 0.244103 0.7558973
## 2 1.21561 0.896728 0.1032725
## 3 9.78951 0.941830 0.0581705
## 4 6.54929 0.864675 0.1353253
## 5 2.82248 0.238409 0.7615909
## ... ... ... ...
## 44 13.31707 0.4044718 0.595528
## 45 8.29697 0.0284087 0.971591
## 46 9.58525 0.2836464 0.716354
## 47 17.35906 0.7477454 0.252255
## 48 31.03191 0.4881834 0.511817
Or the correlation between each pair of cell types across all fibroblasts ROI:
## DataFrame with 6 rows and 5 columns
## celltype1 celltype2 cor.coef p.Pos p.Neg
## <character> <character> <numeric> <numeric> <numeric>
## 1 B cells Breast cancer -0.1451816 0.59921852 0.135175
## 2 B cells Fibroblasts 0.0324573 0.58293635 0.570772
## 3 B cells T cells 0.4838632 0.00725754 0.996425
## 4 Breast cancer Fibroblasts 0.0510354 0.31924365 0.876378
## 5 Breast cancer T cells -0.1847721 0.29873370 0.113617
## 6 Fibroblasts T cells 0.1756014 0.16264804 0.873024
We can also visualise the fitting using function plotDensCor.
Or, we can visualise the statistics between each pair of cell types using function plotCorHeatmap in the ROIs:
Or the correlation between cell type pairs across the whole slide:
Based on the grid density, we can ask many biological question about the data. For example, we would like to know if a certain cell type that are located in high density of fibroblast cells are different to the same cell type from a different level of fibroblast region.
To address this question, we first need to divide cells into different levels of grid density. This can be done using a contour identification strategy with function getContour.
Different level of contour can be visualised with cells using plotContour.
We can then annotate cells by their locations within each contour using function allocateCells.
We can visualise cell type composition per level.
## R version 4.5.1 Patched (2025-08-23 r88802)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] sf_1.0-21 SpatialExperiment_1.19.1
## [3] SingleCellExperiment_1.31.1 SummarizedExperiment_1.39.2
## [5] Biobase_2.69.1 GenomicRanges_1.61.5
## [7] Seqinfo_0.99.2 IRanges_2.43.5
## [9] S4Vectors_0.47.4 BiocGenerics_0.55.3
## [11] generics_0.1.4 MatrixGenerics_1.21.0
## [13] matrixStats_1.5.0 scider_1.7.3
## [15] ggplot2_4.0.0
##
## loaded via a namespace (and not attached):
## [1] DBI_1.2.3 deldir_2.0-4 rlang_1.1.6
## [4] magrittr_2.0.4 snakecase_0.11.1 e1071_1.7-16
## [7] compiler_4.5.1 spatstat.geom_3.6-0 mgcv_1.9-3
## [10] fftwtools_0.9-11 vctrs_0.6.5 stringr_1.5.2
## [13] pkgconfig_2.0.3 crayon_1.5.3 fastmap_1.2.0
## [16] magick_2.9.0 XVector_0.49.1 lwgeom_0.2-14
## [19] labeling_0.4.3 promises_1.3.3 rmarkdown_2.30
## [22] purrr_1.1.0 xfun_0.53 cachem_1.1.0
## [25] jsonlite_2.0.0 goftest_1.2-3 later_1.4.4
## [28] DelayedArray_0.35.3 spatstat.utils_3.2-0 R6_2.6.1
## [31] bslib_0.9.0 stringi_1.8.7 RColorBrewer_1.1-3
## [34] spatstat.data_3.1-8 spatstat.univar_3.1-4 lubridate_1.9.4
## [37] jquerylib_0.1.4 Rcpp_1.1.0 knitr_1.50
## [40] tensor_1.5.1 splines_4.5.1 httpuv_1.6.16
## [43] Matrix_1.7-4 igraph_2.2.0 timechange_0.3.0
## [46] tidyselect_1.2.1 dichromat_2.0-0.1 abind_1.4-8
## [49] yaml_2.3.10 spatstat.random_3.4-2 spatstat.explore_3.5-3
## [52] lattice_0.22-7 tibble_3.3.0 shiny_1.11.1
## [55] withr_3.0.2 S7_0.2.0 evaluate_1.0.5
## [58] units_1.0-0 proxy_0.4-27 polyclip_1.10-7
## [61] pillar_1.11.1 KernSmooth_2.23-26 plotly_4.11.0
## [64] dbscan_1.2.3 scales_1.4.0 xtable_1.8-4
## [67] class_7.3-23 glue_1.8.0 janitor_2.2.1
## [70] pheatmap_1.0.13 lazyeval_0.2.2 tools_4.5.1
## [73] hexDensity_1.4.10 hexbin_1.28.5 data.table_1.17.8
## [76] grid_4.5.1 tidyr_1.3.1 nlme_3.1-168
## [79] fastmatrix_0.6-2 cli_3.6.5 spatstat.sparse_3.1-0
## [82] S4Arrays_1.9.1 viridisLite_0.4.2 dplyr_1.1.4
## [85] gtable_0.3.6 SpatialPack_0.4-1 sass_0.4.10
## [88] digest_0.6.37 classInt_0.4-11 SparseArray_1.9.1
## [91] rjson_0.2.23 htmlwidgets_1.6.4 farver_2.1.2
## [94] htmltools_0.5.8.1 lifecycle_1.0.4 httr_1.4.7
## [97] mime_0.13