
Package ‘DAPAR’
October 15, 2025

Type Package

Title Tools for the Differential Analysis of Proteins Abundance with R

Description The package DAPAR is a Bioconductor distributed R package which
provides all the necessary functions to analyze quantitative data from
label-free proteomics experiments.
Contrarily to most other similar R packages, it is endowed with rich and
user-friendly graphical interfaces, so that no programming skill is
required (see `Prostar` package).

Version 1.40.0

Date 2024-01-17

Author c(person(given = ``Samuel'', family = ``Wieczorek'',
email = ``samuel.wieczorek@cea.fr'', role = c(``aut'',``cre'')),
person(given = ``Florence'', family =``Combes'',
email = ``florence.combes@cea.fr'', role = ``aut''),
person(given = ``Thomas'', family =``Burger'',
email = ``thomas.burger@cea.fr'', role = ``aut''),
person(given = ``Vasile-Cosmin'', family =``Lazar'',
email = ``vcosminlazar@gmail.com'', role = ``ctb''),

person(given = ``Enora'', family =``Fremy'',
email = ``enora.fremy@cea.fr'', role = ``ctb''),
person(given = ``Helene'', family =``Borges'',

email = ``helene.borges@cea.fr'', role = ``ctb''))

Maintainer Samuel Wieczorek <samuel.wieczorek@cea.fr>

License Artistic-2.0

VignetteBuilder knitr

Depends R (>= 4.3.0)

Suggests testthat, BiocStyle, AnnotationDbi, clusterProfiler, graph,
diptest, cluster, vioplot, visNetwork, vsn, igraph, FactoMineR,
factoextra, dendextend, parallel, doParallel, Mfuzz, apcluster,
forcats, readxl, openxlsx, multcomp, purrr, tibble, knitr,
norm, scales, tidyverse, cp4p, imp4p (>= 1.1),lme4, dplyr,
limma, preprocessCore, stringr, tidyr, impute, gplots,
grDevices, reshape2, graphics, stats, methods, ggplot2,
RColorBrewer, Matrix, org.Sc.sgd.db

1

2 Contents

Imports Biobase, MSnbase, DAPARdata (>= 1.30.0), utils, highcharter,
foreach

biocViews Proteomics, Normalization, Preprocessing, MassSpectrometry,
QualityControl, GO, DataImport

NeedsCompilation no

RoxygenNote 7.3.1

Encoding UTF-8

URL http://www.prostar-proteomics.org/

BugReports https://github.com/edyp-lab/DAPAR/issues

Collate agregation.R anova_analysis.R bioAnalysis.R clustering.R
dataset_Validity.R compute.t.tests.R DiffAnalysis.R
get_pep_prot_cc.R metacell.R inOutFiles.R limmaAnalysis.R
logText.R missingValuesFilter.R
missingValuesImputation_PeptideLevel.R
missingValuesImputation_ProteinLevel.R normalize.R pepa.R
plots_boxplot.R plots_compare_Norm.R plots_corr_matrix.R
plots_density.R plots_density_CV.R plots_heatmaps.R plots_pca.R
plots_violin.R utils.R volcanoPlot.R palette.R hypothesisTest.R
metacell_Plots.R zzz.R

git_url https://git.bioconductor.org/packages/DAPAR

git_branch RELEASE_3_21

git_last_commit e38913f

git_last_commit_date 2025-04-15

Repository Bioconductor 3.21

Date/Publication 2025-10-15

Contents
aggregateIter . 6
aggregateIterParallel . 7
aggregateMean . 8
AggregateMetacell . 9
aggregateSum . 10
aggregateTopn . 10
applyAnovasOnProteins . 11
averageIntensities . 12
barplotEnrichGO_HC . 13
barplotGroupGO_HC . 14
boxPlotD_HC . 15
BuildAdjacencyMatrix . 16
BuildColumnToProteinDataset . 16
buildGraph . 17
BuildMetaCell . 18

http://www.prostar-proteomics.org/
https://github.com/edyp-lab/DAPAR/issues

Contents 3

check.conditions . 19
check.design . 20
checkClusterability . 20
Check_Dataset_Validity . 21
Check_NbValues_In_Columns . 22
Children . 22
classic1wayAnova . 23
compareNormalizationD_HC . 23
compute.selection.table . 25
compute_t_tests . 26
corrMatrixD_HC . 27
CountPep . 28
createMSnset . 28
createMSnset2 . 30
CVDistD_HC . 32
dapar_hc_chart . 33
dapar_hc_ExportMenu . 33
deleteLinesFromIndices . 34
densityPlotD_HC . 35
diffAnaComputeAdjustedPValues . 36
diffAnaComputeFDR . 37
diffAnaGetSignificant . 37
diffAnaSave . 38
diffAnaVolcanoplot . 39
diffAnaVolcanoplot_rCharts . 40
display.CC.visNet . 42
enrich_GO . 43
ExtendPalette . 44
finalizeAggregation . 45
findMECBlock . 46
formatHSDResults . 46
formatLimmaResult . 47
formatPHResults . 48
formatPHTResults . 49
fudge2LRT . 49
get.pep.prot.cc . 51
GetCC . 51
GetColorsForConditions . 52
getDesignLevel . 53
GetDetailedNbPeptides . 54
GetDetailedNbPeptidesUsed . 54
getIndicesConditions . 55
getIndicesOfLinesToRemove . 56
GetIndices_BasedOnConditions . 57
GetIndices_MetacellFiltering . 58
GetIndices_WholeLine . 59
GetIndices_WholeMatrix . 60
GetKeyId . 61

4 Contents

getListNbValuesInLines . 61
GetMatAdj . 62
GetMetacell . 63
GetMetacellTags . 63
GetNbPeptidesUsed . 64
GetNbTags . 65
getNumberOf . 65
getNumberOfEmptyLines . 66
getPourcentageOfMV . 66
getProcessingInfo . 67
getProteinsStats . 68
getQuantile4Imp . 68
GetSoftAvailables . 69
getTextForAggregation . 70
getTextForAnaDiff . 70
getTextForFiltering . 71
getTextForGOAnalysis . 72
getTextForHypothesisTest . 72
getTextForNewDataset . 73
getTextForNormalization . 74
getTextForpeptideImputation . 74
getTextForproteinImputation . 75
GetTypeofData . 76
GetUniqueTags . 76
Get_AllComparisons . 77
globalAdjPval . 78
GlobalQuantileAlignment . 79
GOAnalysisSave . 79
GraphPepProt . 81
group_GO . 81
hc_logFC_DensityPlot . 82
hc_mvTypePlot2 . 83
heatmapD . 84
heatmapForMissingValues . 85
histPValue_HC . 86
impute.pa2 . 87
inner.aggregate.iter . 88
inner.aggregate.topn . 89
inner.mean . 90
inner.sum . 91
is.subset . 91
LH0 . 92
LH0.lm . 93
LH1 . 93
LH1.lm . 94
limmaCompleteTest . 95
listSheets . 96
LOESS . 96

Contents 5

make.contrast . 97
make.design . 98
make.design.1 . 99
make.design.2 . 99
make.design.3 . 100
match.metacell . 101
MeanCentering . 101
metacell.def . 102
MetaCellFiltering . 103
MetacellFilteringScope . 105
metacellHisto_HC . 106
metacellPerLinesHistoPerCondition_HC . 107
metacellPerLinesHisto_HC . 108
Metacell_DIA_NN . 109
Metacell_generic . 110
Metacell_maxquant . 111
Metacell_proline . 112
metacombine . 113
mvImage . 114
my_hc_chart . 114
my_hc_ExportMenu . 115
nonzero . 116
normalizeMethods.dapar . 117
NumericalFiltering . 117
NumericalgetIndicesOfLinesToRemove . 118
OWAnova . 119
Parent . 120
pepa.test . 120
pkgs.require . 121
plotJitter . 122
plotJitter_rCharts . 122
plotPCA_Eigen . 123
plotPCA_Eigen_hc . 124
plotPCA_Ind . 125
plotPCA_Var . 125
postHocTest . 126
proportionConRev_HC . 127
QuantileCentering . 128
rbindMSnset . 129
readExcel . 129
reIntroduceMEC . 130
removeLines . 131
samLRT . 131
saveParameters . 132
scatterplotEnrichGO_HC . 133
search.metacell.tags . 134
separateAdjPval . 135
SetCC . 135

6 aggregateIter

SetMatAdj . 136
Set_POV_MEC_tags . 137
splitAdjacencyMat . 138
StringBasedFiltering . 139
StringBasedFiltering2 . 140
SumByColumns . 140
SymFilteringOperators . 141
test.design . 142
testAnovaModels . 142
thresholdpval4fdr . 143
translatedRandomBeta . 144
univ_AnnotDbPkg . 145
UpdateMetacellAfterImputation . 145
violinPlotD . 146
visualizeClusters . 147
vsn . 148
wrapper.compareNormalizationD_HC . 149
wrapper.corrMatrixD_HC . 150
wrapper.CVDistD_HC . 151
wrapper.dapar.impute.mi . 151
wrapper.heatmapD . 153
wrapper.impute.detQuant . 154
wrapper.impute.fixedValue . 155
wrapper.impute.KNN . 156
wrapper.impute.mle . 156
wrapper.impute.pa . 157
wrapper.impute.pa2 . 158
wrapper.impute.slsa . 159
wrapper.mvImage . 159
wrapper.normalizeD . 160
wrapper.pca . 161
wrapperCalibrationPlot . 162
wrapperClassic1wayAnova . 163
wrapperRunClustering . 164
write.excel . 166
writeMSnsetToCSV . 167
writeMSnsetToExcel . 167

Index 169

aggregateIter xxxx

Description

xxxx

aggregateIterParallel 7

Usage

aggregateIter(obj.pep, X, init.method = "Sum", method = "Mean", n = NULL)

Arguments

obj.pep xxxxx

X xxxx

init.method xxxxx

method xxxxx

n xxxx

Value

A protein object of class MSnset

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
protID <- "Protein_group_IDs"
X <- BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(10)], protID, FALSE)
ll.agg <- aggregateIter(Exp1_R25_pept[seq_len(10)], X = X)

aggregateIterParallel xxxx

Description

xxxx

Usage

aggregateIterParallel(
obj.pep,
X,
init.method = "Sum",
method = "Mean",
n = NULL

)

8 aggregateMean

Arguments

obj.pep xxxxx

X xxxx

init.method xxxxx

method xxxxx

n xxxx

Value

xxxxx

Author(s)

Samuel Wieczorek

Examples

Not run:
data(Exp1_R25_pept, package="DAPARdata")
protID <- "Protein_group_IDs"
obj.pep <- Exp1_R25_pept[seq_len(10)]
X <- BuildAdjacencyMatrix(obj.pep, protID, FALSE)
obj.agg <- aggregateIterParallel(obj.pep, X)

End(Not run)

aggregateMean Compute the intensity of proteins as the mean of the intensities of their
peptides.

Description

#’ This function computes the intensity of proteins as the mean of the intensities of their peptides.

Usage

aggregateMean(obj.pep, X)

Arguments

obj.pep A peptide object of class MSnset

X An adjacency matrix in which lines and columns correspond respectively to pep-
tides and proteins.

AggregateMetacell 9

Value

A matrix of intensities of proteins

Author(s)

Alexia Dorffer

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj.pep <- Exp1_R25_pept[seq_len(10)]
obj.pep.imp <- wrapper.impute.detQuant(obj.pep, na.type = c("Missing POV", "Missing MEC"))
protID <- "Protein_group_IDs"
X <- BuildAdjacencyMatrix(obj.pep.imp, protID, FALSE)
ll.agg <- aggregateMean(obj.pep.imp, X)

AggregateMetacell Symbolic product of matrices

Description

Execute a product two matrices: the first is an adjacency one while the second if a simple dataframe

Usage

AggregateMetacell(X, obj.pep)

Arguments

X An adjacency matrix between peptides and proteins
obj.pep A dataframe of the cell metadata for peptides

Value

xxxx

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj.pep <- Exp1_R25_pept[seq_len(10)]
protID <- "Protein_group_IDs"
X <- BuildAdjacencyMatrix(obj.pep, protID, FALSE)
agg.meta <- AggregateMetacell(X, obj.pep)

10 aggregateTopn

aggregateSum Compute the intensity of proteins with the sum of the intensities of their
peptides.

Description

This function computes the intensity of proteins based on the sum of the intensities of their peptides.

Usage

aggregateSum(obj.pep, X)

Arguments

obj.pep A matrix of intensities of peptides

X An adjacency matrix in which lines and columns correspond respectively to pep-
tides and proteins.

Value

A matrix of intensities of proteins

Author(s)

Alexia Dorffer

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj.pep <- Exp1_R25_pept[seq_len(20)]
obj.pep.imp <- wrapper.impute.detQuant(obj.pep, na.type = c("Missing POV", "Missing MEC"))
protID <- "Protein_group_IDs"
X <- BuildAdjacencyMatrix(obj.pep, protID, FALSE)
ll.agg <- aggregateSum(obj.pep.imp, X)

aggregateTopn Compute the intensity of proteins as the sum of the intensities of their
n best peptides.

Description

This function computes the intensity of proteins as the sum of the intensities of their n best peptides.

Usage

aggregateTopn(obj.pep, X, method = "Mean", n = 10)

applyAnovasOnProteins 11

Arguments

obj.pep A matrix of intensities of peptides

X An adjacency matrix in which lines and columns correspond respectively to pep-
tides and proteins.

method xxx

n The maximum number of peptides used to aggregate a protein.

Value

A matrix of intensities of proteins

Author(s)

Alexia Dorffer, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj.pep <- Exp1_R25_pept[seq_len(10)]
protID <- "Protein_group_IDs"
X <- BuildAdjacencyMatrix(obj.pep, protID, FALSE)
ll.agg <- aggregateTopn(obj.pep, X, n = 3)

applyAnovasOnProteins iteratively applies OWAnova() on the features of an MSnSet object

Description

iteratively applies OWAnova() on the features of an MSnSet object

Usage

applyAnovasOnProteins(obj)

Arguments

obj an MSnSet object ’

Value

a list of linear models

Author(s)

Thomas Burger

12 averageIntensities

Examples

data(Exp1_R25_prot, package='DAPARdata')
exdata <- Exp1_R25_prot[1:5,]
applyAnovasOnProteins(exdata)

averageIntensities Average protein/peptide abundances for each condition studied

Description

Calculate the average of the abundances for each protein in each condition for an ExpressionSet or
MSnSet. Needs to have the array expression data ordered in the same way as the phenotype data
(columns of the array data in the same order than the condition column in the phenotype data).

Usage

averageIntensities(ESet_obj)

Arguments

ESet_obj ExpressionSet object containing all the data

Value

a dataframe in wide format providing (in the case of 3 or more conditions) the means of intensities
for each protein/peptide in each condition. If there are less than 3 conditions, an error message is
returned.

Author(s)

Helene Borges

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(1000)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
averageIntensities(obj$new)

barplotEnrichGO_HC 13

barplotEnrichGO_HC A barplot that shows the result of a GO enrichment, using the package
highcharter

Description

A barplot of GO enrichment analysis

Usage

barplotEnrichGO_HC(ego, maxRes = 5, title = NULL)

Arguments

ego The result of the GO enrichment, provides either by the function enrichGO in
the package DAPAR or the function enrichGO of the package ‘clusterProfiler‘

maxRes The maximum number of categories to display in the plot

title The title of the plot

Value

A barplot

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(10)]
if (!requireNamespace("org.Sc.sgd.db", quietly = TRUE)) {
stop("Please install org.Sc.sgd.db:

BiocManager::install('org.Sc.sgd.db')")
}
library(org.Sc.sgd.db)
univ <- univ_AnnotDbPkg("org.Sc.sgd.db")
ego <- enrich_GO(

data = Biobase::fData(obj)$Protein.IDs, idFrom = "UNIPROT",
orgdb = "org.Sc.sgd.db", ont = "MF", pval = 0.05, universe = univ

)
barplotEnrichGO_HC(ego)

14 barplotGroupGO_HC

barplotGroupGO_HC A barplot which shows the result of a GO classification, using the
package highcharter

Description

A barplot which shows the result of a GO classification, using the package highcharter

Usage

barplotGroupGO_HC(ggo, maxRes = 5, title = "")

Arguments

ggo The result of the GO classification, provides either by the function group_GO in
the package DAPAR or the function groupGO in the package ‘clusterProfiler‘

maxRes An integer which is the maximum number of classes to display in the plot

title The title of the plot

Value

A barplot

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(10)]
if (!requireNamespace("org.Sc.sgd.db", quietly = TRUE)) {
stop("Please install org.Sc.sgd.db:

BiocManager::install('org.Sc.sgd.db')")
}
library(org.Sc.sgd.db)
univ <- univ_AnnotDbPkg("org.Sc.sgd.db")
ggo <- group_GO(

data = Biobase::fData(obj)$Protein.IDs, idFrom = "UNIPROT",
orgdb = "org.Sc.sgd.db", ont = "MF", level = 2

)
barplotGroupGO_HC(ggo)

boxPlotD_HC 15

boxPlotD_HC Builds a boxplot from a dataframe using the package highcharter

Description

Builds a boxplot from a dataframe using the package highcharter

Usage

boxPlotD_HC(
obj,
conds,
keyId = NULL,
legend = NULL,
pal = NULL,
subset.view = NULL

)

Arguments

obj Numeric matrix

conds xxx

keyId xxxx

legend A vector of the conditions (one condition per sample).

pal A basis palette for the boxes which length must be equal to the number of unique
conditions in the dataset.

subset.view A vector of index indicating which rows to highlight

Value

A boxplot

Author(s)

Samuel Wieczorek, Anais Courtier, Enora Fremy

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot
conds <- legend <- Biobase::pData(obj)$Condition
key <- "Protein_IDs"
pal <- ExtendPalette(length(unique(conds)))
boxPlotD_HC(obj, conds, key, legend, pal, seq_len(10))

16 BuildColumnToProteinDataset

BuildAdjacencyMatrix Function matrix of appartenance group

Description

Method to create a binary matrix with proteins in columns and peptides in lines on a MSnSet object
(peptides)

Usage

BuildAdjacencyMatrix(obj.pep, protID, unique = TRUE)

Arguments

obj.pep An object (peptides) of class MSnSet.

protID The name of proteins ID column

unique A boolean to indicate whether only the unique peptides must be considered
(TRUE) or if the shared peptides have to be integrated (FALSE).

Value

A binary matrix

Author(s)

Florence Combes, Samuel Wieczorek, Alexia Dorffer

Examples

data(Exp1_R25_pept, package="DAPARdata")
protId <- "Protein_group_IDs"
BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(10)], protId, TRUE)

BuildColumnToProteinDataset

creates a column for the protein dataset after agregation by using the
previous peptide dataset.

Description

This function creates a column for the protein dataset after aggregation by using the previous peptide
dataset.

buildGraph 17

Usage

BuildColumnToProteinDataset(peptideData, matAdj, columnName, proteinNames)

Arguments

peptideData A data.frame of meta data of peptides. It is the fData of the MSnset object.

matAdj The adjacency matrix used to agregate the peptides data.

columnName The name of the column in Biobase::fData(peptides_MSnset) that the user wants
to keep in the new protein data.frame.

proteinNames The names of the protein in the new dataset (i.e. rownames)

Value

A vector

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
protID <- "Protein_group_IDs"
obj.pep <- Exp1_R25_pept[seq_len(10)]
M <- BuildAdjacencyMatrix(obj.pep, protID, FALSE)
data <- Biobase::fData(obj.pep)
protData <- aggregateMean(obj.pep, M)
name <- "Protein_group_IDs"
proteinNames <- rownames(Biobase::fData(protData$obj.prot))
new.col <- BuildColumnToProteinDataset(data, M, name, proteinNames)

buildGraph Display a CC

Description

Display a CC

Usage

buildGraph(The.CC, X)

Arguments

The.CC A cc (a list)

X xxxxx

18 BuildMetaCell

Value

A plot

Author(s)

Thomas Burger, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(100)]
X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", FALSE)
ll <- get.pep.prot.cc(X)
g <- buildGraph(ll[[1]], X)

BuildMetaCell Builds cells metadata

Description

This function the cells metadata info base on the origin of identification for entities. There are
actually two different type of origin which are managed by DAPAR: - "Maxquant-like" info which
is represented by strings/tags, - Proline-like where the info which is used is an integer

Usage

BuildMetaCell(from, level, qdata = NULL, conds = NULL, df = NULL)

Arguments

from A string which is the name of the software from which the data are. Available
values are ’maxquant’, ’proline’ and ’DIA-NN’

level xxx

qdata An object of class MSnSet

conds xxx

df A list of integer xxxxxxx

Value

xxxxx

Author(s)

Samuel Wieczorek

check.conditions 19

Examples

file <- system.file("extdata", "Exp1_R25_pept.txt", package = "DAPARdata")
data <- read.table(file, header = TRUE, sep = "\t", stringsAsFactors = FALSE)
metadataFile <- system.file("extdata", "samples_Exp1_R25.txt",

package = "DAPARdata")
metadata <- read.table(metadataFile,

header = TRUE, sep = "\t", as.is = TRUE,
stringsAsFactors = FALSE)

conds <- metadata$Condition
qdata <- data[, seq.int(from = 56, to = 61)]
df <- data[, seq.int(from = 43, to = 48)]
df <- BuildMetaCell(

from = "maxquant", level = "peptide", qdata = qdata,
conds = conds, df = df)

df <- BuildMetaCell(
from = "proline", level = "peptide", qdata = qdata,
conds = conds, df = df)

check.conditions Check if the design is valid

Description

Check if the design is valid

Usage

check.conditions(conds)

Arguments

conds A vector

Value

A list

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
check.conditions(Biobase::pData(Exp1_R25_pept)$Condition)

20 checkClusterability

check.design Check if the design is valid

Description

Check if the design is valid

Usage

check.design(sTab)

Arguments

sTab The data.frame which correspond to the ‘pData()‘ function of package ‘MSnbase‘.

Value

A boolean

Author(s)

Thomas Burger, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
check.design(Biobase::pData(Exp1_R25_pept)[, seq_len(3)])

checkClusterability xxx

Description

The first step is to standardize the data (with the Mfuzz package). Then the function checks that
these data are clusterizable or not (use of [diptest::dip.test()] to determine whether the distribution
is unimodal or multimodal). Finally, it determines the "optimal" k by the Gap statistic approach.

Usage

checkClusterability(standards, b = 500)

Arguments

standards a matrix or dataframe containing only the standardized mean intensities returned
by the function [standardiseMeanIntensities()]

b Parameter B of the function [gap_cluster()]

Check_Dataset_Validity 21

Value

a list of 2 elements: * dip_test: the result of the clusterability of the data * gap_cluster: the gap
statistic obtained with the function [cluster::clusGap()].

Author(s)

Helene Borges

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(100)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
averaged_means <- averageIntensities(obj$new)
only_means <- dplyr::select_if(averaged_means, is.numeric)
only_features <- dplyr::select_if(averaged_means, is.character)
means <- purrr::map(purrr::array_branch(as.matrix(only_means), 1), mean)
centered <- only_means - unlist(means)
centered_means <- dplyr::bind_cols(
feature = dplyr::as_tibble(only_features),
dplyr::as_tibble(centered))
checkClust <- checkClusterability(centered_means, b = 100)

Check_Dataset_Validity

xxx

Description

xxx

Usage

Check_Dataset_Validity(obj)

Arguments

obj xxx

22 Children

Check_NbValues_In_Columns

xxx

Description

xxx

Usage

Check_NbValues_In_Columns(qdata)

Arguments

qdata xxx

Children Names of all chidren of a node

Description

xxx

Usage

Children(level, parent = NULL)

Arguments

level xxx

parent xxx

Examples

Children('protein', 'Missing')
Children('protein', 'Missing POV')
Children('protein', c('Missing POV', 'Missing MEC'))
Children('protein', c('Missing', 'Missing POV', 'Missing MEC'))

classic1wayAnova 23

classic1wayAnova Function to perform a One-way Anova statistical test on a MsnBase
dataset

Description

Function to perform a One-way Anova statistical test on a MsnBase dataset

Usage

classic1wayAnova(current_line, conditions)

Arguments

current_line The line currently treated from the quantitative data to perform the ANOVA

conditions The conditions represent the different classes of the studied factor

Value

A named vector containing all the different values of the aov model

Author(s)

Hélène Borges

Examples

Not run: examples/ex_classic1wayAnova.R

compareNormalizationD_HC

Builds a plot from a dataframe. Same as compareNormalizationD but
uses the library highcharter

Description

Plot to compare the quantitative proteomics data before and after normalization using the package
highcharter

24 compareNormalizationD_HC

Usage

compareNormalizationD_HC(
qDataBefore,
qDataAfter,
keyId = NULL,
conds = NULL,
pal = NULL,
subset.view = NULL,
n = 1,
type = "scatter"

)

Arguments

qDataBefore A dataframe that contains quantitative data before normalization.

qDataAfter A dataframe that contains quantitative data after normalization.

keyId xxx

conds A vector of the conditions (one condition per sample).

pal xxx

subset.view xxx

n An integer that is equal to the maximum number of displayed points. This num-
ber must be less or equal to the size of the dataset. If it is less than it, it is a
random selection

type scatter or line

Value

A plot

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot
qDataBefore <- Biobase::exprs(obj)
conds <- Biobase::pData(obj)[, "Condition"]
id <- Biobase::fData(obj)[, 'Protein_IDs']
pal <- ExtendPalette(2)
objAfter <- wrapper.normalizeD(obj,
method = "QuantileCentering",
conds = conds, type = "within conditions"
)

n <- 1
compareNormalizationD_HC(

compute.selection.table 25

qDataBefore = qDataBefore,
qDataAfter = Biobase::exprs(objAfter),
keyId = id,
pal = pal,
n = n,
subset.view = seq_len(n),
conds = conds)

compute.selection.table

Applies an FDR threshold on a table of adjusted p-values and summa-
rizes the results

Description

Applies an FDR threshold on a table of adjusted p-values and summarizes the results

Usage

compute.selection.table(x, fdr.threshold)

Arguments

x a table of adjusted p-values

fdr.threshold an FDR threshold

Value

a summary of the number of significantly differentially abundant proteins, overall and per contrast

Author(s)

Thomas Burger

Examples

data(Exp1_R25_prot, package='DAPARdata')
exdata <- Exp1_R25_prot[1:5,]
adjpvaltab <- globalAdjPval(testAnovaModels(applyAnovasOnProteins(exdata), "TukeyHSD")$P_Value)
seltab <- compute.selection.table(adjpvaltab, 0.2)
seltab

26 compute_t_tests

compute_t_tests xxxxxx

Description

xxxxxx

Usage

compute_t_tests(obj, contrast = "OnevsOne", type = "Student")

Arguments

obj A matrix of quantitative data, without any missing values.

contrast Indicates if the test consists of the comparison of each biological condition ver-
sus each of the other ones (contrast=1; for example H0:"C1=C2" vs H1:"C1!=C2",
etc.) or each condition versus all others (contrast=2; e.g. H0:"C1=(C2+C3)/2"
vs H1:"C1!=(C2+C3)/2", etc. if there are three conditions).

type xxxxx

Value

A list of two items : logFC and P_Value; both are dataframe. The first one contains the logFC
values of all the comparisons (one column for one comparison), the second one contains the pvalue
of all the comparisons (one column for one comparison). The names of the columns for those two
dataframes are identical and correspond to the description of the comparison.

Author(s)

Florence Combes, Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(1000)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
ttest <- compute_t_tests(obj$new)

corrMatrixD_HC 27

corrMatrixD_HC Displays a correlation matrix of the quantitative data of the
Biobase::exprs() table.

Description

Displays a correlation matrix of the quantitative data of the Biobase::exprs() table.

Usage

corrMatrixD_HC(object, samplesData = NULL, rate = 0.5, showValues = TRUE)

Arguments

object The result of the cor function.

samplesData A dataframe in which lines correspond to samples and columns to the meta-data
for those samples.

rate The rate parameter to control the exponential law for the gradient of colors

showValues xxx

Value

A colored correlation matrix

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
qData <- Biobase::exprs(Exp1_R25_pept)
samplesData <- Biobase::pData(Exp1_R25_pept)
res <- cor(qData, use = "pairwise.complete.obs")
corrMatrixD_HC(res, samplesData)

28 createMSnset

CountPep Compute the number of peptides used to aggregate proteins

Description

This function computes the number of peptides used to aggregate proteins.

Usage

CountPep(M)

Arguments

M A "valued" adjacency matrix in which lines and columns correspond respec-
tively to peptides and proteins.

Value

A vector of boolean which is the adjacency matrix but with NA values if they exist in the intensity
matrix.

Author(s)

Alexia Dorffer

Examples

data(Exp1_R25_pept, package="DAPARdata")
protID <- "Protein_group_IDs"
M <- BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(10)], protID, FALSE)
CountPep(M)

createMSnset Creates an object of class MSnSet from text file

Description

Builds an object of class MSnSet from a single tabulated-like file for quantitative and meta-data and
a dataframe for the samples description. It differs from the original MSnSet builder which requires
three separated files tabulated-like quantitative proteomic data into a MSnSet object, including meta-
data.

createMSnset 29

Usage

createMSnset(
file,
metadata = NULL,
indExpData,
colnameForID = NULL,
indexForMetacell = NULL,
logData = FALSE,
replaceZeros = FALSE,
pep_prot_data = NULL,
proteinId = NULL,
software = NULL

)

Arguments

file The name of a tab-separated file that contains the data.

metadata A dataframe describing the samples (in lines).

indExpData A vector of string where each element is the name of a column in designTable
that have to be integrated in the Biobase::fData() table of the MSnSet object.

colnameForID The name of the column containing the ID of entities (peptides or proteins)
indexForMetacell

xxxxxxxxxxx

logData A boolean value to indicate if the data have to be log-transformed (Default is
FALSE)

replaceZeros A boolean value to indicate if the 0 and NaN values of intensity have to be
replaced by NA (Default is FALSE)

pep_prot_data A string that indicates whether the dataset is about

proteinId xxxx

software xxx

Value

An instance of class MSnSet.

Author(s)

Florence Combes, Samuel Wieczorek

Examples

require(Matrix)
exprsFile <- system.file("extdata", "Exp1_R25_pept.txt",
package = "DAPARdata")
metadataFile <- system.file("extdata", "samples_Exp1_R25.txt",

package = "DAPARdata"
)

30 createMSnset2

metadata <- read.table(metadataFile, header = TRUE, sep = "\t",
as.is = TRUE)
indExpData <- seq.int(from=56, to=61)
colnameForID <- "id"
obj <- createMSnset(exprsFile, metadata, indExpData, colnameForID,

indexForMetacell = seq.int(from=43, to=48), pep_prot_data = "peptide",
software = "maxquant"

)

exprsFile <- system.file("extdata", "Exp1_R25_pept.txt",
package = "DAPARdata")
metadataFile <- system.file("extdata", "samples_Exp1_R25.txt",
package = "DAPARdata")
metadata <- read.table(metadataFile, header = TRUE, sep = "\t",
as.is = TRUE)
indExpData <- seq.int(from = 56, to = 61)
colnameForID <- "AutoID"
obj <- createMSnset(exprsFile, metadata, indExpData, colnameForID,
indexForMetacell = seq.int(from = 43, to = 48),
pep_prot_data = "peptide", software = "maxquant"
)

createMSnset2 Creates an object of class MSnSet from text file

Description

Builds an object of class MSnSet from a single tabulated-like file for quantitative and meta-data and
a dataframe for the samples description. It differs from the original MSnSet builder which requires
three separated files tabulated-like quantitative proteomic data into a MSnSet object, including meta-
data.

Usage

createMSnset2(
file,
metadata = NULL,
qdataNames,
colnameForID = NULL,
metacellNames = NULL,
logData = FALSE,
replaceZeros = FALSE,
pep_prot_data = NULL,
proteinId = NULL,
software = NULL

)

createMSnset2 31

Arguments

file The name of a tab-separated file that contains the data.

metadata A dataframe describing the samples (in lines).

qdataNames A vector of string where each element is the name of a column in designTable
that have to be integrated in the Biobase::fData() table of the MSnSet object.

colnameForID The name of the column containing the ID of entities (peptides or proteins)

metacellNames xxxxxxxxxxx

logData A boolean value to indicate if the data have to be log-transformed (Default is
FALSE)

replaceZeros A boolean value to indicate if the 0 and NaN values of intensity have to be
replaced by NA (Default is FALSE)

pep_prot_data A string that indicates whether the dataset is about

proteinId xxxx

software xxx

Value

An instance of class MSnSet.

Author(s)

Florence Combes, Samuel Wieczorek

Examples

require(Matrix)
exprsFile <- system.file("extdata", "Exp1_R25_pept.txt",
package = "DAPARdata")
metadataFile <- system.file("extdata", "samples_Exp1_R25.txt",

package = "DAPARdata"
)
metadata <- read.table(metadataFile, header = TRUE, sep = "\t",
as.is = TRUE)
indExpData <- seq.int(from=56, to=61)
colnameForID <- "id"
obj <- createMSnset(exprsFile, metadata, indExpData, colnameForID,

indexForMetacell = seq.int(from=43, to=48), pep_prot_data = "peptide",
software = "maxquant"

)

exprsFile <- system.file("extdata", "Exp1_R25_pept.txt",
package = "DAPARdata")
metadataFile <- system.file("extdata", "samples_Exp1_R25.txt",
package = "DAPARdata")
metadata <- read.table(metadataFile, header = TRUE, sep = "\t",
as.is = TRUE)
indExpData <- seq.int(from = 56, to = 61)

32 CVDistD_HC

colnameForID <- "AutoID"
obj <- createMSnset(exprsFile, metadata, indExpData, colnameForID,
indexForMetacell = seq.int(from = 43, to = 48),
pep_prot_data = "peptide", software = "maxquant"
)

CVDistD_HC Distribution of CV of entities

Description

Builds a densityplot of the CV of entities in the Biobase::exprs() table of a object. The CV is calcu-
lated for each condition present in the dataset (see the slot 'Condition' in the Biobase::pData()
table)

Usage

CVDistD_HC(qData, conds = NULL, pal = NULL)

Arguments

qData A dataframe that contains quantitative data.

conds A vector of the conditions (one condition per sample).

pal xxx

Value

A density plot

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
conds <- Biobase::pData(Exp1_R25_pept)[, "Condition"]
CVDistD_HC(Biobase::exprs(Exp1_R25_pept), conds)
pal <- ExtendPalette(2, "Dark2")
CVDistD_HC(Biobase::exprs(Exp1_R25_pept), conds, pal)

dapar_hc_chart 33

dapar_hc_chart Customised resetZoomButton of highcharts plots

Description

Customised resetZoomButton of highcharts plots

Usage

dapar_hc_chart(hc, chartType, zoomType = "None", width = 0, height = 0)

Arguments

hc A highcharter object

chartType The type of the plot

zoomType The type of the zoom (one of "x", "y", "xy", "None")

width xxx

height xxx

Value

A highchart plot

Author(s)

Samuel Wieczorek

Examples

library("highcharter")
hc <- highchart()
hc <- dapar_hc_chart(hc, chartType = "line", zoomType = "x")
hc_add_series(hc, data = c(29, 71, 40))

dapar_hc_ExportMenu Customised contextual menu of highcharts plots

Description

Customised contextual menu of highcharts plots

Usage

dapar_hc_ExportMenu(hc, filename)

34 deleteLinesFromIndices

Arguments

hc A highcharter object

filename The filename under which the plot has to be saved

Value

A contextual menu for highcharts plots

Author(s)

Samuel Wieczorek

Examples

library("highcharter")
hc <- highchart()
hc_chart(hc, type = "line")
hc_add_series(hc, data = c(29, 71, 40))
dapar_hc_ExportMenu(hc, filename = "foo")

deleteLinesFromIndices

Delete the lines in the matrix of intensities and the metadata table
given their indice.

Description

Delete the lines in the matrix of intensities and the metadata table given their indice.

Usage

deleteLinesFromIndices(obj, deleteThat = NULL, processText = "")

Arguments

obj An object of class MSnSet containing quantitative data.

deleteThat A vector of integers which are the indices of lines to delete.

processText A string to be included in the MSnSet object for log.

Value

An instance of class MSnSet that have been filtered.

Author(s)

Florence Combes, Samuel Wieczorek

densityPlotD_HC 35

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- deleteLinesFromIndices(Exp1_R25_pept[seq_len(100)], c(seq_len(10)))

densityPlotD_HC Builds a densityplot from a dataframe

Description

Densityplot of quantitative proteomics data over samples.

Usage

densityPlotD_HC(obj, legend = NULL, pal = NULL)

Arguments

obj xxx

legend A vector of the conditions (one condition per sample).

pal xxx

Value

A density plot

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
densityPlotD_HC(Exp1_R25_pept)
conds <- Biobase::pData(Exp1_R25_pept)$Condition
pal <- ExtendPalette(2, "Dark2")
densityPlotD_HC(Exp1_R25_pept, pal = pal)

36 diffAnaComputeAdjustedPValues

diffAnaComputeAdjustedPValues

Computes the adjusted p-values

Description

This function is a wrapper to the function adjust.p from the ‘cp4p‘ package. It returns the FDR
corresponding to the p-values of the differential analysis. The FDR is computed with the function
p.adjust{stats}.

Usage

diffAnaComputeAdjustedPValues(pval, pi0Method = 1)

Arguments

pval The result (p-values) of the differential analysis processed by limmaCompleteTest

pi0Method The parameter pi0.method of the method adjust.p in the package cp4p

Value

The computed adjusted p-values

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(1000)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
qData <- Biobase::exprs(obj$new)
sTab <- Biobase::pData(obj$new)
limma <- limmaCompleteTest(qData, sTab)
df <- data.frame(id = rownames(limma$logFC), logFC = limma$logFC[, 1], pval = limma$P_Value[, 1])

diffAnaComputeAdjustedPValues(pval = limma$P_Value[, 1])

diffAnaComputeFDR 37

diffAnaComputeFDR Computes the FDR corresponding to the p-values of the differential
analysis using

Description

This function is a wrapper to the function adjust.p from the ‘cp4p‘ package. It returns the FDR
corresponding to the p-values of the differential analysis. The FDR is computed with the function
p.adjust{stats}.

Usage

diffAnaComputeFDR(adj.pvals)

Arguments

adj.pvals xxxx

Value

The computed FDR value (floating number)

Author(s)

Samuel Wieczorek

Examples

NULL

diffAnaGetSignificant Returns a MSnSet object with only proteins significant after differen-
tial analysis.

Description

Returns a MSnSet object with only proteins significant after differential analysis.

Usage

diffAnaGetSignificant(obj)

Arguments

obj An object of class MSnSet.

38 diffAnaSave

Value

A MSnSet

Author(s)

Alexia Dorffer

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(100)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
qData <- Biobase::exprs(obj$new)
sTab <- Biobase::pData(obj$new)
allComp <- limmaCompleteTest(qData, sTab)
data <- list(logFC = allComp$logFC[1], P_Value = allComp$P_Value[1])
obj$new <- diffAnaSave(obj$new, allComp, data)
signif <- diffAnaGetSignificant(obj$new)

diffAnaSave Returns a MSnSet object with the results of the differential analysis
performed with limma package.

Description

This method returns a class MSnSet object with the results of differential analysis.

Usage

diffAnaSave(obj, allComp, data = NULL, th_pval = 0, th_logFC = 0)

Arguments

obj An object of class MSnSet.

allComp A list of two items which is the result of the function wrapper.limmaCompleteTest
or xxxx

data The result of the differential analysis processed by limmaCompleteTest

th_pval xxx

th_logFC xxx

Value

A MSnSet

diffAnaVolcanoplot 39

Author(s)

Alexia Dorffer, Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(100)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
qData <- Biobase::exprs(obj$new)
sTab <- Biobase::pData(obj$new)
allComp <- limmaCompleteTest(qData, sTab)
data <- list(logFC = allComp$logFC[1], P_Value = allComp$P_Value[1])
diffAnaSave(obj$new, allComp, data)

diffAnaVolcanoplot Volcanoplot of the differential analysis

Description

Plots a volcanoplot after the differential analysis. Typically, the log of Fold Change is represented
on the X-axis and the log10 of the p-value is drawn on the Y-axis. When the threshold_pVal
and the threshold_logFC are set, two lines are drawn respectively on the y-axis and the X-axis to
visually distinguish between differential and non differential data.

Usage

diffAnaVolcanoplot(
logFC = NULL,
pVal = NULL,
threshold_pVal = 1e-60,
threshold_logFC = 0,
conditions = NULL,
colors = NULL

)

Arguments

logFC A vector of the log(fold change) values of the differential analysis.

pVal A vector of the p-value values returned by the differential analysis.

threshold_pVal A floating number which represents the p-value that separates differential and
non-differential data.

threshold_logFC

A floating number which represents the log of the Fold Change that separates
differential and non-differential data.

40 diffAnaVolcanoplot_rCharts

conditions A list of the names of condition 1 and 2 used for the differential analysis.

colors xxx

Value

A volcanoplot

Author(s)

Florence Combes, Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(100)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
qData <- Biobase::exprs(obj$new)
sTab <- Biobase::pData(obj$new)
limma <- limmaCompleteTest(qData, sTab)
diffAnaVolcanoplot(limma$logFC[, 1], limma$P_Value[, 1])

diffAnaVolcanoplot_rCharts

Volcanoplot of the differential analysis

Description

#’ Plots an interactive volcanoplot after the differential analysis. Typically, the log of Fold Change
is represented on the X-axis and the log10 of the p-value is drawn on the Y-axis. When the
threshold_pVal and the threshold_logFC are set, two lines are drawn respectively on the y-axis
and the X-axis to visually distinguish between differential and non differential data. With the use
of the package Highcharter, a customizable tooltip appears when the user put the mouse’s pointer
over a point of the scatter plot.

Usage

diffAnaVolcanoplot_rCharts(
df,
threshold_pVal = 1e-60,
threshold_logFC = 0,
conditions = NULL,
clickFunction = NULL,
pal = NULL

)

diffAnaVolcanoplot_rCharts 41

Arguments

df A dataframe which contains the following slots : x : a vector of the log(fold
change) values of the differential analysis, y : a vector of the p-value values
returned by the differential analysis. index : a vector of the rowanmes of the
data. This dataframe must has been built with the option stringsAsFactors set to
FALSE. There may be additional slots which will be used to show informations
in the tooltip. The name of these slots must begin with the prefix "tooltip_". It
will be automatically removed in the plot.

threshold_pVal A floating number which represents the p-value that separates differential and
non-differential data.

threshold_logFC

A floating number which represents the log of the Fold Change that separates
differential and non-differential data.

conditions A list of the names of condition 1 and 2 used for the differential analysis.

clickFunction A string that contains a JavaScript function used to show info from slots in df.
The variable this.index refers to the slot named index and allows to retrieve the
right row to show in the tooltip.

pal xxx

Value

An interactive volcanoplot

Author(s)

Samuel Wieczorek

Examples

library(highcharter)
data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(100)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")$new
qData <- Biobase::exprs(obj)
sTab <- Biobase::pData(obj)
data <- limmaCompleteTest(qData, sTab)
df <- data.frame(

x = data$logFC, y = -log10(data$P_Value),
index = as.character(rownames(obj))

)
colnames(df) <- c("x", "y", "index")
tooltipSlot <- c("Fasta_headers", "Sequence_length")
df <- cbind(df, Biobase::fData(obj)[, tooltipSlot])
colnames(df) <- gsub(".", "_", colnames(df), fixed = TRUE)
if (ncol(df) > 3) {

colnames(df)[seq.int(from = 4, to = ncol(df))] <-

42 display.CC.visNet

paste("tooltip_", colnames(df)[seq.int(from = 4, to = ncol(df))],
sep = "")

}
hc_clickFunction <- JS("function(event) {
Shiny.onInputChange('eventPointClicked',
[this.index]+'_'+ [this.series.name]);}")
cond <- c("25fmol", "10fmol")
diffAnaVolcanoplot_rCharts(df, 2.5, 1, cond, hc_clickFunction)

display.CC.visNet Display a CC

Description

Display a CC

Usage

display.CC.visNet(
g,
layout = layout_nicely,
obj = NULL,
prot.tooltip = NULL,
pept.tooltip = NULL

)

Arguments

g A cc (a list)

layout xxxxx

obj xxx

prot.tooltip xxx

pept.tooltip xxx

Value

A plot

Author(s)

Thomas Burger, Samuel Wieczorek

enrich_GO 43

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(100)]
X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", FALSE)
ll <- get.pep.prot.cc(X)
g <- buildGraph(ll[[1]], X)
display.CC.visNet(g)

enrich_GO Calculates GO enrichment classes for a given list of proteins/genes
ID. It results an enrichResult instance.

Description

This function is a wrappper to the function enrichGO from the package ‘clusterProfiler‘. Given a
vector of genes/proteins, it returns an enrichResult instance.

Usage

enrich_GO(data, idFrom, orgdb, ont, readable = FALSE, pval, universe)

Arguments

data A vector of ID (among ENSEMBL, ENTREZID, GENENAME, REFSEQ, UNI-
GENE, UNIPROT -can be different according to organisms)

idFrom character indicating the input ID format (among ENSEMBL, ENTREZID, GENE-
NAME, REFSEQ, UNIGENE, UNIPROT)

orgdb annotation Bioconductor package to use (character format)

ont One of "MF", "BP", and "CC" subontologies

readable TRUE or FALSE (default FALSE)

pval The qvalue cutoff (same parameter as in the function enrichGO of the package
‘clusterProfiler‘)

universe a list of ID to be considered as the background for enrichment calculation

Value

A groupGOResult instance.

Author(s)

Florence Combes

44 ExtendPalette

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(10)]
if (!requireNamespace("org.Sc.sgd.db", quietly = TRUE)) {
stop("Please install org.Sc.sgd.db:

BiocManager::install('org.Sc.sgd.db')")
}
library(org.Sc.sgd.db)
univ <- univ_AnnotDbPkg("org.Sc.sgd.db") # univ is the background
ego <- enrich_GO(

data = Biobase::fData(obj)$Protein.IDs, idFrom = "UNIPROT",
orgdb = "org.Sc.sgd.db", ont = "MF", pval = 0.05, universe = univ

)

ExtendPalette Extends a base-palette of the package RColorBrewer to n colors.

Description

The colors in the returned palette are always in the same order

Usage

ExtendPalette(n = NULL, base = "Set1")

Arguments

n The number of desired colors in the palette

base The name of the palette of the package RColorBrewer from which the extended
palette is built. Default value is ’Set1’.

Value

A vector composed of n color code.

Author(s)

Samuel Wieczorek

Examples

ExtendPalette(12)
nPalette <- 10
par(mfrow = c(nPalette, 1))
par(mar = c(0.5, 4.5, 0.5, 0.5))
for (i in seq_len(nPalette)) {

pal <- ExtendPalette(n = i, base = "Dark2")
barplot(seq_len(length(pal)), col = pal)

finalizeAggregation 45

print(pal)
}

finalizeAggregation Finalizes the aggregation process

Description

Method to finalize the aggregation process

Usage

finalizeAggregation(obj.pep, pepData, protData, protMetacell, X)

Arguments

obj.pep A peptide object of class MSnset

pepData xxxx

protData xxxxx

protMetacell xxx

X An adjacency matrix in which lines and columns correspond respectively to pep-
tides and proteins.

Value

A protein object of class MSnset

Author(s)

Samuel Wieczorek

Examples

NULL

46 formatHSDResults

findMECBlock Finds the LAPALA into a MSnSet object

Description

Finds the LAPALA into a MSnSet object

Usage

findMECBlock(obj)

Arguments

obj An object of class MSnSet.

Value

A data.frame that contains the indexes of LAPALA

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(100)]
lapala <- findMECBlock(obj)

formatHSDResults xxx

Description

xxx

Usage

formatHSDResults(post_hoc_models_summaries)

Arguments

post_hoc_models_summaries

xxx

formatLimmaResult 47

Value

xxx

Author(s)

Thomas Burger

Examples

NULL

formatLimmaResult xxxx

Description

xxxx

Usage

formatLimmaResult(fit, conds, contrast, design.level)

Arguments

fit xxxx

conds xxxx

contrast xxxx

design.level xxx

Value

A list of two dataframes : logFC and P_Value. The first one contains the logFC values of all
the comparisons (one column for one comparison), the second one contains the pvalue of all the
comparisons (one column for one comparison). The names of the columns for those two dataframes
are identical and correspond to the description of the comparison.

Author(s)

Samuel Wieczorek

48 formatPHResults

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(100)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
qData <- Biobase::exprs(obj$new)
sTab <- Biobase::pData(obj$new)
limma <- limmaCompleteTest(qData, sTab)

formatPHResults Extract logFC and raw pvalues from multiple post-hoc models sum-
maries

Description

Extract logFC and raw pvalues from multiple post-hoc models summaries

Usage

formatPHResults(post_hoc_models_summaries)

Arguments

post_hoc_models_summaries

a list of summaries of post-hoc models.

Value

a list of 2 dataframes containing the logFC values and pvalues for each comparison.

Author(s)

Hélène Borges

Examples

Not run: examples/ex_formatPHResults.R

formatPHTResults 49

formatPHTResults xxx

Description

xxx

Usage

formatPHTResults(post_hoc_models_summaries)

Arguments

post_hoc_models_summaries

xxx

Value

xxx

Author(s)

Thomas Burger

Examples

NULL

fudge2LRT Heuristic to choose the value of the hyperparameter (fudge factor)
used to regularize the variance estimator in the likelihood ratio statis-
tic

Description

#’ fudge2LRT: heuristic to choose the value of the hyperparameter (fudge factor) used to regularize
the variance estimator in the likelihood ratio statistic (as implemented in samLRT). We follow the
heuristic described in [1] and adapt the code of the fudge2 function in the siggene R package. [1]
Tusher, Tibshirani and Chu, Significance analysis of microarrays applied to the ionizing radiation
response, PNAS 2001 98: 5116-5121, (Apr 24).

50 fudge2LRT

Usage

fudge2LRT(
lmm.res.h0,
lmm.res.h1,
cc,
n,
p,
s,
alpha = seq(0, 1, 0.05),
include.zero = TRUE

)

Arguments

lmm.res.h0 a vector of object containing the estimates (used to compute the statistic) under
H0 for each connected component. If the fast version of the estimator was used
(as implemented in this package), lmm.res.h0 is a vector containing averages of
squared residuals. If a fixed effect model was used, it is a vector of lm objects
and if a mixed effect model was used it is a vector or lmer object.

lmm.res.h1 similar to lmm.res.h0, a vector of object containing the estimates (used to com-
pute the statistic) under H1 for each protein.

cc a list containing the indices of peptides and proteins belonging to each connected
component.

n the number of samples used in the test

p the number of proteins in the experiment

s a vector containing the maximum likelihood estimate of the variance for the
chosen model. When using the fast version of the estimator implemented in this
package, this is the same thing as the input lmm.res.h1. For other models (e.g.
mixed models) it can be obtained from samLRT.

alpha A vector of proportions used to build candidate values for the regularizer. We
use quantiles of s with these proportions. Default to seq(0, 1, 0.05)

include.zero logical value indicating if 0 should be included in the list of candidates. Default
to TRUE.

Value

(same as the fudge2 function of siggene): s.zero: the value of the fudge factor s0. alpha.hat: the
optimal quantile of the ’s’ values. If s0=0, ’alpha.hat’ will not be returned. vec.cv: the vector of
the coefficients of variations. Following Tusher et al. (2001), the optimal ’alpha’ quantile is given
by the quantile that leads to the smallest CV of the modified test statistics. msg: a character string
summarizing the most important information about the fudge factor.

Author(s)

Thomas Burger, Laurent Jacob

get.pep.prot.cc 51

Examples

NULL

get.pep.prot.cc Build the list of connex composant of the adjacency matrix

Description

Build the list of connex composant of the adjacency matrix

Usage

get.pep.prot.cc(X)

Arguments

X An adjacency matrix

Value

A list of CC

Author(s)

Thomas Burger, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", FALSE)
ll <- get.pep.prot.cc(X)

GetCC Returns the contains of the slot processing of an object of class MSnSet

Description

Returns the contains of the slot processing of an object of class MSnSet

Usage

GetCC(obj)

52 GetColorsForConditions

Arguments

obj An object (peptides) of class MSnSet.

Value

A list of connected components

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
Xshared <- BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(100)],
"Protein_group_IDs", FALSE)
Xunique <- BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(100)],
"Protein_group_IDs", TRUE)
ll.X <- list(matWithSharedPeptides = Xshared,
matWithUniquePeptides = Xunique)
Exp1_R25_pept <- SetMatAdj(Exp1_R25_pept, ll.X)
ll1 <- get.pep.prot.cc(GetMatAdj(Exp1_R25_pept)$matWithSharedPeptides)
ll2 <- get.pep.prot.cc(
GetMatAdj(Exp1_R25_pept)$matWithUniquePeptides)
cc <- list(allPep = ll1, onlyUniquePep = ll2)
Exp1_R25_pept <- SetCC(Exp1_R25_pept, cc)
ll.cc <- GetCC(Exp1_R25_pept)

GetColorsForConditions

Builds a complete color palette for the conditions given in argument

Description

xxxx

Usage

GetColorsForConditions(conds, pal = NULL)

Arguments

conds The extended vector of samples conditions

pal A vector of HEX color code that form the basis palette from which to build the
complete color vector for the conditions.

getDesignLevel 53

Value

A vector composed of HEX color code for the conditions

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
conditions <- Biobase::pData(Exp1_R25_pept)$Condition
GetColorsForConditions(conditions, ExtendPalette(2))

getDesignLevel xxx

Description

xxx

Usage

getDesignLevel(sTab)

Arguments

sTab xxx

Examples

data(Exp1_R25_pept, package="DAPARdata")
sTab <- Biobase::pData(Exp1_R25_pept)
getDesignLevel(sTab)

54 GetDetailedNbPeptidesUsed

GetDetailedNbPeptides Computes the detailed number of peptides for each protein

Description

Method to compute the detailed number of quantified peptides for each protein

Usage

GetDetailedNbPeptides(X)

Arguments

X An adjacency matrix

Value

A data.frame

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj.pep <- Exp1_R25_pept[seq_len(10)]
protID <- "Protein_group_IDs"
X <- BuildAdjacencyMatrix(obj.pep, protID, FALSE)
n <- GetDetailedNbPeptides(X)

GetDetailedNbPeptidesUsed

Computes the detailed number of peptides used for aggregating each
protein

Description

Method to compute the detailed number of quantified peptides used for aggregating each protein

Usage

GetDetailedNbPeptidesUsed(X, qdata.pep)

getIndicesConditions 55

Arguments

X An adjacency matrix

qdata.pep A data.frame of quantitative data

Value

A list of two items

Author(s)

Samuel Wieczorek library(MSnbase) data(Exp1_R25_pept, package="DAPARdata") protID <- "Pro-
tein_group_IDs" X <- BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(10)], protID, FALSE) ll.n
<- GetDetailedNbPeptidesUsed(X, Biobase::exprs(Exp1_R25_pept[seq_len(10)]))

Examples

NULL

getIndicesConditions Gets the conditions indices.

Description

Returns a list for the two conditions where each slot is a vector of indices for the samples.

Usage

getIndicesConditions(conds, cond1, cond2)

Arguments

conds A vector of strings containing the column "Condition" of the Biobase::pData().

cond1 A vector of Conditions (a slot in the Biobase::pData() table) for the condition
1.

cond2 A vector of Conditions (a slot in the Biobase::pData() table) for the condition
2.

Value

A list with two slots iCond1 and iCond2 containing respectively the indices of samples in the
Biobase::pData() table of the dataset.

Author(s)

Florence Combes, Samuel Wieczorek

56 getIndicesOfLinesToRemove

Examples

data(Exp1_R25_pept, package="DAPARdata")
conds <- Biobase::pData(Exp1_R25_pept)[, "Condition"]
getIndicesConditions(conds, "25fmol", "10fmol")

getIndicesOfLinesToRemove

Get the indices of the lines to delete, based on a prefix string

Description

Get the indices of the lines to delete, based on a prefix string

Usage

getIndicesOfLinesToRemove(obj, idLine2Delete = NULL, prefix = NULL)

Arguments

obj An object of class MSnSet.

idLine2Delete The name of the column that correspond to the data to filter

prefix A character string that is the prefix to find in the data

Value

A vector of integers.

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
ind <- getIndicesOfLinesToRemove(Exp1_R25_pept[seq_len(100)],
"Potential_contaminant",

prefix = "+"
)

GetIndices_BasedOnConditions 57

GetIndices_BasedOnConditions

Search lines which respects request on one or more conditions.

Description

This function looks for the lines that respect the request in either all conditions or at least one
condition.

Usage

GetIndices_BasedOnConditions(metacell.mask, type, conds, percent, op, th)

Arguments

metacell.mask xxx

type Available values are: * ’AllCond’ (the query is valid in all the conditions), *
’AtLeatOneCond’ (the query is valid in at leat one condition.

conds xxx

percent xxx

op String for operator to use. List of operators is available with SymFilteringOper-
ators().

th The theshold to apply

Value

xxx

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
level <- GetTypeofData(obj)
pattern <- 'Missing'
metacell.mask <- match.metacell(metadata=GetMetacell(obj),
pattern=pattern, level=level)
type <- 'AllCond'
conds <- Biobase::pData(obj)$Condition
op <- '>='
th <- 0.5
percent <- TRUE
ind <- GetIndices_BasedOnConditions(metacell.mask, type, conds,
percent, op, th)

58 GetIndices_MetacellFiltering

GetIndices_MetacellFiltering

Delete the lines in the matrix of intensities and the metadata table
given their indice.

Description

Delete the lines in the matrix of intensities and the metadata table given their indice.

Usage

GetIndices_MetacellFiltering(
obj,
level,
pattern = NULL,
type = NULL,
percent,
op,
th

)

Arguments

obj An object of class MSnSet containing quantitative data.

level A vector of integers which are the indices of lines to delete.

pattern A string to be included in the MSnSet object for log.

type xxx

percent xxx

op xxx

th xxx

Value

An instance of class MSnSet that have been filtered.

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
level <- GetTypeofData(obj)
pattern <- c("Missing", "Missing POV")
type <- "AtLeastOneCond"

GetIndices_WholeLine 59

percent <- FALSE
op <- ">="
th <- 1
indices <- GetIndices_MetacellFiltering(obj, level, pattern, type, percent, op, th)

pattern <- "Quantified"
type <- "AtLeastOneCond"
percent <- FALSE
op <- ">="
th <- 4
indices2.1 <- GetIndices_MetacellFiltering(obj, level, pattern, type, percent, op, th)

pattern <- "Quant. by direct id"
type <- "AtLeastOneCond"
percent <- FALSE
op <- ">="
th <- 3
indices2.2 <- GetIndices_MetacellFiltering(obj, level, pattern, type, percent, op, th)

GetIndices_WholeLine Search lines which respects query on all their elements.

Description

This function looks for the lines where each element respect the query.

Usage

GetIndices_WholeLine(metacell.mask)

Arguments

metacell.mask xxx

Value

xxx

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq.int(from=20, to=30)]
level <- 'peptide'
pattern <- "Missing POV"
metacell.mask <- match.metacell(metadata = GetMetacell(obj),
pattern = pattern, level = level)
ind <- GetIndices_WholeLine(metacell.mask)

60 GetIndices_WholeMatrix

GetIndices_WholeMatrix

Search lines which respects request on one or more conditions.

Description

This function looks for the lines that respect the request in either all conditions or at least one
condition.

Usage

GetIndices_WholeMatrix(metacell.mask, op = "==", percent = FALSE, th = 0)

Arguments

metacell.mask xxx

op String for operator to use. List of operators is available with SymFilteringOper-
ators().

percent A boolean to indicate whether the threshold represent an absolute value (percent
= FALSE) or a percentage (percent=TRUE).

th A floating number which is in the interval [0, 1]

Value

xxx

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
level <- 'peptide'
pattern <- "Missing"
metacell.mask <- match.metacell(metadata = GetMetacell(obj),
pattern = pattern, level = level)
percent <- FALSE
th <- 3
op <- ">="
ind <- GetIndices_WholeMatrix(metacell.mask, op, percent, th)

GetKeyId 61

GetKeyId xxxx

Description

xxxx

Usage

GetKeyId(obj)

Arguments

obj xxx

Value

xxx

Examples

data(Exp1_R25_pept, package="DAPARdata")
GetKeyId(Exp1_R25_pept)

getListNbValuesInLines

Returns the possible number of values in lines in the data

Description

Returns the possible number of values in lines in the data

Usage

getListNbValuesInLines(obj, type)

Arguments

obj An object of class MSnSet

type xxxxxxx

Value

An integer

62 GetMatAdj

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
getListNbValuesInLines(Exp1_R25_pept, "WholeMatrix")

GetMatAdj Returns the contains of the slot processing of an object of class MSnSet

Description

Returns the contains of the slot processing of an object of class MSnSet

Usage

GetMatAdj(obj)

Arguments

obj An object (peptides) of class MSnSet.

Value

The slot processing of obj@processingData

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
Xshared <- BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(100)],
"Protein_group_IDs", FALSE)
Xunique <- BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(100)],
"Protein_group_IDs", TRUE)
ll.X <- list(matWithSharedPeptides = Xshared,
matWithUniquePeptides = Xunique)
Exp1_R25_pept <- SetMatAdj(Exp1_R25_pept, ll.X)
ll.X <- GetMatAdj(Exp1_R25_pept)

GetMetacell 63

GetMetacell xxxx

Description

xxxx

Usage

GetMetacell(obj)

Arguments

obj xxxx

Value

xxx

Examples

NULL

GetMetacellTags List of metacell tags

Description

This function gives the list of metacell tags available in DAPAR.

- onlyPresent: In this case, the function gives the tags found in a dataset. In addition, and w.r.t to
the hierarchy of tags, if all leaves of a node are present, then the tag corresponding to this node is
added.

Usage

GetMetacellTags(level = NULL, obj = NULL, onlyPresent = FALSE, all = FALSE)

Arguments

level xxx

obj An object of class MSnSet

onlyPresent A boolean that indicates if one wants a list with only the tags present in the
dataset.

all A boolean that indicates if one wants the whole list

64 GetNbPeptidesUsed

Value

A vector of tags..

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept
GetMetacellTags(level="peptide")
GetMetacellTags(level="peptide", obj, onlyPresent=TRUE)

GetNbPeptidesUsed Computes the number of peptides used for aggregating each protein

Description

Method to compute the number of quantified peptides used for aggregating each protein

Usage

GetNbPeptidesUsed(X, pepData)

Arguments

X An adjacency matrix

pepData A data.frame of quantitative data

Value

A data.frame

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
protID <- "Protein_group_IDs"
obj.pep <- Exp1_R25_pept[seq_len(10)]
X <- BuildAdjacencyMatrix(obj.pep, protID, FALSE)
pepData <- Biobase::exprs(obj.pep)
GetNbPeptidesUsed(X, pepData)

GetNbTags 65

GetNbTags Number of each metacell tags

Description

Number of each metacell tags

Usage

GetNbTags(obj)

Arguments

obj A instance of the class ’MSnset’

Examples

NULL

getNumberOf Number of lines with prefix

Description

Returns the number of lines, in a given column, where content matches the prefix.

Usage

getNumberOf(obj, name = NULL, prefix = NULL)

Arguments

obj An object of class MSnSet.

name The name of a column.

prefix A string

Value

An integer

Author(s)

Samuel Wieczorek

66 getPourcentageOfMV

Examples

data(Exp1_R25_pept, package="DAPARdata")
getNumberOf(Exp1_R25_pept[seq_len(100)], "Potential_contaminant", "+")

getNumberOfEmptyLines Returns the number of empty lines in the data

Description

Returns the number of empty lines in a matrix.

Usage

getNumberOfEmptyLines(qData)

Arguments

qData A matrix corresponding to the quantitative data.

Value

An integer

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
qData <- Biobase::exprs(Exp1_R25_pept)
getNumberOfEmptyLines(qData)

getPourcentageOfMV Percentage of missing values

Description

Returns the percentage of missing values in the quantitative data (Biobase::exprs() table of the
dataset).

Usage

getPourcentageOfMV(obj)

getProcessingInfo 67

Arguments

obj An object of class MSnSet.

Value

A floating number

Author(s)

Florence Combes, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
getPourcentageOfMV(Exp1_R25_pept[seq_len(100),])

getProcessingInfo Returns the contains of the slot processing of an object of class MSnSet

Description

Returns the contains of the slot processing of an object of class MSnSet

Usage

getProcessingInfo(obj)

Arguments

obj An object (peptides) of class MSnSet.

Value

The slot processing of obj@processingData

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
getProcessingInfo(Exp1_R25_pept)

68 getQuantile4Imp

getProteinsStats Computes the number of proteins that are only defined by specific pep-
tides, shared peptides or a mixture of two.

Description

This function computes the number of proteins that are only defined by specific peptides, shared
peptides or a mixture of two.

Usage

getProteinsStats(matShared)

Arguments

matShared The adjacency matrix with both specific and shared peptides.

Value

A list

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
protID <- "Protein_group_IDs"
obj <- Exp1_R25_pept[seq_len(20)]
MShared <- BuildAdjacencyMatrix(obj, protID, FALSE)
getProteinsStats(matShared = MShared)

getQuantile4Imp Quantile imputation value definition

Description

This method returns the q-th quantile of each column of an expression set, up to a scaling factor

Usage

getQuantile4Imp(qdata, qval = 0.025, factor = 1)

GetSoftAvailables 69

Arguments

qdata An expression set containing quantitative values of various replicates

qval The quantile used to define the imputation value

factor A scaling factor to multiply the imputation value with

Value

A list of two vectors, respectively containing the imputation values and the rescaled imputation
values

Author(s)

Thomas Burger

Examples

data(Exp1_R25_prot, package="DAPARdata")
qdata <- Biobase::exprs(Exp1_R25_prot)
quant <- getQuantile4Imp(qdata)

GetSoftAvailables The set of softwares available

Description

The set of softwares available

Usage

GetSoftAvailables()

Examples

GetSoftAvailables()

70 getTextForAnaDiff

getTextForAggregation Build the text information for the Aggregation process

Description

* includeSharedPeptides, * operator, * considerPeptides, * proteinId, * topN

Usage

getTextForAggregation(l.params)

Arguments

l.params A list of parameters related to the process of the dataset

Value

A string

Author(s)

Samuel Wieczorek

Examples

params <- list()
getTextForAggregation(params)

getTextForAnaDiff Build the text information for the Aggregation process

Description

* Condition1 * Condition2 * Comparison * filterType * filter_th_NA * calibMethod * numValCal-
ibMethod * th_pval * FDR * NbSelected

Usage

getTextForAnaDiff(l.params)

Arguments

l.params A list of parameters related to the process of the dataset

getTextForFiltering 71

Value

A string

Author(s)

Samuel Wieczorek

Examples

getTextForAnaDiff(list(design = "OnevsOne", method = "Limma"))

getTextForFiltering Build the text information for the filtering process

Description

Build the text information for the filtering process

Usage

getTextForFiltering(l.params)

Arguments

l.params A list of parameters related to the process of the dataset

Value

A string

Author(s)

Samuel Wieczorek

Examples

getTextForFiltering(list(filename = "foo.msnset"))

72 getTextForHypothesisTest

getTextForGOAnalysis Build the text information for the Aggregation process

Description

Build the text information for the Aggregation process

Usage

getTextForGOAnalysis(l.params)

Arguments

l.params A list of parameters related to the process of the dataset

Value

A string

Author(s)

Samuel Wieczorek

Examples

getTextForGOAnalysis(list())

getTextForHypothesisTest

Build the text information for the hypothesis test process

Description

* design, * method, * ttest_options, * th_logFC, * AllPairwiseCompNames = list(* logFC, *
P_Value)

Usage

getTextForHypothesisTest(l.params)

Arguments

l.params A list of parameters related to the process of the dataset

getTextForNewDataset 73

Value

A string

Author(s)

Samuel Wieczorek

Examples

params <- list(design = "OnevsOne", method = "limma")
getTextForHypothesisTest(params)

getTextForNewDataset Build the text information for a new dataset

Description

Build the text information for a new dataset

Usage

getTextForNewDataset(l.params)

Arguments

l.params A list of parameters related to the process of the dataset

Value

A string

Author(s)

Samuel Wieczorek

Examples

getTextForNewDataset(list(filename = "foo.msnset"))

74 getTextForpeptideImputation

getTextForNormalization

Build the text information for the Normalization process

Description

The items of the parameter list for the normalisation is: * method, * type, * varReduction, * quantile,

Usage

getTextForNormalization(l.params)

Arguments

l.params A list of parameters related to the process of the dataset

Value

A string

Author(s)

Samuel Wieczorek

Examples

getTextForNormalization(list(method = "SumByColumns"))

getTextForpeptideImputation

Build the text information for the peptide Imputation process

Description

* pepLevel_algorithm, * pepLevel_basicAlgorithm, * pepLevel_detQuantile, * pepLevel_detQuant_factor,
* pepLevel_imp4p_nbiter, * pepLevel_imp4p_withLapala, * pepLevel_imp4p_qmin, * pepLevel_imp4pLAPALA_distrib

Usage

getTextForpeptideImputation(l.params)

Arguments

l.params A list of parameters related to the process of the dataset

getTextForproteinImputation 75

Value

A string

Author(s)

Samuel Wieczorek

Examples

params <- list()
getTextForpeptideImputation(params)

getTextForproteinImputation

Build the text information for the protein Imputation process

Description

* POV_algorithm, * POV_detQuant_quantile, * POV_detQuant_factor, * POV_KNN_n, * MEC_algorithm,
* MEC_detQuant_quantile, * MEC_detQuant_factor, * MEC_fixedValue

Usage

getTextForproteinImputation(l.params)

Arguments

l.params A list of parameters related to the process of the dataset

Value

A string

Author(s)

Samuel Wieczorek

Examples

params <- list()
getTextForproteinImputation(params)

76 GetUniqueTags

GetTypeofData xxxx

Description

xxxx

Usage

GetTypeofData(obj)

Arguments

obj xxx

Value

xxx

Examples

data(Exp1_R25_pept, package="DAPARdata")
GetTypeofData(Exp1_R25_pept)

GetUniqueTags xxxx

Description

xxx

Usage

GetUniqueTags(obj)

Arguments

obj xxx

Get_AllComparisons 77

Get_AllComparisons Returns list that contains a list of the statistical tests performed with
DAPAR and recorded in an object of class MSnSet.

Description

This method returns a list of the statistical tests performed with DAPAR and recorded in an object
of class MSnSet.

Usage

Get_AllComparisons(obj)

Arguments

obj An object of class MSnSet.

Value

A list of two slots: logFC and P_Value

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(1000)]
level <- GetTypeofData(obj)
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
qData <- Biobase::exprs(obj$new)
sTab <- Biobase::pData(obj$new)
allComp <- limmaCompleteTest(qData, sTab)
data <- list(logFC = allComp$logFC[1], P_Value = allComp$P_Value[1])
obj$new <- diffAnaSave(obj$new, allComp, data)
ll <- Get_AllComparisons(obj$new)

78 globalAdjPval

globalAdjPval Computes the adjusted p-values on all the stacked contrasts using
CP4P

Description

Computes the adjusted p-values on all the stacked contrasts using CP4P

Usage

globalAdjPval(x, pval.threshold = 1.05, method = 1, display = T)

Arguments

x a proteins x contrasts dataframe of (raw) p-values

pval.threshold all the p-values above the threshold are not considered. Default is 1.05 (which
is equivalent to have no threshold). Applying a threshold nearby 1 can be in-
strumental to improve the uniformity under the null, notably in case of upstream
mutliple contrat correction (for experienced users only)

method method a method to estimate pi_0, see CP4P

display if T, a calibration plot is diplayed using CP4P

Value

a proteins x contrasts table of adjusted p-values

Author(s)

Thomas Burger

Examples

data(Exp1_R25_prot, package='DAPARdata')
exdata <- Exp1_R25_prot[1:5,]
globalAdjPval(testAnovaModels(applyAnovasOnProteins(exdata), "TukeyHSD")$P_Value)

GlobalQuantileAlignment 79

GlobalQuantileAlignment

Normalisation GlobalQuantileAlignement

Description

Normalisation GlobalQuantileAlignement

Usage

GlobalQuantileAlignment(qData)

Arguments

qData xxxx

Value

A normalized numeric matrix

Author(s)

Samuel Wieczorek, Thomas Burger, Helene Borges, Anais Courtier, Enora Fremy

Examples

data(Exp1_R25_pept, package="DAPARdata")
qData <- Biobase::exprs(Exp1_R25_pept)
normalized <- GlobalQuantileAlignment(qData)

GOAnalysisSave Returns an MSnSet object with the results of the GO analysis per-
formed with the functions enrichGO and/or groupGO of the ‘cluster-
Profiler‘ package.

Description

This method returns an MSnSet object with the results of the Gene Ontology analysis.

80 GOAnalysisSave

Usage

GOAnalysisSave(
obj,
ggo_res = NULL,
ego_res = NULL,
organism,
ontology,
levels,
pvalueCutoff,
typeUniverse

)

Arguments

obj An object of the class MSnSet

ggo_res The object returned by the function group_GO of the package DAPAR or the func-
tion groupGO of the package ‘clusterProfiler‘

ego_res The object returned by the function enrich_GO of the package DAPAR or the
function enrichGO of the package ‘clusterProfiler‘

organism The parameter OrgDb of the functions bitr, groupGO and enrichGO

ontology One of "MF", "BP", and "CC" subontologies

levels A vector of the different GO grouping levels to save

pvalueCutoff The qvalue cutoff (same parameter as in the function enrichGO of the package
‘clusterProfiler‘)

typeUniverse The type of background to be used. Values are ’Entire Organism’, ’Entire
dataset’ or ’Custom’. In the latter case, a file should be uploaded by the user

Value

An object of the class MSnSet

Author(s)

Samuel Wieczorek

Examples

NULL

GraphPepProt 81

GraphPepProt Function to create a histogram that shows the repartition of peptides
w.r.t. the proteins

Description

Method to create a plot with proteins and peptides on a MSnSet object (peptides)

Usage

GraphPepProt(mat)

Arguments

mat An adjacency matrix.

Value

A histogram

Author(s)

Alexia Dorffer, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
mat <- BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(10)], "Protein_group_IDs")
GraphPepProt(mat)

group_GO Calculates the GO profile of a vector of genes/proteins at a given level
of the Gene Ontology

Description

This function is a wrappper to the function groupGO from the package ‘clusterProfiler‘. Given a
vector of genes/proteins, it returns the GO profile at a specific level. It returns a groupGOResult
instance.

Usage

group_GO(data, idFrom, orgdb, ont, level, readable = FALSE)

82 hc_logFC_DensityPlot

Arguments

data A vector of ID (among ENSEMBL, ENTREZID, GENENAME, REFSEQ, UNI-
GENE, UNIPROT -can be different according to organisms)

idFrom character indicating the input ID format (among ENSEMBL, ENTREZID, GENE-
NAME, REFSEQ, UNIGENE, UNIPROT)

orgdb annotation Bioconductor package to use (character format)

ont on which ontology to perform the analysis (MF, BP or CC)

level level of the ontolofy to perform the analysis

readable TRUE or FALSE (default FALSE)

Value

GO profile at a specific level

Author(s)

Florence Combes

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(10)]
if (!requireNamespace("org.Sc.sgd.db", quietly = TRUE)) {
stop("Please install org.Sc.sgd.db:

BiocManager::install('org.Sc.sgd.db')")
}
library(org.Sc.sgd.db)
ggo <- group_GO(

data = Biobase::fData(obj)$Protein.IDs, idFrom = "UNIPROT",
orgdb = "org.Sc.sgd.db", ont = "MF", level = 2

)

hc_logFC_DensityPlot Density plots of logFC values

Description

This function show the density plots of Fold Change (the same as calculated by limma) for a list of
the comparisons of conditions in a differential analysis.

Usage

hc_logFC_DensityPlot(df_logFC, threshold_LogFC = 0, pal = NULL)

hc_mvTypePlot2 83

Arguments

df_logFC A dataframe that contains the logFC values

threshold_LogFC

The threshold on log(Fold Change) to distinguish between differential and non-
differential data

pal xxx

Value

A highcharts density plot

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(100)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
qData <- Biobase::exprs(obj$new)
sTab <- Biobase::pData(obj$new)
res <- limmaCompleteTest(qData, sTab, comp.type = "OnevsAll")
pal <- ExtendPalette(2, "Dark2")
hc_logFC_DensityPlot(res$logFC, threshold_LogFC = 1, pal = pal)

hc_mvTypePlot2 Distribution of Observed values with respect to intensity values

Description

This method shows density plots which represents the repartition of Partial Observed Values for
each replicate in the dataset. The colors correspond to the different conditions (slot Condition in in
the dataset of class MSnSet). The x-axis represent the mean of intensity for one condition and one
entity in the dataset (i. e. a protein) whereas the y-axis count the number of observed values for this
entity and the considered condition.

Usage

hc_mvTypePlot2(obj, pal = NULL, pattern, typeofMV = NULL, title = NULL)

84 heatmapD

Arguments

obj xxx

pal The different colors for conditions

pattern xxx

typeofMV xxx

title The title of the plot

Value

Density plots

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(100)]
conds <- Biobase::pData(obj)$Condition
pal <- ExtendPalette(length(unique(conds)), "Dark2")
hc_mvTypePlot2(obj, pattern = "Missing MEC", title = "POV distribution", pal = pal)

heatmapD This function is a wrapper to heatmap.2 that displays quantitative
data in the Biobase::exprs() table of an object of class MSnSet

Description

This function is a wrapper to heatmap.2 that displays quantitative data in the Biobase::exprs()
table of an object of class MSnSet

Usage

heatmapD(
qData,
conds,
distance = "euclidean",
cluster = "complete",
dendro = FALSE

)

heatmapForMissingValues 85

Arguments

qData A dataframe that contains quantitative data.

conds A vector containing the conditions

distance The distance used by the clustering algorithm to compute the dendrogram. See
help(heatmap.2)

cluster the clustering algorithm used to build the dendrogram. See help(heatmap.2)

dendro A boolean to indicate fi the dendrogram has to be displayed

Value

A heatmap

Author(s)

Florence Combes, Samuel Wieczorek, Enor Fremy

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10),]
level <- 'peptide'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeLine(metacell.mask)
qData <- Biobase::exprs(obj)
conds <- Biobase::pData(obj)[["Condition"]]
heatmapD(qData, conds)

heatmapForMissingValues

xxx

Description

This function is inspired from the function heatmap.2 that displays quantitative data in the Biobase::exprs()
table of an object of class MSnSet. For more information, please refer to the help of the heatmap.2
function.

Usage

heatmapForMissingValues(
x,
col = NULL,
srtCol = NULL,
labCol = NULL,
labRow = NULL,

86 histPValue_HC

key = TRUE,
key.title = NULL,
main = NULL,
ylab = NULL

)

Arguments

x A dataframe that contains quantitative data.

col colors used for the image. Defaults to heat colors (heat.colors).

srtCol angle of column conds, in degrees from horizontal

labCol character vectors with column conds to use.

labRow character vectors with row conds to use.

key logical indicating whether a color-key should be shown.

key.title main title of the color key. If set to NA no title will be plotted.

main main title; default to none.

ylab y-axis title; default to none.

Value

A heatmap

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(100)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeLine(metacell.mask)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
qData <- Biobase::exprs(obj$new)
heatmapForMissingValues(qData)

histPValue_HC Plots a histogram ov p-values

Description

Plots a histogram ov p-values

impute.pa2 87

Usage

histPValue_HC(pval_ll, bins = 80, pi0 = 1)

Arguments

pval_ll xxx

bins xxx

pi0 xxx

Value

A plot

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(100)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
qData <- Biobase::exprs(obj$new)
sTab <- Biobase::pData(obj$new)
allComp <- limmaCompleteTest(qData, sTab)
histPValue_HC(allComp$P_Value[1])

impute.pa2 Missing values imputation from a MSnSet object

Description

This method is a variation to the function impute.pa() from the package imp4p.

Usage

impute.pa2(
tab,
conditions,
q.min = 0,
q.norm = 3,
eps = 0,
distribution = "unif"

)

88 inner.aggregate.iter

Arguments

tab An object of class MSnSet.

conditions A vector of conditions in the dataset

q.min A quantile value of the observed values allowing defining the maximal value
which can be generated. This maximal value is defined by the quantile q.min of
the observed values distribution minus eps. Default is 0 (the maximal value is
the minimum of observed values minus eps).

q.norm A quantile value of a normal distribution allowing defining the minimal value
which can be generated. Default is 3 (the minimal value is the maximal value
minus qn*median(sd(observed values)) where sd is the standard deviation of a
row in a condition).

eps A value allowing defining the maximal value which can be generated. This max-
imal value is defined by the quantile q.min of the observed values distribution
minus eps. Default is 0.

distribution The type of distribution used. Values are unif or beta.

Value

The object obj which has been imputed

Author(s)

Thomas Burger, Samuel Wieczorek

Examples

utils::data(Exp1_R25_pept, package = "DAPARdata")
obj.imp <- wrapper.impute.pa2(Exp1_R25_pept[seq_len(100)],
distribution = "beta")

inner.aggregate.iter xxxx

Description

Method to xxxxx

Usage

inner.aggregate.iter(
pepData,
X,
init.method = "Sum",
method = "Mean",
n = NULL

)

inner.aggregate.topn 89

Arguments

pepData xxxxx

X xxxx

init.method xxx

method xxx

n xxxx

Value

xxxxx

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept
protID <- "Protein_group_IDs"
X <- BuildAdjacencyMatrix(obj[seq_len(10)], protID, FALSE)
qdata.agg <- inner.aggregate.iter(Biobase::exprs(obj[seq_len(10)]), X)

inner.aggregate.topn xxxx

Description

xxxx

Usage

inner.aggregate.topn(pepData, X, method = "Mean", n = 10)

Arguments

pepData A data.frame of quantitative data

X An adjacency matrix

method xxxxx

n xxxxx

Value

xxxxx

Author(s)

Samuel Wieczorek

90 inner.mean

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
protID <- "Protein_group_IDs"
X <- BuildAdjacencyMatrix(obj, protID, FALSE)
inner.aggregate.topn(Biobase::exprs(obj), X)

inner.mean xxxx

Description

xxxx

Usage

inner.mean(pepData, X)

Arguments

pepData A data.frame of quantitative data

X An adjacency matrix

Value

xxxxx

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
protID <- "Protein_group_IDs"
X <- BuildAdjacencyMatrix(obj, protID, FALSE)
inner.mean(Biobase::exprs(obj), X)

inner.sum 91

inner.sum xxxx

Description

xxxx

Usage

inner.sum(pepData, X)

Arguments

pepData A data.frame of quantitative data

X An adjacency matrix

Value

A matrix

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
protID <- "Protein_group_IDs"
X <- BuildAdjacencyMatrix(obj, protID, FALSE)
inner.sum(Biobase::exprs(obj), X)

is.subset xxx

Description

xxx

Usage

is.subset(set1, set2)

Arguments

set1 xxx

set2 xxx

92 LH0

Value

xxx

Examples

is.subset('a', letters)
is.subset(c('a', 'c', 't'), letters)
is.subset(c('a', 3, 't'), letters)
is.subset(3, letters)

LH0 xxxxxx

Description

xxxxxx

Usage

LH0(X, y1, y2)

Arguments

X an n.pep*n.prot indicator matrix.

y1 n.pep*n.samples matrice giving the observed counts for

y2 n.pep*n.samples matrice giving the observed counts for

Value

xxxxxxxxxx..

Author(s)

Thomas Burger, Laurent Jacob

Examples

NULL

LH0.lm 93

LH0.lm xxxxxx

Description

xxxxxx

Usage

LH0.lm(X, y1, y2)

Arguments

X an n.pep*n.prot indicator matrix.

y1 n.pep*n.samples matrice giving the observed counts for each peptide in each
sample from the condition 1

y2 n.pep*n.samples matrice giving the observed counts for each peptide in each
sample from the condition 2

Value

xxxxxxxxxx..

Author(s)

Thomas Burger, Laurent Jacob

Examples

NULL

LH1 xxxxxx

Description

xxxxxx

Usage

LH1(X, y1, y2, j)

94 LH1.lm

Arguments

X an n.pep*n.prot indicator matrix.
y1 n.pep*n.samples matrice giving the observed counts for
y2 n.pep*n.samples matrice giving the observed counts for
j the index of the protein being tested, ie which has different

Value

xxxxxxxxxx..

Author(s)

Thomas Burger, Laurent Jacob

Examples

NULL

LH1.lm xxxxxx

Description

xxxxxx

Usage

LH1.lm(X, y1, y2, j)

Arguments

X an n.pep*n.prot indicator matrix.
y1 n.pep*n.samples matrix giving the observed counts for
y2 n.pep*n.samples matrix giving the observed counts for
j the index of the protein being tested, ie which has different

Value

xxxxxxxxxx..

Author(s)

Thomas Burger, Laurent Jacob

Examples

NULL

limmaCompleteTest 95

limmaCompleteTest Computes a hierarchical differential analysis

Description

Computes a hierarchical differential analysis

Usage

limmaCompleteTest(qData, sTab, comp.type = "OnevsOne")

Arguments

qData A matrix of quantitative data, without any missing values.

sTab A dataframe of experimental design (Biobase::pData()).

comp.type A string that corresponds to the type of comparison. Values are: ’anova1way’,
’OnevsOne’ and ’OnevsAll’; default is ’OnevsOne’.

Value

A list of two dataframes : logFC and P_Value. The first one contains the logFC values of all
the comparisons (one column for one comparison), the second one contains the pvalue of all the
comparisons (one column for one comparison). The names of the columns for those two dataframes
are identical and correspond to the description of the comparison.

Author(s)

Hélène Borges, Thomas Burger, Quentin Giai-Gianetto, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept
qData <- Biobase::exprs(obj)
sTab <- Biobase::pData(obj)
limma <- limmaCompleteTest(qData, sTab, comp.type = "anova1way")

96 LOESS

listSheets This function returns the list of the sheets names in a Excel file.

Description

This function returns the list of the sheets names in a Excel file.

Usage

listSheets(file)

Arguments

file The name of the Excel file.

Value

A vector

Author(s)

Samuel Wieczorek

Examples

NULL

LOESS Normalisation LOESS

Description

Normalisation LOESS

Usage

LOESS(qData, conds, type = "overall", span = 0.7)

Arguments

qData A numeric matrix.

conds xxx

type "overall" (shift all the sample distributions at once) or "within conditions" (shift
the sample distributions within each condition at a time).

span xxx

make.contrast 97

Value

A normalized numeric matrix

Author(s)

Thomas Burger, Helene Borges, Anais Courtier, Enora Fremy

Examples

data(Exp1_R25_pept, package="DAPARdata")
qData <- Biobase::exprs(Exp1_R25_pept)
conds <- Biobase::pData(Exp1_R25_pept)$Condition
normalized <- LOESS(qData, conds, type = "overall")

make.contrast Builds the contrast matrix

Description

Builds the contrast matrix

Usage

make.contrast(design, condition, contrast = 1, design.level = 1)

Arguments

design The data.frame which correspond to the ‘pData()‘ function of package ‘MSnbase‘.

condition xxxxx

contrast An integer that Indicates if the test consists of the comparison of each biological
condition versus each of the other ones (Contrast=1; for example H0:"C1=C2"
vs H1:"C1!=C2", etc.) or each condition versus all others (Contrast=2; e.g.
H0:"C1=(C2+C3)/2" vs H1:"C1!=(C2+C3)/2", etc. if there are three condi-
tions).

design.level xxx

Value

A constrat matrix

Author(s)

Thomas Burger, Quentin Giai-Gianetto, Samuel Wieczorek

98 make.design

Examples

data(Exp1_R25_pept, package='DAPARdata')
design <- make.design(Biobase::pData(Exp1_R25_pept))
conds <- Biobase::pData(Exp1_R25_pept)$Condition
make.contrast(design, conds)

make.design Builds the design matrix

Description

Builds the design matrix

Usage

make.design(sTab)

Arguments

sTab The data.frame which correspond to the ‘pData()‘ function of package ‘MSnbase‘.

Value

A design matrix

Author(s)

Thomas Burger, Quentin Giai-Gianetto, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
make.design(Biobase::pData(Exp1_R25_pept))

make.design.1 99

make.design.1 Builds the design matrix for designs of level 1

Description

Builds the design matrix for designs of level 1

Usage

make.design.1(sTab)

Arguments

sTab The data.frame which correspond to the ‘pData()‘ function of package ‘MSnbase‘.

Value

A design matrix

Author(s)

Thomas Burger, Quentin Giai-Gianetto, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
make.design.1(Biobase::pData(Exp1_R25_pept))

make.design.2 Builds the design matrix for designs of level 2

Description

Builds the design matrix for designs of level 2

Usage

make.design.2(sTab)

Arguments

sTab The data.frame which correspond to the ‘pData()‘ function of package ‘MSnbase‘.

Value

A design matrix

100 make.design.3

Author(s)

Thomas Burger, Quentin Giai-Gianetto, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package='DAPARdata')
make.design.2(Biobase::pData(Exp1_R25_pept))

make.design.3 Builds the design matrix for designs of level 3

Description

Builds the design matrix for designs of level 3

Usage

make.design.3(sTab)

Arguments

sTab The data.frame which correspond to the ‘pData()‘ function of package ‘MSnbase‘.

Value

A design matrix

Author(s)

Thomas Burger, Quentin Giai-Gianetto, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
sTab <- cbind(Biobase::pData(Exp1_R25_pept), Tech.Rep = 1:6)
make.design.3(sTab)

match.metacell 101

match.metacell Similar to the function is.na but focused on the equality with the
paramter ’type’.

Description

Similar to the function is.na but focused on the equality with the paramter ’type’.

Usage

match.metacell(metadata, pattern = NULL, level)

Arguments

metadata A data.frame

pattern The value to search in the dataframe

level xxx

Value

A boolean dataframe

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10),]
metadata <- GetMetacell(obj)
m <- match.metacell(metadata, pattern = "Missing", level = "peptide")
m <- match.metacell(metadata, pattern = NULL, level = "peptide")
m <- match.metacell(metadata, pattern = c('Missing', 'Missing POV'), level = "peptide")

MeanCentering Normalisation MeanCentering

Description

Normalisation MeanCentering

102 metacell.def

Usage

MeanCentering(
qData,
conds,
type = "overall",
subset.norm = NULL,
scaling = FALSE

)

Arguments

qData xxx

conds xxx

type "overall" (shift all the sample distributions at once) or "within conditions" (shift
the sample distributions within each condition at a time).

subset.norm A vector of index indicating rows to be used for normalization

scaling A boolean that indicates if the variance of the data have to be forced to unit
(variance reduction) or not.

Value

A normalized numeric matrix

Author(s)

Samuel Wieczorek, Thomas Burger, Helene Borges, Anais Courtier, Enora Fremy

Examples

data(Exp1_R25_pept, package="DAPARdata")
qData <- Biobase::exprs(Exp1_R25_pept)
conds <- Biobase::pData(Exp1_R25_pept)$Condition
normalized <- MeanCentering(qData, conds, type = "overall")

metacell.def Metadata vocabulary for entities

Description

This function gives the vocabulary used for the metadata of each entity in each condition.

Peptide-level vocabulary

|– ’Any’ | | | |– 1.0 ’Quantified’ | | | | | |– 1.1 "Quant. by direct id" (color 4, white) | | | | | |– 1.2 "Quant.
by recovery" (color 3, lightgrey) | | | |– 2.0 "Missing" (no color) | | | | | |– 2.1 "Missing POV" (color
1) | | | | | |– 2.2 ’Missing MEC’ (color 2) | | | |– 3.0 ’Imputed’ | | | | | |– 3.1 ’Imputed POV’ (color 1) | |
| | | |– 3.2 ’Imputed MEC’ (color 2)

MetaCellFiltering 103

Protein-level vocabulary: |– ’Any’ | | | |– 1.0 ’Quantified’ | | | | | |– 1.1 "Quant. by direct id" (color
4, white) | | | | | |– 1.2 "Quant. by recovery" (color 3, lightgrey) | | | |– 2.0 "Missing" | | | | | |– 2.1
"Missing POV" (color 1) | | | | | |– 2.2 ’Missing MEC’ (color 2) | | | |– 3.0 ’Imputed’ | | | | | |– 3.1
’Imputed POV’ (color 1) | | | | | |– 3.2 ’Imputed MEC’ (color 2) | | | |– 4.0 ’Combined tags’ (color
3bis, lightgrey)

Usage

metacell.def(level)

Arguments

level A string designing the type of entity/pipeline. Available values are: ‘peptide‘,
‘protein‘

Value

xxx

Author(s)

Thomas Burger, Samuel Wieczorek

Examples

metacell.def('protein')
metacell.def('peptide')

MetaCellFiltering Filter lines in the matrix of intensities w.r.t. some criteria

Description

#’ Filters the lines of Biobase::exprs() table with conditions on the number of missing values.
The user chooses the minimum amount of intensities that is acceptable and the filter delete lines that
do not respect this condition. The condition may be on the whole line or condition by condition.

The different methods are : "WholeMatrix": given a threshold th, only the lines that contain at least
th values are kept. "AllCond": given a threshold th, only the lines which contain at least th values
for each of the conditions are kept. "AtLeastOneCond": given a threshold th, only the lines that
contain at least th values, and for at least one condition, are kept.

Usage

MetaCellFiltering(obj, indices, cmd, processText = "")

104 MetaCellFiltering

Arguments

obj An object of class MSnSet containing quantitative data.

indices A vector of integers which are the indices of lines to keep.

cmd xxxx. Available values are: ’delete’, ’keep’.

processText A string to be included in the MSnSet object for log.

Value

An instance of class MSnSet that have been filtered.

Author(s)

Florence Combes, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(100)]
level <- 'peptide'

#'
#' Delete lines which are entirely filled with any missing values ('Missing MEC' and 'Missing POV')
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeLine(metacell.mask)
obj.filter <- MetaCellFiltering(obj, indices, "delete")

obj <- obj[1:10]

pattern <- "Quantified"
type <- "AtLeastOneCond"
percent <- FALSE
op <- ">="
th <- 3
indices <- GetIndices_MetacellFiltering(obj, level, pattern, type, percent, op, th)
obj <- MetaCellFiltering(obj, indices, "keep")$new
#fData(obj)[, obj@experimentData@other$names_metacell]

pattern <- "Quant. by direct id"
type <- "AtLeastOneCond"
percent <- FALSE
op <- ">="
th <- 3
indices <- GetIndices_MetacellFiltering(obj, level, pattern, type, percent, op, th)
obj <- MetaCellFiltering(obj, indices, "keep")$new
#fData(obj)[, obj@experimentData@other$names_metacell]
names.1 <- rownames(obj)

obj <- Exp1_R25_pept[seq_len(100)]
pattern <- "Quant. by direct id"

MetacellFilteringScope 105

type <- "AtLeastOneCond"
percent <- FALSE
op <- ">="
th <- 3
indices <- GetIndices_MetacellFiltering(obj, level, pattern, type, percent, op, th)
obj <- MetaCellFiltering(obj, indices, "keep")$new
#fData(obj)[, obj@experimentData@other$names_metacell]

pattern <- "Quantified"
type <- "AtLeastOneCond"
percent <- FALSE
op <- ">="
th <- 3
indices <- GetIndices_MetacellFiltering(obj, level, pattern, type, percent, op, th)
obj <- MetaCellFiltering(obj, indices, "keep")$new
#fData(obj)[, obj@experimentData@other$names_metacell]
names.2 <- rownames(obj)

MetacellFilteringScope

Lists the metacell scopes for filtering

Description

Lists the metacell scopes for filtering

Usage

MetacellFilteringScope()

Value

xxx

Examples

MetacellFilteringScope()

106 metacellHisto_HC

metacellHisto_HC Histogram of missing values

Description

#’ This method plots a histogram of missing values. Same as the function mvHisto but uses the
package highcharter

Usage

metacellHisto_HC(
obj,
pattern = NULL,
indLegend = "auto",
showValues = FALSE,
pal = NULL

)

Arguments

obj xxx

pattern xxx

indLegend The indices of the column name’s in Biobase::pData() tab

showValues A logical that indicates wether numeric values should be drawn above the bars.

pal xxx

Value

A histogram

Author(s)

Florence Combes, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept
pattern <- "Missing POV"
pal <- ExtendPalette(2, "Dark2")
metacellHisto_HC(obj, pattern, showValues = TRUE, pal = pal)

metacellPerLinesHistoPerCondition_HC 107

metacellPerLinesHistoPerCondition_HC

Bar plot of missing values per lines and per condition

Description

This method plots a bar plot which represents the distribution of the number of missing values (NA)
per lines (ie proteins) and per conditions.

Usage

metacellPerLinesHistoPerCondition_HC(
obj,
pattern = NULL,
indLegend = "auto",
showValues = FALSE,
pal = NULL

)

Arguments

obj xxx

pattern xxx

indLegend The indice of the column name’s in Biobase::pData() tab

showValues A logical that indicates wether numeric values should be drawn above the bars.

pal xxx

Value

A bar plot

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept
pal <- ExtendPalette(length(unique(Biobase::pData(obj)$Condition)), "Dark2")
metacellPerLinesHistoPerCondition_HC(obj, c("Missing POV", "Missing MEC"), pal = pal)
metacellPerLinesHistoPerCondition_HC(obj, "Quantified")

108 metacellPerLinesHisto_HC

metacellPerLinesHisto_HC

Bar plot of missing values per lines using highcharter

Description

This method plots a bar plot which represents the distribution of the number of missing values (NA)
per lines (ie proteins).

Usage

metacellPerLinesHisto_HC(
obj,
pattern = NULL,
detailed = FALSE,
indLegend = "auto",
showValues = FALSE

)

Arguments

obj xxx.

pattern xxx

detailed ’value’ or ’percent’

indLegend The indice of the column name’s in Biobase::pData() tab

showValues A logical that indicates whether numeric values should be drawn above the bars.

Value

A bar plot

Author(s)

Florence Combes, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept

obj <- obj[1:10]

metacellPerLinesHisto_HC(obj, pattern = "Missing POV")

metacellPerLinesHisto_HC(obj)
metacellPerLinesHisto_HC(obj, pattern = "Quantified")
metacellPerLinesHisto_HC(obj, pattern = "Quant. by direct id")

Metacell_DIA_NN 109

metacellPerLinesHisto_HC(obj, pattern = "Quant. by recovery")
metacellPerLinesHisto_HC(obj, pattern = c("Quantified", "Quant. by direct id", "Quant. by recovery"))

Metacell_DIA_NN Sets the metacell dataframe for datasets which are from Dia-NN soft-
ware

Description

Actually, this function uses the generic function to generate metacell info

Usage

Metacell_DIA_NN(qdata, conds, df, level = NULL)

Arguments

qdata An object of class MSnSet

conds xxx

df A list of integer xxxxxxx

level xxx

Value

xxxxx

Author(s)

Samuel Wieczorek

Examples

file <- system.file("extdata", "Exp1_R25_pept.txt", package = "DAPARdata")
data <- read.table(file, header = TRUE, sep = "\t", stringsAsFactors = FALSE)
metadataFile <- system.file("extdata", "samples_Exp1_R25.txt",

package = "DAPARdata"
)
metadata <- read.table(metadataFile,

header = TRUE, sep = "\t", as.is = TRUE,
stringsAsFactors = FALSE

)
conds <- metadata$Condition
qdata <- data[seq_len(100), seq.int(from = 56, to = 61)]
df <- data[seq_len(100), seq.int(from = 43, to = 48)]
df <- Metacell_DIA_NN(qdata, conds, df, level = "peptide")

110 Metacell_generic

Metacell_generic Sets the metacell dataframe for dataset without information about the
origin of identification

Description

In the quantitative columns, a missing value is identified by no value rather than a value equal to
0. Conversion rules QuantiTag NA or 0 NA The only information detected with this function are
about missing values (MEC and POV).

Usage

Metacell_generic(qdata, conds, level)

Arguments

qdata An object of class MSnSet

conds xxx

level xxx

Value

xxxxx

Author(s)

Samuel Wieczorek

Examples

file <- system.file("extdata", "Exp1_R25_pept.txt", package = "DAPARdata")
data <- read.table(file, header = TRUE, sep = "\t", stringsAsFactors = FALSE)
metadataFile <- system.file("extdata", "samples_Exp1_R25.txt",

package = "DAPARdata"
)
metadata <- read.table(metadataFile,

header = TRUE, sep = "\t", as.is = TRUE,
stringsAsFactors = FALSE

)
conds <- metadata$Condition
qdata <- data[seq_len(100), seq.int(from = 56, to = 61)]
df <- data[seq_len(100), seq.int(from = 43, to = 48)]
df <- Metacell_generic(qdata, conds, level = "peptide")

Metacell_maxquant 111

Metacell_maxquant Sets the metacell dataframe

Description

Initial conversion rules for maxquant |————|———————–|——–| | Quanti | Identification
| Tag | |————|———————–|——–| | == 0 | whatever | 2.0 | | > 0 | ’By MS/MS’ | 1.1 | | > 0 |
’By matching’ | 1.2 | | > 0 | unknown col | 1.0 | |————|———————–|——–|

Usage

Metacell_maxquant(qdata, conds, df, level = NULL)

Arguments

qdata An object of class MSnSet

conds xxx

df A list of integer xxxxxxx

level xxx

Value

xxxxx

Author(s)

Samuel Wieczorek

Examples

file <- system.file("extdata", "Exp1_R25_pept.txt", package = "DAPARdata")
data <- read.table(file, header = TRUE, sep = "\t", stringsAsFactors = FALSE)
metadataFile <- system.file("extdata", "samples_Exp1_R25.txt",

package = "DAPARdata"
)
metadata <- read.table(metadataFile,

header = TRUE, sep = "\t", as.is = TRUE,
stringsAsFactors = FALSE

)
conds <- metadata$Condition
qdata <- data[seq_len(10), seq.int(from = 56, to = 61)]
df <- data[seq_len(10), seq.int(from = 43, to = 48)]
df2 <- Metacell_maxquant(qdata, conds, df, level = "peptide")

112 Metacell_proline

Metacell_proline Sets the metacell dataframe for datasets which are from Proline soft-
ware

Description

In the quantitative columns, a missing value is identified by no value rather than a value equal to 0.

In these datasets, the metacell info is computed from the ’PSM count’ columns.

Conversion rules Initial conversion rules for proline |————–|—————–|—–| | Quanti | PSM
count | Tag | |————–|—————–|—–| | == 0 | N.A. | whatever | 2.0 | | > 0 | > 0 | 1.1 | | > 0 | ==
0 | 1.2 | | > 0 | unknown col | 1.0 | |————–|—————–|—–|

Usage

Metacell_proline(qdata, conds, df, level = NULL)

Arguments

qdata An object of class MSnSet

conds xxx

df A list of integer xxxxxxx

level xxx

Value

xxxxx

Author(s)

Samuel Wieczorek

Examples

file <- system.file("extdata", "Exp1_R25_pept.txt", package = "DAPARdata")
data <- read.table(file, header = TRUE, sep = "\t", stringsAsFactors = FALSE)
metadataFile <- system.file("extdata", "samples_Exp1_R25.txt", package = "DAPARdata")
metadata <- read.table(metadataFile, header = TRUE, sep = "\t", as.is = TRUE, stringsAsFactors = FALSE)
conds <- metadata$Condition
qdata <- data[seq_len(100), seq.int(from = 56, to = 61)]
df <- data[seq_len(100), seq.int(from = 43, to = 48)]
df <- Metacell_proline(qdata, conds, df, level = "peptide")

metacombine 113

metacombine Combine peptide metadata to build protein metadata

Description

Aggregation rules for the cells metadata of peptides. Please refer to the metacell vocabulary in
‘metacell.def()‘

Basic aggregation (RULE 1) Aggregation of a mix of missing values (2.X) with quantitative and/or
imputed values (1.X, 3.X) |—————————- Not possible (tag : ’STOP’) |———————
——-

Aggregation of different types of missing values (among 2.1, 2.2) |—————————- * (RULE
2) Aggregation of 2.1 peptides between each other gives a missing value (2.0) * (RULE 3) Aggre-
gation of 2.2 peptides between each other gives a missing value (2.0) * (RULE 4) Aggregation of a
mix of 2.1 and 2.2 gives a missing value (2.0) |—————————-

Aggregation of a mix of quantitative and/or imputed values (among 1.x and 3.X) |———————
——- * (RULE 5) if the type of all the peptides to agregate is either 1.0, 1.1 or 1.2, then the final
metadata is set to the corresponding tag * (RULE 5bis) if the type of all the peptides to agregate is
either 3.0, 3.1 or 3.2, then the final metadata is set to the corresponding tag * (RULE 6) if the set
of metacell to agregate is a mix of 1.x, then the final metadata is set to 1.0 * (RULE 7) if the set of
metacell to agregate is a mix of 3.x, then the final metadata is set to 3.0 * (RULE 8) if the set of
metacell to agregate is a mix of 3.X and 1.X, then the final metadata is set to 4.0

Post processing Update metacell with POV/MEC status for the categories 2.0 and 3.0 TODO

Usage

metacombine(met, level)

Arguments

met xxx
level xxx

Value

xxx

Examples

ll <- metacell.def("peptide")$node
for (i in seq_len(length(ll))) {

test <- lapply(
combn(ll, i, simplify = FALSE),
function(x) tag <- metacombine(x, "peptide")

)
}

metacombine(c('Quant. by direct id', 'Missing POV'), 'peptide')

114 my_hc_chart

mvImage Heatmap of missing values

Description

#’ Plots a heatmap of the quantitative data. Each column represent one of the conditions in the
object of class MSnSet and the color is proportional to the mean of intensity for each line of the
dataset. The lines have been sorted in order to vizualize easily the different number of missing
values. A white square is plotted for missing values.

Usage

mvImage(qData, conds)

Arguments

qData A dataframe that contains quantitative data.

conds A vector of the conditions (one condition per sample).

Value

A heatmap

Author(s)

Samuel Wieczorek, Thomas Burger

Examples

data(Exp1_R25_pept, package="DAPARdata")
qData <- Biobase::exprs(Exp1_R25_pept)
conds <- Biobase::pData(Exp1_R25_pept)[, "Condition"]
mvImage(qData, conds)

my_hc_chart Customised resetZoomButton of highcharts plots

Description

Customised resetZoomButton of highcharts plots

Usage

my_hc_chart(hc, chartType, zoomType = "None")

my_hc_ExportMenu 115

Arguments

hc A highcharter object

chartType The type of the plot

zoomType The type of the zoom (one of "x", "y", "xy", "None")

Value

A highchart plot

Author(s)

Samuel Wieczorek

Examples

library("highcharter")
hc <- highchart()
hc_chart(hc, type = "line")
hc_add_series(hc, data = c(29, 71, 40))
my_hc_ExportMenu(hc, filename = "foo")

my_hc_ExportMenu Customised contextual menu of highcharts plots

Description

Customised contextual menu of highcharts plots

Usage

my_hc_ExportMenu(hc, filename)

Arguments

hc A highcharter object

filename The filename under which the plot has to be saved

Value

A contextual menu for highcharts plots

Author(s)

Samuel Wieczorek

116 nonzero

Examples

library("highcharter")
hc <- highchart()
hc_chart(hc, type = "line")
hc_add_series(hc, data = c(29, 71, 40))
my_hc_ExportMenu(hc, filename = "foo")

nonzero Retrieve the indices of non-zero elements in sparse matrices

Description

This function retrieves the indices of non-zero elements in sparse matrices of class dgCMatrix from
package Matrix. This function is largely inspired from the package RINGO

Usage

nonzero(x)

Arguments

x A sparse matrix of class dgCMatrix

Value

A two-column matrix

Author(s)

Samuel Wieczorek

Examples

library(Matrix)
mat <- Matrix(c(0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1),

nrow = 5, byrow = TRUE,
sparse = TRUE

)
res <- nonzero(mat)

normalizeMethods.dapar 117

normalizeMethods.dapar

List normalization methods with tracking option

Description

List normalization methods with tracking option

Usage

normalizeMethods.dapar(withTracking = FALSE)

Arguments

withTracking xxx

Value

xxx

Examples

normalizeMethods.dapar()

NumericalFiltering Removes lines in the dataset based on numerical conditions.

Description

This function removes lines in the dataset based on numerical conditions.

Usage

NumericalFiltering(obj, name = NULL, value = NULL, operator = NULL)

Arguments

obj An object of class MSnSet.

name The name of the column that correspond to the line to filter

value A number

operator A string

118 NumericalgetIndicesOfLinesToRemove

Value

An list of 2 items : * obj : an object of class MSnSet in which the lines have been deleted, * deleted
: an object of class MSnSet which contains the deleted lines

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
NumericalFiltering(Exp1_R25_pept[seq_len(100)], "A_Count", "6", "==")

NumericalgetIndicesOfLinesToRemove

Get the indices of the lines to delete, based on a prefix string

Description

This function returns the indices of the lines to delete, based on a prefix string

Usage

NumericalgetIndicesOfLinesToRemove(
obj,
name = NULL,
value = NULL,
operator = NULL

)

Arguments

obj An object of class MSnSet.

name The name of the column that correspond to the data to filter

value xxxx

operator A xxxx

Value

A vector of integers.

Author(s)

Samuel Wieczorek

OWAnova 119

Examples

data(Exp1_R25_pept, package="DAPARdata")
NumericalgetIndicesOfLinesToRemove(Exp1_R25_pept[seq_len(100)], "A_Count",
value = "6", operator = "==")

OWAnova Applies aov() on a vector of protein abundances using the design de-
rived from the sample names (simple aov wrapper)

Description

Applies aov() on a vector of protein abundances using the design derived from the sample names
(simple aov wrapper)

Usage

OWAnova(current_protein, conditions)

Arguments

current_protein

a real vector

conditions the list of groups the protein belongs to

Value

see aov()

Author(s)

Thomas Burger

Examples

protein_abundance <- rep(rnorm(3, mean= 18, sd=2), each=3) + rnorm(9)
groups <- c(rep("group1",3),rep("group2",3),rep("group3",3))
OWAnova(protein_abundance,groups)

120 pepa.test

Parent Parent name of a node

Description

xxx

Usage

Parent(level, node = NULL)

Arguments

level xxx
node xxx

#’ @examples Parent(’protein’, ’Missing’) Parent(’protein’, ’Missing POV’)
Parent(’protein’, c(’Missing POV’, ’Missing MEC’)) Parent(’protein’, c(’Missing’,
’Missing POV’, ’Missing MEC’))

pepa.test PEptide based Protein differential Abundance test

Description

PEptide based Protein differential Abundance test

Usage

pepa.test(X, y, n1, n2, global = FALSE, use.lm = FALSE)

Arguments

X Binary q x p design matrix for q peptides and p proteins. X_(ij)=1 if peptide i
belongs to protein j, 0 otherwise.

y q x n matrix representing the log intensities of q peptides among n MS samples.
n1 number of samples under condition 1. It is assumed that the first n1 columns of

y correspond to observations under condition 1.
n2 number of samples under condition 2.
global if TRUE, the test statistic for each protein uses all residues, including the ones

for peptides in different connected components. Can be much faster as it does
not require to compute connected components. However the p-values are not
well calibrated in this case, as it amounts to adding a ridge to the test statistic.
Calibrating the p-value would require knowing the amplitude of the ridge, which
in turns would require computing the connected components.

use.lm if TRUE (and if global=FALSE), use lm() rather than the result in Proposition 1
to compute the test statistic

pkgs.require 121

Value

A list of the following elements: llr: log likelihood ratio statistic (maximum likelihood version).
llr.map: log likelihood ratio statistic (maximum a posteriori version). llr.pv: p-value for llr. llr.map.pv:
p-value for llr.map. mse.h0: Mean squared error under H0 mse.h1: Mean squared error under H1
s: selected regularization hyperparameter for llr.map. wchi2: weight used to make llr.map chi2-
distributed under H0.

Author(s)

Thomas Burger, Laurent Jacob

Examples

data(Exp1_R25_pept, package="DAPARdata")
protID <- "Protein_group_IDs"
obj <- Exp1_R25_pept[seq_len(20)]
X <- BuildAdjacencyMatrix(obj, protID, FALSE)

pkgs.require Loads packages

Description

Checks if a package is available to load it

Usage

pkgs.require(ll.deps)

Arguments

ll.deps A ‘character()‘ vector which contains packages names

Author(s)

Samuel Wieczorek

Examples

pkgs.require('DAPAR')

122 plotJitter_rCharts

plotJitter Jitter plot of CC

Description

Jitter plot of CC

Usage

plotJitter(list.of.cc = NULL)

Arguments

list.of.cc List of cc such as returned by the function get.pep.prot.cc

Value

A plot

Author(s)

Thomas Burger

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(100)]
X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", TRUE)
ll <- get.pep.prot.cc(X)
plotJitter(ll)

plotJitter_rCharts Display a a jitter plot for CC

Description

Display a a jitter plot for CC

Usage

plotJitter_rCharts(df, clickFunction = NULL)

Arguments

df xxxx

clickFunction xxxx

plotPCA_Eigen 123

Value

A plot

Author(s)

Thomas Burger, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(100)]
X <- BuildAdjacencyMatrix(obj, "Protein_group_IDs", TRUE)
ll <- get.pep.prot.cc(X)[1:4]
n.prot <- unlist(lapply(ll, function(x) {length(x$proteins)}))
n.pept <- unlist(lapply(ll, function(x) {length(x$peptides)}))
df <- tibble::tibble(
x = jitter(n.pept),
y = jitter(n.prot),
index = seq_len(length(ll))
)
plotJitter_rCharts(df)

plotPCA_Eigen Plots the eigen values of PCA

Description

Plots the eigen values of PCA

Usage

plotPCA_Eigen(res.pca)

Arguments

res.pca xxx

Value

A histogram

Author(s)

Samuel Wieczorek

124 plotPCA_Eigen_hc

Examples

data(Exp1_R25_pept, package="DAPARdata")
res.pca <- wrapper.pca(Exp1_R25_pept, ncp = 6)
plotPCA_Eigen(res.pca)

plotPCA_Eigen_hc Plots the eigen values of PCA with the highcharts library

Description

Plots the eigen values of PCA with the highcharts library

Usage

plotPCA_Eigen_hc(res.pca)

Arguments

res.pca xxx

Value

A histogram

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package='DAPARdata')
res.pca <- wrapper.pca(Exp1_R25_pept, ncp = 6)
plotPCA_Eigen_hc(res.pca)

plotPCA_Ind 125

plotPCA_Ind Plots individuals of PCA

Description

Plots individuals of PCA

Usage

plotPCA_Ind(res.pca, chosen.axes = c(1, 2))

Arguments

res.pca xxx

chosen.axes The dimensions to plot

Value

A plot

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
res.pca <- wrapper.pca(Exp1_R25_pept)
plotPCA_Ind(res.pca)

plotPCA_Var Plots variables of PCA

Description

Plots variables of PCA

Usage

plotPCA_Var(res.pca, chosen.axes = c(1, 2))

Arguments

res.pca xxx

chosen.axes The dimensions to plot

126 postHocTest

Value

A plot

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
res.pca <- wrapper.pca(Exp1_R25_pept)
plotPCA_Var(res.pca)

postHocTest Post-hoc tests for classic 1-way ANOVA

Description

This function allows to compute a post-hoc test after a 1-way ANOVA analysis. It expects as
input an object obtained with the function classic1wayAnova. The second parameter allows to
choose between 2 different post-hoc tests: the Tukey Honest Significant Differences (specified as
"TukeyHSD") and the Dunnett test (specified as "Dunnett").

Usage

postHocTest(aov_fits, post_hoc_test = "TukeyHSD")

Arguments

aov_fits a list containing aov fitted model objects

post_hoc_test a character string indicating which post-hoc test to use. Possible values are
"TukeyHSD" or "Dunnett". See details for what to choose according to your
experimental design.

Details

This is a function allowing to realise post-hoc tests for a set of proteins/peptides for which a classic
1-way anova has been performed with the function classic1wayAnova. Two types of tests are
currently available: The Tukey HSD’s test and the Dunnett’s test. Default is Tukey’s test. The Tukey
HSD’s test compares all possible pairs of means, and is based on a studentized range distribution.
Here is used the TukeyHSD() function, which can be applied to balanced designs (same number of
samples in each group), but also to midly unbalanced designs. The Dunnett’s test compares a single
control group to all other groups. Make sure the factor levels are properly ordered.

proportionConRev_HC 127

Value

a list of 2 dataframes: first one called "LogFC" contains all pairwise comparisons logFC values (one
column for one comparison) for each analysed feature; The second one named "P_Value" contains
the corresponding pvalues.

Author(s)

Hélène Borges

Examples

Not run: examples/ex_postHocTest.R

proportionConRev_HC Barplot of proportion of contaminants and reverse

Description

Plots a barplot of proportion of contaminants and reverse. Same as the function proportionConRev
but uses the package highcharter

Usage

proportionConRev_HC(nBoth = 0, nCont = 0, nRev = 0, lDataset = 0)

Arguments

nBoth The number of both contaminants and reverse identified in the dataset.

nCont The number of contaminants identified in the dataset.

nRev The number of reverse entities identified in the dataset.

lDataset The total length (number of rows) of the dataset

Value

A barplot

Author(s)

Samuel Wieczorek

Examples

proportionConRev_HC(10, 20, 100)

128 QuantileCentering

QuantileCentering Normalisation QuantileCentering

Description

Normalisation QuantileCentering

Usage

QuantileCentering(
qData,
conds = NULL,
type = "overall",
subset.norm = NULL,
quantile = 0.15

)

Arguments

qData xxx

conds xxx

type "overall" (shift all the sample distributions at once) or "within conditions" (shift
the sample distributions within each condition at a time).

subset.norm A vector of index indicating rows to be used for normalization

quantile A float that corresponds to the quantile used to align the data.

Value

A normalized numeric matrix

Author(s)

Samuel Wieczorek, Thomas Burger, Helene Borges, Anais Courtier, Enora Fremy

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept
conds <- Biobase::pData(Exp1_R25_pept)$Condition
normalized <- QuantileCentering(Biobase::exprs(obj), conds,
type = "within conditions", subset.norm = seq_len(10)
)

rbindMSnset 129

rbindMSnset Similar to the function rbind but applies on two subsets of the same
MSnSet object.

Description

Similar to the function rbind but applies on two subsets of the same MSnSet object.

Usage

rbindMSnset(df1 = NULL, df2)

Arguments

df1 An object (or subset of) of class MSnSet. May be NULL

df2 A subset of the same object as df1

Value

An instance of class MSnSet.

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
df1 <- Exp1_R25_pept[seq_len(100)]
df2 <- Exp1_R25_pept[seq.int(from = 200, to = 250)]
rbindMSnset(df1, df2)

readExcel This function reads a sheet of an Excel file and put the data into a
data.frame.

Description

This function reads a sheet of an Excel file and put the data into a data.frame.

Usage

readExcel(file, sheet = NULL)

130 reIntroduceMEC

Arguments

file The name of the Excel file.
sheet The name of the sheet

Value

A data.frame

Author(s)

Samuel Wieczorek

Examples

NULL

reIntroduceMEC Put back LAPALA into a MSnSet object

Description

Put back LAPALA into a MSnSet object

Usage

reIntroduceMEC(obj, MECIndex)

Arguments

obj An object of class MSnSet.
MECIndex A data.frame that contains index of MEC (see findMECBlock) .

Value

The object obj where LAPALA have been reintroduced

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(100)]
lapala <- findMECBlock(obj)
obj <- wrapper.impute.detQuant(obj, na.type = c("Missing POV", "Missing MEC"))
obj <- reIntroduceMEC(obj, lapala)

removeLines 131

removeLines Removes lines in the dataset based on a prefix string.

Description

Removes lines in the dataset based on a prefix string.

Usage

removeLines(obj, idLine2Delete = NULL, prefix = NULL)

Arguments

obj An object of class MSnSet.

idLine2Delete The name of the column that correspond to the data to filter

prefix A character string that is the prefix to find in the data

Value

An object of class MSnSet.

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
removeLines(Exp1_R25_pept[seq_len(100)], "Potential_contaminant")
removeLines(Exp1_R25_pept[seq_len(100)], "Reverse")

samLRT xxxxxx

Description

This function computes a regularized version of the likelihood ratio statistic. The regularization
adds a user-input fudge factor s1 to the variance estimator. This is straightforward when using a
fixed effect model (cases ’numeric’ and ’lm’) but requires some more care when using a mixed
model.

Usage

samLRT(lmm.res.h0, lmm.res.h1, cc, n, p, s1)

132 saveParameters

Arguments

lmm.res.h0 a vector of object containing the estimates (used to compute the statistic) under
H0 for each connected component. If the fast version of the estimator was used
(as implemented in this package), lmm.res.h0 is a vector containing averages of
squared residuals. If a fixed effect model was used, it is a vector of lm objects
and if a mixed effect model was used it is a vector or lmer object.

lmm.res.h1 similar to lmm.res.h0, a vector of object containing the estimates (used to com-
pute the statistic) under H1 for each protein.

cc a list containing the indices of peptides and proteins belonging to each connected
component.

n the number of samples used in the test

p the number of proteins in the experiment

s1 the fudge factor to be added to the variance estimate

Value

llr.sam: a vector of numeric containing the regularized log likelihood ratio statistic for each protein.
s: a vector containing the maximum likelihood estimate of the variance for the chosen model. When
using the fast version of the estimator implemented in this package, this is the same thing as the
input lmm.res.h1. lh1.sam: a vector of numeric containing the regularized log likelihood under
H1 for each protein. lh0.sam: a vector of numeric containing the regularized log likelihood under
H0 for each connected component. sample.sizes: a vector of numeric containing the sample size
(number of biological samples times number of peptides) for each protein. This number is the same
for all proteins within each connected component.

Author(s)

Thomas Burger, Laurent Jacob

Examples

NULL

saveParameters Saves the parameters of a tool in the pipeline of Prostar

Description

Saves the parameters of a tool in the pipeline of Prostar

Usage

saveParameters(obj, name.dataset = NULL, name = NULL, l.params = NULL)

scatterplotEnrichGO_HC 133

Arguments

obj An object of class MSnSet

name.dataset The name of the dataset

name The name of the tool. Available values are: "Norm, Imputation, anaDiff, GO-
Analysis,Aggregation"

l.params A list that contains the parameters

Value

An instance of class MSnSet.

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
l.params <- list(method = "Global quantile alignment", type = "overall")
saveParameters(Exp1_R25_pept, "Filtered.peptide", "Imputation", l.params)

scatterplotEnrichGO_HC

A dotplot that shows the result of a GO enrichment, using the package
highcharter

Description

A scatter plot of GO enrichment analysis

Usage

scatterplotEnrichGO_HC(ego, maxRes = 10, title = NULL)

Arguments

ego The result of the GO enrichment, provides either by the function enrichGO in
DAPAR or the function enrichGO of the packaage ‘clusterProfiler‘

maxRes The maximum number of categories to display in the plot

title The title of the plot

Value

A dotplot

134 search.metacell.tags

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot
if (!requireNamespace("org.Sc.sgd.db", quietly = TRUE)) {
stop("Please install org.Sc.sgd.db:

BiocManager::install('org.Sc.sgd.db')")
}
library(org.Sc.sgd.db)
univ <- univ_AnnotDbPkg("org.Sc.sgd.db")
ego <- enrich_GO(

data = Biobase::fData(obj)$Protein.IDs, idFrom = "UNIPROT",
orgdb = "org.Sc.sgd.db", ont = "MF", pval = 0.05, universe = univ

)
scatterplotEnrichGO_HC(ego)

search.metacell.tags Search pattern in metacell vocabulary

Description

Gives all the tags of the metadata vocabulary containing the pattern (parent and all its children).

Usage

search.metacell.tags(pattern, level, depth = "1")

Arguments

pattern The string to search.
level The available levels are : names()
depth xxx

Value

xxx

Author(s)

Samuel Wieczorek

Examples

search.metacell.tags("Missing POV", "peptide")
search.metacell.tags("Quantified", "peptide", depth = "0")

separateAdjPval 135

separateAdjPval Computes the adjusted p-values separately on contrast using CP4P

Description

Computes the adjusted p-values separately on contrast using CP4P

Usage

separateAdjPval(x, pval.threshold = 1.05, method = 1)

Arguments

x a proteins x contrasts dataframe of (raw) p-values

pval.threshold all the p-values above the threshold are not considered. Default is 1.05 (which
is equivalent to have no threshold). Applying a threshold nearby 1 can be in-
strumental to improve the uniformity under the null, notably in case of upstream
mutliple contrat correction (for experienced users only)

method a method to estimate pi_0, see CP4P

Value

a proteins x contrasts table of adjusted p-values

Author(s)

Thomas Burger

Examples

data(Exp1_R25_prot, package='DAPARdata')
exdata <- Exp1_R25_prot[1:5,]
separateAdjPval(testAnovaModels(applyAnovasOnProteins(exdata), "TukeyHSD")$P_Value)

SetCC Returns the connected components

Description

Returns the connected components

Usage

SetCC(obj, cc)

136 SetMatAdj

Arguments

obj An object (peptides) of class MSnSet.

cc The connected components list

Value

xxx

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package='DAPARdata')
Xshared <- BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(100)],
"Protein_group_IDs", FALSE)
Xunique <- BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(100)],
"Protein_group_IDs", TRUE)
ll.X <- list(matWithSharedPeptides = Xshared,
matWithUniquePeptides = Xunique)
Exp1_R25_pept <- SetMatAdj(Exp1_R25_pept, ll.X)
ll1 <- get.pep.prot.cc(GetMatAdj(Exp1_R25_pept)$matWithSharedPeptides)
ll2 <- get.pep.prot.cc(
GetMatAdj(Exp1_R25_pept)$matWithUniquePeptides)
cc <- list(allPep = ll1, onlyUniquePep = ll2)
Exp1_R25_pept <- SetCC(Exp1_R25_pept, cc)

SetMatAdj Record the adjacency matrices in a slot of the dataset of class MSnSet

Description

Record the adjacency matrices in a slot of the dataset of class MSnSet

Usage

SetMatAdj(obj, X)

Arguments

obj An object (peptides) of class MSnSet.

X A list of two adjacency matrices

Value

NA

Set_POV_MEC_tags 137

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
Xshared <- BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(100)],
"Protein_group_IDs", FALSE)
Xunique <- BuildAdjacencyMatrix(Exp1_R25_pept[seq_len(100)],
"Protein_group_IDs", TRUE)
ll.X <- list(matWithSharedPeptides = Xshared,
matWithUniquePeptides = Xunique)
Exp1_R25_pept <- SetMatAdj(Exp1_R25_pept, ll.X)

Set_POV_MEC_tags Sets the MEC tag in the metacell

Description

This function is based on the metacell dataframe to look for either missing values (used to update
an initial dataset) or imputed values (used when post processing protein metacell after aggregation)

Usage

Set_POV_MEC_tags(conds, df, level)

Arguments

conds xxx

df An object of class MSnSet

level Type of entity/pipeline

Value

An instance of class MSnSet.

Author(s)

Samuel Wieczorek

138 splitAdjacencyMat

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
cols.for.ident <- c("metacell_Intensity_C_R1", "metacell_Intensity_C_R2",
"metacell_Intensity_C_R3", "metacell_Intensity_D_R1",
"metacell_Intensity_D_R2", "metacell_Intensity_D_R3")
conds <- Biobase::pData(obj)$Condition
df <- Biobase::fData(obj)[, cols.for.ident]
df <- Set_POV_MEC_tags(conds, df, level = "peptide")

splitAdjacencyMat splits an adjacency matrix into specific and shared

Description

Method to split an adjacency matrix into specific and shared

Usage

splitAdjacencyMat(X)

Arguments

X An adjacency matrix

Value

A list of two adjacency matrices

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj.pep <- Exp1_R25_pept[seq_len(10)]
protID <- "Protein_group_IDs"
X <- BuildAdjacencyMatrix(obj.pep, protID, FALSE)
ll <- splitAdjacencyMat(X)

StringBasedFiltering 139

StringBasedFiltering Removes lines in the dataset based on a prefix strings (contaminants,
reverse or both).

Description

Removes lines in the dataset based on a prefix strings (contaminants, reverse or both).

Usage

StringBasedFiltering(
obj,
idCont2Delete = NULL,
prefix_Cont = NULL,
idRev2Delete = NULL,
prefix_Rev = NULL

)

Arguments

obj An object of class MSnSet.

idCont2Delete The name of the column that correspond to the contaminants to filter

prefix_Cont A character string that is the prefix for the contaminants to find in the data

idRev2Delete The name of the column that correspond to the reverse data to filter

prefix_Rev A character string that is the prefix for the reverse to find in the data

Value

An list of 4 items : * obj : an object of class MSnSet in which the lines have been deleted *
deleted.both : an object of class MSnSet which contains the deleted lines corresponding to both
contaminants and reverse, * deleted.contaminants : n object of class MSnSet which contains the
deleted lines corresponding to contaminants, * deleted.reverse : an object of class MSnSet which
contains the deleted lines corresponding to reverse,

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
StringBasedFiltering(
Exp1_R25_pept[seq_len(100)], "Potential_contaminant", "+", "Reverse", "+")

140 SumByColumns

StringBasedFiltering2 Removes lines in the dataset based on a prefix strings.

Description

Removes lines in the dataset based on a prefix strings.

Usage

StringBasedFiltering2(obj, cname = NULL, tag = NULL)

Arguments

obj An object of class MSnSet.

cname The name of the column that correspond to the line to filter

tag A character string that is the prefix for the contaminants to find in the data

Value

An list of 4 items : * obj : an object of class MSnSet in which the lines have been deleted * deleted
: an object of class MSnSet which contains the deleted lines

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj.filter <- StringBasedFiltering2(Exp1_R25_pept[seq_len(100)],
"Potential_contaminant", "+")

SumByColumns Normalisation SumByColumns

Description

Normalisation SumByColumns

Usage

SumByColumns(qData, conds = NULL, type = NULL, subset.norm = NULL)

SymFilteringOperators 141

Arguments

qData xxxx

conds xxx

type Available values are "overall" (shift all the sample distributions at once) or
"within conditions" (shift the sample distributions within each condition at a
time).

subset.norm A vector of index indicating rows to be used for normalization

Value

A normalized numeric matrix

Author(s)

Samuel Wieczorek, Thomas Burger, Helene Borges, Anais Courtier, Enora Fremy

Examples

data(Exp1_R25_pept, package="DAPARdata")
qData <- Biobase::exprs(Exp1_R25_pept)
conds <- Biobase::pData(Exp1_R25_pept)$Condition
normalized <- SumByColumns(qData, conds,

type = "within conditions",
subset.norm = seq_len(10)

)

SymFilteringOperators xxx

Description

xxx

Usage

SymFilteringOperators()

Value

A ‘character()‘

Examples

SymFilteringOperators()

142 testAnovaModels

test.design Check if xxxxxx

Description

Check if xxxxxx

Usage

test.design(tab)

Arguments

tab A data.frame which correspond to xxxxxx

Value

A list of two items

Author(s)

Thomas Burger, Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
test.design(Biobase::pData(Exp1_R25_pept)[, seq_len(3)])

testAnovaModels Applies a statistical test on each element of a list of linear models

Description

Applies a statistical test on each element of a list of linear models

Usage

testAnovaModels(aov_fits, test = "Omnibus")

thresholdpval4fdr 143

Arguments

aov_fits a list of linear models, such as those outputted by applyAnovasOnProteins

test a character string among "Omnibus", "TukeyHSD", "TukeySinglestep", "TukeyStep-
wise", "TukeyNoMTC", "DunnettSinglestep", "DunnettStepwise" and "Dunnet-
tNoMTC". "Omnibus" tests the all-mean equality, the Tukey tests compares all
pairs of means and the Dunnet tests compare all the means to the first one. For
multiple tests (Dunnet’s or Tukey’s) it is possible to correct for multiplicity (ei-
ther with single-step or step-wise FWER) or not. All the Tukey’s and Dunnet’s
tests use the multcomp package expect for "TukeyHSD" which relies on the stats
package. "TukeyHSD" and "TukeyStepwise" gives similar results.

Value

a list of 2 tables (p-values and fold-changes, respecively)

Author(s)

Thomas Burger

Examples

data(Exp1_R25_prot, package='DAPARdata')
exdata <- Exp1_R25_prot[1:5,]
testAnovaModels(applyAnovasOnProteins(exdata))

thresholdpval4fdr xxx

Description

xxx

Usage

thresholdpval4fdr(x, pval.T, M)

Arguments

x xxx

pval.T xxx

M xxx

Value

xxx

144 translatedRandomBeta

Author(s)

Thomas Burger

Examples

NULL

translatedRandomBeta Generator of simulated values

Description

Generator of simulated values

Usage

translatedRandomBeta(n, min, max, param1 = 3, param2 = 1)

Arguments

n An integer which is the number of simulation (same as in rbeta)

min An integer that corresponds to the lower bound of the interval

max An integer that corresponds to the upper bound of the interval

param1 An integer that is the first parameter of rbeta function.

param2 An integer that is second parameter of rbeta function.

Value

A vector of n simulated values

Author(s)

Thomas Burger

Examples

translatedRandomBeta(1000, 5, 10, 1, 1)

univ_AnnotDbPkg 145

univ_AnnotDbPkg Returns the totality of ENTREZ ID (gene id) of an OrgDb annotation
package. Careful : org.Pf.plasmo.db : no ENTREZID but ORF

Description

Function to compute the ‘universe‘ argument for the enrich_GO function, in case this latter should
be the entire organism. Returns all the ID of the OrgDb annotation package for the corresponding
organism.

Usage

univ_AnnotDbPkg(orgdb)

Arguments

orgdb a Bioconductor OrgDb annotation package

Value

A vector of ENTREZ ID

Author(s)

Florence Combes

Examples

if (!requireNamespace("org.Sc.sgd.db", quietly = TRUE)) {
stop("Please install org.Sc.sgd.db:

BiocManager::install('org.Sc.sgd.db')")
}
library(org.Sc.sgd.db)
univ_AnnotDbPkg("org.Sc.sgd.db")

UpdateMetacellAfterImputation

Update the cells metadata tags after imputation

Description

Update the metacell information of missing values that were imputed

Usage

UpdateMetacellAfterImputation(obj)

146 violinPlotD

Arguments

obj xxx

Value

xxx

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
obj.imp.pov <- wrapper.impute.KNN(obj, K = 3)

violinPlotD Builds a violinplot from a dataframe

Description

Builds a violinplot from a dataframe

Usage

violinPlotD(obj, conds, keyId, legend = NULL, pal = NULL, subset.view = NULL)

Arguments

obj xxx

conds xxx

keyId xxx

legend A vector of the conditions (one condition per sample).

pal xxx

subset.view xxx

Value

A violinplot

Author(s)

Samuel Wieczorek, Anais Courtier

visualizeClusters 147

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot
legend <- conds <- Biobase::pData(obj)$Condition
key <- "Protein_IDs"
violinPlotD(obj, conds, key, legend, subset.view = seq_len(10))

visualizeClusters Visualize the clusters according to pvalue thresholds

Description

Visualize the clusters according to pvalue thresholds

Usage

visualizeClusters(
dat,
clust_model,
adjusted_pValues,
FDR_th = NULL,
ttl = "",
subttl = ""

)

Arguments

dat the standardize data returned by the function [checkClusterability()]

clust_model the clustering model obtained with dat.
adjusted_pValues

vector of the adjusted pvalues obtained for each protein with a 1-way ANOVA
(for example obtained with the function [wrapperClassic1wayAnova()]).

FDR_th the thresholds of FDR pvalues for the coloring of the profiles. The default
(NULL) creates 4 thresholds: 0.001, 0.005, 0.01, 0.05 For the sake of read-
ability, a maximum of 4 values can be specified.

ttl title for the plot.

subttl subtitle for the plot.

Value

a ggplot object

Author(s)

Helene Borges

148 vsn

Examples

library(dplyr)
data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(1000)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
expR25_ttest <- compute_t_tests(obj$new)
averaged_means <- averageIntensities(obj$new)
only_means <- dplyr::select_if(averaged_means, is.numeric)
only_features <- dplyr::select_if(averaged_means, is.character)
means <- purrr::map(purrr::array_branch(as.matrix(only_means), 1), mean)
centered <- only_means - unlist(means)
centered_means <- dplyr::bind_cols(
feature = dplyr::as_tibble(only_features),
dplyr::as_tibble(centered))
difference <- only_means[, 1] - only_means[, 2]
clusters <- as.data.frame(difference) %>%
dplyr::mutate(cluster = dplyr::if_else(difference > 0, 1, 2))
vizu <- visualizeClusters(
dat = centered_means,
clust_model = as.factor(clusters$cluster),
adjusted_pValues = expR25_ttestP_Value`25fmol_vs_10fmol_pval`,
FDR_th = c(0.001, 0.005, 0.01, 0.05),
ttl = "Clustering of protein profiles")

vsn Normalisation vsn

Description

Normalisation vsn

Usage

vsn(qData, conds, type = NULL)

Arguments

qData A numeric matrix.

conds xxx

type "overall" (shift all the sample distributions at once) or "within conditions" (shift
the sample distributions within each condition at a time).

Value

A normalized numeric matrix

wrapper.compareNormalizationD_HC 149

Author(s)

Thomas Burger, Helene Borges, Anais Courtier, Enora Fremy

Examples

data(Exp1_R25_pept, package="DAPARdata")
qData <- Biobase::exprs(Exp1_R25_pept)
conds <- Biobase::pData(Exp1_R25_pept)$Condition
normalized <- vsn(qData, conds, type = "overall")

wrapper.compareNormalizationD_HC

Builds a plot from a dataframe

Description

Wrapper to the function that plot to compare the quantitative proteomics data before and after
normalization.

Usage

wrapper.compareNormalizationD_HC(
objBefore,
objAfter,
condsForLegend = NULL,
...

)

Arguments

objBefore A dataframe that contains quantitative data before normalization.

objAfter A dataframe that contains quantitative data after normalization.

condsForLegend A vector of the conditions (one condition per sample).

... arguments for palette

Value

A plot

Author(s)

Samuel Wieczorek

150 wrapper.corrMatrixD_HC

Examples

data(Exp1_R25_pept, package='DAPARdata')
obj <- Exp1_R25_pept
conds <- Biobase::pData(obj)[, "Condition"]
objAfter <- wrapper.normalizeD(
obj = obj, method = "QuantileCentering",
conds = conds, type = "within conditions"
)
wrapper.compareNormalizationD_HC(obj, objAfter, conds,
pal = ExtendPalette(2))

wrapper.corrMatrixD_HC

Displays a correlation matrix of the quantitative data of the
Biobase::exprs() table

Description

Builds a correlation matrix based on a MSnSet object.

Usage

wrapper.corrMatrixD_HC(obj, rate = 0.5, showValues = TRUE)

Arguments

obj An object of class MSnSet.

rate A float that defines the gradient of colors.

showValues xxx

Value

A colored correlation matrix

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
wrapper.corrMatrixD_HC(Exp1_R25_pept)

wrapper.CVDistD_HC 151

wrapper.CVDistD_HC Distribution of CV of entities

Description

Builds a densityplot of the CV of entities in the Biobase::exprs() table. of an object MSnSet. The
variance is calculated for each condition present in the dataset (see the slot 'Condition' in the
Biobase::pData() table).

Usage

wrapper.CVDistD_HC(obj, ...)

Arguments

obj An object of class MSnSet

... arguments for palette.

Value

A density plot

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
wrapper.CVDistD_HC(Exp1_R25_pept)

wrapper.dapar.impute.mi

Missing values imputation using the LSimpute algorithm.

Description

This method is a wrapper to the function impute.mi() of the package imp4p adapted to an object
of class MSnSet.

152 wrapper.dapar.impute.mi

Usage

wrapper.dapar.impute.mi(
obj,
nb.iter = 3,
nknn = 15,
selec = 600,
siz = 500,
weight = 1,
ind.comp = 1,
progress.bar = FALSE,
x.step.mod = 300,
x.step.pi = 300,
nb.rei = 100,
method = 4,
gridsize = 300,
q = 0.95,
q.min = 0,
q.norm = 3,
eps = 0,
methodi = "slsa",
lapala = TRUE,
distribution = "unif"

)

Arguments

obj An object of class MSnSet.

nb.iter Same as the function mi.mix in the package imp4p

nknn Same as the function mi.mix in the package imp4p

selec Same as the function mi.mix in the package imp4p

siz Same as the function mi.mix in the package imp4p

weight Same as the function mi.mix in the package imp4p

ind.comp Same as the function mi.mix in the package imp4p

progress.bar Same as the function mi.mix in the package imp4p

x.step.mod Same as the function estim.mix in the package imp4p

x.step.pi Same as the function estim.mix in the package imp4p

nb.rei Same as the function estim.mix in the package imp4p

method Same as the function estim.mix in the package imp4p

gridsize Same as the function estim.mix in the package imp4p

q Same as the function mi.mix in the package imp4p

q.min Same as the function impute.pa in the package imp4p

q.norm Same as the function impute.pa in the package imp4p

eps Same as the function impute.pa in the package imp4p

wrapper.heatmapD 153

methodi Same as the function mi.mix in the package imp4p

lapala xxxxxxxxxxx

distribution The type of distribution used. Values are unif (default) or beta.

Value

The Biobase::exprs(obj) matrix with imputed values instead of missing values.

Author(s)

Samuel Wieczorek

Examples

utils::data(Exp1_R25_pept, package = "DAPARdata")
obj <- Exp1_R25_pept[seq_len(100)]
level <- 'peptide'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj.imp.na <- wrapper.dapar.impute.mi(obj, nb.iter = 1, lapala = TRUE)
obj.imp.pov <- wrapper.dapar.impute.mi(obj, nb.iter = 1, lapala = FALSE)

wrapper.heatmapD This function is a wrapper to heatmap.2 that displays quantitative
data in the Biobase::exprs() table of an object of class MSnSet

Description

This function is a wrapper to heatmap.2 that displays quantitative data in the Biobase::exprs()
table of an object of class MSnSet

Usage

wrapper.heatmapD(
obj,
distance = "euclidean",
cluster = "complete",
dendro = FALSE

)

Arguments

obj An object of class MSnSet.

distance The distance used by the clustering algorithm to compute the dendrogram. See
help(heatmap.2).

cluster the clustering algorithm used to build the dendrogram. See help(heatmap.2)

dendro A boolean to indicate fi the dendrogram has to be displayed

154 wrapper.impute.detQuant

Value

A heatmap

Author(s)

Alexia Dorffer

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
level <- 'peptide'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeLine(metacell.mask)
wrapper.heatmapD(obj)

wrapper.impute.detQuant

Wrapper of the function ‘impute.detQuant()‘ for objects of class
MSnSet

Description

This method is a wrapper of the function ‘impute.detQuant()‘ for objects of class MSnSet

Usage

wrapper.impute.detQuant(obj, qval = 0.025, factor = 1, na.type)

Arguments

obj An instance of class MSnSet

qval An expression set containing quantitative values of various replicates

factor A scaling factor to multiply the imputation value with

na.type A string which indicates the type of missing values to impute. Available values
are: ‘NA‘ (for both POV and MEC), ‘POV‘, ‘MEC‘.

Value

An imputed instance of class MSnSet

Author(s)

Samuel Wieczorek

wrapper.impute.fixedValue 155

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
obj.imp.pov <- wrapper.impute.detQuant(obj, na.type = "Missing POV")
obj.imp.mec <- wrapper.impute.detQuant(obj, na.type = "Missing MEC")

wrapper.impute.fixedValue

Missing values imputation from a MSnSet object

Description

This method is a wrapper to objects of class MSnSet and imputes missing values with a fixed value.

Usage

wrapper.impute.fixedValue(obj, fixVal = 0, na.type)

Arguments

obj An object of class MSnSet.

fixVal A float.

na.type A string which indicates the type of missing values to impute. Available values
are: ‘NA‘ (for both POV and MEC), ‘POV‘, ‘MEC‘.

Value

The object obj which has been imputed

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10),]
obj.imp.pov <- wrapper.impute.fixedValue(obj, 0.001, na.type = "Missing POV")
obj.imp.mec <- wrapper.impute.fixedValue(obj, 0.001, na.type = "Missing MEC")
obj.imp.na <- wrapper.impute.fixedValue(obj, 0.001, na.type = c("Missing MEC", "Missing POV"))

156 wrapper.impute.mle

wrapper.impute.KNN KNN missing values imputation from a MSnSet object

Description

Can impute only POV missing values. This method is a wrapper for objects of class MSnSet and
imputes missing values with a fixed value. This function imputes the missing values condition by
condition.

Usage

wrapper.impute.KNN(obj = NULL, K)

Arguments

obj An object of class MSnSet.

K the number of neighbors.

Value

The object obj which has been imputed

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj.imp.pov <- wrapper.impute.KNN(obj = Exp1_R25_pept[seq_len(10)], K = 3)

wrapper.impute.mle Imputation of peptides having no values in a biological condition.

Description

This method is a wrapper to the function impute.mle() of the package imp4p adapted to an object
of class MSnSet. It does not impute MEC missing values.

Usage

wrapper.impute.mle(obj)

Arguments

obj An object of class MSnSet.

wrapper.impute.pa 157

Value

The Biobase::exprs(obj) matrix with imputed values instead of missing values.

Author(s)

Samuel Wieczorek

Examples

utils::data(Exp1_R25_pept, package = "DAPARdata")
obj <- Exp1_R25_pept[seq_len(10),]
level <- 'peptide'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj.imp.na <- wrapper.impute.mle(obj)

wrapper.impute.pa Imputation of peptides having no values in a biological condition.

Description

This method is a wrapper to the function impute.pa of the package imp4p adapted to an object of
class MSnSet.

Usage

wrapper.impute.pa(obj = NULL, q.min = 0.025)

Arguments

obj An object of class MSnSet.

q.min Same as the function impute.pa() in the package imp4p

Value

The Biobase::exprs(obj) matrix with imputed values instead of missing values.

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(10)]
obj.imp.pov <- wrapper.impute.pa(obj)

158 wrapper.impute.pa2

wrapper.impute.pa2 Missing values imputation from a MSnSet object

Description

This method is a wrapper to the function impute.pa2() adapted to objects of class MSnSet.

Usage

wrapper.impute.pa2(obj, q.min = 0, q.norm = 3, eps = 0, distribution = "unif")

Arguments

obj An object of class MSnSet.

q.min A quantile value of the observed values allowing defining the maximal value
which can be generated. This maximal value is defined by the quantile q.min of
the observed values distribution minus eps. Default is 0 (the maximal value is
the minimum of observed values minus eps).

q.norm A quantile value of a normal distribution allowing defining the minimal value
which can be generated. Default is 3 (the minimal value is the maximal value
minus qn*median(sd(observed values)) where sd is the standard deviation of a
row in a condition).

eps A value allowing defining the maximal value which can be generated. This max-
imal value is defined by the quantile q.min of the observed values distribution
minus eps. Default is 0.

distribution The type of distribution used. Values are unif (default) or beta.

Value

The object obj which has been imputed

Author(s)

Thomas Burger, Samuel Wieczorek

Examples

utils::data(Exp1_R25_pept, package = "DAPARdata")
obj.imp.pa2 <- wrapper.impute.pa2(Exp1_R25_pept[seq_len(100)],
distribution = "beta")

wrapper.impute.slsa 159

wrapper.impute.slsa Imputation of peptides having no values in a biological condition.

Description

This method is a wrapper to the function impute.slsa() of the package imp4p adapted to an object
of class MSnSet.

Usage

wrapper.impute.slsa(obj = NULL)

Arguments

obj An object of class MSnSet.

Value

The Biobase::exprs(obj) matrix with imputed values instead of missing values.

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(100)]
obj.slsa.pov <- wrapper.impute.slsa(obj)

wrapper.mvImage Heatmap of missing values from a MSnSet object

Description

#’ Plots a heatmap of the quantitative data. Each column represent one of the conditions in the
object of class MSnSet and the color is proportional to the mean of intensity for each line of the
dataset. The lines have been sorted in order to vizualize easily the different number of missing
values. A white square is plotted for missing values.

Usage

wrapper.mvImage(obj, pattern = "Missing MEC")

160 wrapper.normalizeD

Arguments

obj An object of class MSnSet.

pattern xxx

Value

A heatmap

Author(s)

Alexia Dorffer

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(1000)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
wrapper.mvImage(obj$new)

wrapper.normalizeD Normalisation

Description

Provides several methods to normalize quantitative data from a MSnSet object. They are organized
in six main families : GlobalQuantileAlignement, sumByColumns, QuantileCentering, MeanCen-
tering, LOESS, vsn For the first family, there is no type. For the five other families, two type
categories are available : "Overall" which means that the value for each protein (ie line in the ex-
pression data tab) is computed over all the samples ; "within conditions" which means that the value
for each protein (ie line in the Biobase::exprs() data tab) is computed condition by condition.

Usage

wrapper.normalizeD(obj, method, withTracking = FALSE, ...)

Arguments

obj An object of class MSnSet.

method One of the following : "GlobalQuantileAlignment" (for normalizations of im-
portant magnitude), "SumByColumns", "QuantileCentering", "Mean Centering",
"LOESS" and "vsn".

withTracking xxx

... xxx

wrapper.pca 161

Value

xxx

Author(s)

Samuel Wieczorek, Thomas Burger, Helene Borges

Examples

data(Exp1_R25_pept, package="DAPARdata")
conds <- Biobase::pData(Exp1_R25_pept)$Condition
obj <- wrapper.normalizeD(

obj = Exp1_R25_pept, method = "QuantileCentering",
conds = conds, type = "within conditions"

)

wrapper.pca Compute the PCA

Description

Compute the PCA

Usage

wrapper.pca(obj, var.scaling = TRUE, ncp = NULL)

Arguments

obj xxx

var.scaling The dimensions to plot

ncp xxxx

Value

A xxxxxx

Author(s)

Samuel Wieczorek

162 wrapperCalibrationPlot

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(100)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
res.pca <- wrapper.pca(obj$new)

wrapperCalibrationPlot

Performs a calibration plot on an MSnSet object, calling the cp4p
package functions.

Description

This function is a wrapper to the calibration.plot method of the cp4p package for use with MSnSet
objects.

Usage

wrapperCalibrationPlot(vPVal, pi0Method = "pounds")

Arguments

vPVal A dataframe that contains quantitative data.
pi0Method A vector of the conditions (one condition per sample).

Value

A plot

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(100)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
qData <- Biobase::exprs(obj$new)
sTab <- Biobase::pData(obj$new)
limma <- limmaCompleteTest(qData, sTab)
wrapperCalibrationPlot(limma$P_Value[, 1])

wrapperClassic1wayAnova 163

wrapperClassic1wayAnova

Wrapper for One-way Anova statistical test

Description

Wrapper for One-way Anova statistical test

Usage

wrapperClassic1wayAnova(obj, with_post_hoc = "No", post_hoc_test = "No")

Arguments

obj An object of class MSnSet.

with_post_hoc a character string with 2 possible values: "Yes" and "No" (default) saying if
function must perform a Post-Hoc test or not.

post_hoc_test character string, possible values are "No" (for no test; default value) or TukeyHSD"
or "Dunnett". See details of postHocTest() function to choose the appropriate
one.

Details

This function allows to perform a 1-way Analysis of Variance. Also computes the post-hoc tests if
the with_post_hoc parameter is set to yes. There are two possible post-hoc tests: the Tukey Honest
Significant Differences (specified as "TukeyHSD") and the Dunnett test (specified as "Dunnett").

Value

A list of two dataframes. First one called "logFC" contains all pairwise comparisons logFC values
(one column for one comparison) for each analysed feature (Except in the case without post-hoc
testing, for which NAs are returned.); The second one named "P_Value" contains the corresponding
p-values.

Author(s)

Hélène Borges

See Also

[postHocTest()]

Examples

Not run: examples/ex_wrapperClassic1wayAnova.R

164 wrapperRunClustering

wrapperRunClustering clustering pipeline of protein/peptide abundance profiles.

Description

This function does all of the steps necessary to obtain a clustering model and its graph from average
abundances of proteins/peptides. It is possible to carry out either a kmeans model or an affinity
propagation model. See details for exact steps.

Usage

wrapperRunClustering(
obj,
clustering_method,
conditions_order = NULL,
k_clusters = NULL,
adjusted_pvals,
ttl = "",
subttl = "",
FDR_thresholds = NULL

)

Arguments

obj ExpressionSet or MSnSet object.
clustering_method

character string. Three possible values are "kmeans", "affinityProp" and "affini-
tyPropReduced. See the details section for more explanation.

conditions_order

vector specifying the order of the Condition factor levels in the phenotype data.
Default value is NULL, which means that it is the order of the condition present
in the phenotype data of "obj" which is taken to create the profiles.

k_clusters integer or NULL. Number of clusters to run the kmeans algorithm. If ‘clus-
tering_method‘ is set to "kmeans" and this parameter is set to NULL, then a
kmeans model will be realized with an optimal number of clusters ‘k‘ estimated
by the Gap statistic method. Ignored for the Affinity propagation model.

adjusted_pvals vector of adjusted pvalues returned by the [wrapperClassic1wayAnova()]
ttl the title for the final plot
subttl the subtitle for the final plot
FDR_thresholds vector containing the different threshold values to be used to color the pro-

files according to their adjusted pvalue. The default value (NULL) generates
4 thresholds: [0.001, 0.005, 0.01, 0.05]. Thus, there will be 5 intervals there-
fore 5 colors: the pvalues <0.001, those between 0.001 and 0.005, those between
0.005 and 0.01, those between 0.01 and 0.05, and those> 0.05. The highest given
value will be considered as the threshold of insignificance, the profiles having a
pvalue> this threshold value will then be colored in gray.

wrapperRunClustering 165

Details

The first step consists in averaging the abundances of proteins/peptides according to the different
conditions defined in the phenotype data of the expressionSet / MSnSet. Then we standardize the
data if there are more than 2 conditions. If the user asks to realize a kmeans model without speci-
fying the desired number of clusters (‘clustering_method =" kmeans "‘ and ‘k_clusters = NULL‘),
the function checks data’s clusterability and estimates a number of clusters k using the gap statistic
method. It is advise however to specify a k for the kmeans, because the gap stat gives the smallest
possible k, whereas in biology a small number of clusters can turn out to be uninformative. If you
want to run a kmeans but you don’t know what number of clusters to give, you can let the pipeline
run the first time without specifying ‘k_clusters‘, in order to view the profiles the first time and
choose by the following is a more appropriate value of k. If it is assumed that the data can be
structured with a large number of clusters, it is recommended to use the affinity propagation model
instead. This method simultaneously considers all the data as exemplary potentials, unlike hard
clustering (kmeans) which initializes with a number k of points taken at random. The "affinityProp"
model will use a q parameter set to NA, meaning that exemplar preferences are set to the median of
non-Inf values in the similarity matrix (set q to 0.5 will be the same). The "affinityPropReduced"
model will use a q set to 0, meaning that exemplar preferences are set to the sample quantile with
threshold 0 of non-Inf values. This should lead to a smaller number of final clusters.

Value

a list of 2 elements: "model" is the clustering model, "ggplot" is the ggplot of profiles clustering.

Author(s)

Helene Borges

References

Tibshirani, R., Walther, G. and Hastie, T. (2001). Estimating the number of data clusters via the
Gap statistic. *Journal of the Royal Statistical Society* B, 63, 411–423.

Frey, B. J. and Dueck, D. (2007) Clustering by passing messages between data points. *Science*
315, 972-976. DOI: 10.1126/science.1136800

Examples

data(Exp1_R25_prot, package="DAPARdata")
obj <- Exp1_R25_prot[seq_len(1000)]
level <- 'protein'
metacell.mask <- match.metacell(GetMetacell(obj), c("Missing POV", "Missing MEC"), level)
indices <- GetIndices_WholeMatrix(metacell.mask, op = ">=", th = 1)
obj <- MetaCellFiltering(obj, indices, cmd = "delete")
expR25_ttest <- compute_t_tests(obj$new)
wrapperRunClustering(

obj = obj$new,
adjusted_pvals = expR25_ttestP_Value`25fmol_vs_10fmol_pval`

)

https://science.sciencemag.org/content/315/5814/972

166 write.excel

write.excel This function exports a data.frame to a Excel file.

Description

This function exports a data.frame to a Excel file.

Usage

write.excel(df, tags = NULL, colors = NULL, tabname = "foo", filename = NULL)

Arguments

df An data.frame

tags xxx

colors xxx

tabname xxx

filename A character string for the name of the Excel file.

Value

A Excel file (.xlsx)

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
df <- Biobase::exprs(Exp1_R25_pept[seq_len(100)])
tags <- GetMetacell(Exp1_R25_pept[seq_len(100)])
colors <- list(

"Missing POV" = "lightblue",
"Missing MEC" = "orange",
"Quant. by recovery" = "lightgrey",
"Quant. by direct id" = "white",
"Combined tags" = "red"

)
write.excel(df, tags, colors, filename = "toto")

writeMSnsetToCSV 167

writeMSnsetToCSV Exports a MSnset dataset into a zip archive containing three zipped
CSV files.

Description

Exports a MSnset dataset into a zip archive containing three zipped CSV files.

Usage

writeMSnsetToCSV(obj, fname)

Arguments

obj An object of class MSnSet.

fname The name of the archive file.

Value

A compressed file

Author(s)

Samuel Wieczorek

Examples

data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
writeMSnsetToCSV(obj, "foo")

writeMSnsetToExcel This function exports a MSnSet object to a Excel file.

Description

This function exports a MSnSet data object to a Excel file. Each of the three data.frames in the
MSnSet object (ie experimental data, phenoData and metaData are respectively integrated into sep-
arate sheets in the Excel file).

The colored cells in the experimental data correspond to the original missing values which have
been imputed.

Usage

writeMSnsetToExcel(obj, filename)

168 writeMSnsetToExcel

Arguments

obj An object of class MSnSet.

filename A character string for the name of the Excel file.

Value

A Excel file (.xlsx)

Author(s)

Samuel Wieczorek

Examples

Sys.setenv("R_ZIPCMD" = Sys.which("zip"))
data(Exp1_R25_pept, package="DAPARdata")
obj <- Exp1_R25_pept[seq_len(10)]
writeMSnsetToExcel(obj, "foo")

Index

aggregateIter, 6
aggregateIterParallel, 7
aggregateMean, 8
AggregateMetacell, 9
aggregateSum, 10
aggregateTopn, 10
applyAnovasOnProteins, 11
averageIntensities, 12

barplotEnrichGO_HC, 13
barplotGroupGO_HC, 14
boxPlotD_HC, 15
BuildAdjacencyMatrix, 16
BuildColumnToProteinDataset, 16
buildGraph, 17
BuildMetaCell, 18

check.conditions, 19
check.design, 20
Check_Dataset_Validity, 21
Check_NbValues_In_Columns, 22
checkClusterability, 20
Children, 22
classic1wayAnova, 23
compareNormalizationD_HC, 23
compute.selection.table, 25
compute_t_tests, 26
corrMatrixD_HC, 27
CountPep, 28
createMSnset, 28
createMSnset2, 30
CVDistD_HC, 32

dapar_hc_chart, 33
dapar_hc_ExportMenu, 33
deleteLinesFromIndices, 34
densityPlotD_HC, 35
diffAnaComputeAdjustedPValues, 36
diffAnaComputeFDR, 37
diffAnaGetSignificant, 37

diffAnaSave, 38
diffAnaVolcanoplot, 39
diffAnaVolcanoplot_rCharts, 40
display.CC.visNet, 42

enrich_GO, 43
ExtendPalette, 44

finalizeAggregation, 45
findMECBlock, 46
formatHSDResults, 46
formatLimmaResult, 47
formatPHResults, 48
formatPHTResults, 49
fudge2LRT, 49

get.pep.prot.cc, 51
Get_AllComparisons, 77
GetCC, 51
GetColorsForConditions, 52
getDesignLevel, 53
GetDetailedNbPeptides, 54
GetDetailedNbPeptidesUsed, 54
GetIndices_BasedOnConditions, 57
GetIndices_MetacellFiltering, 58
GetIndices_WholeLine, 59
GetIndices_WholeMatrix, 60
getIndicesConditions, 55
getIndicesOfLinesToRemove, 56
GetKeyId, 61
getListNbValuesInLines, 61
GetMatAdj, 62
GetMetacell, 63
GetMetacellTags, 63
GetNbPeptidesUsed, 64
GetNbTags, 65
getNumberOf, 65
getNumberOfEmptyLines, 66
getPourcentageOfMV, 66
getProcessingInfo, 67

169

170 INDEX

getProteinsStats, 68
getQuantile4Imp, 68
GetSoftAvailables, 69
getTextForAggregation, 70
getTextForAnaDiff, 70
getTextForFiltering, 71
getTextForGOAnalysis, 72
getTextForHypothesisTest, 72
getTextForNewDataset, 73
getTextForNormalization, 74
getTextForpeptideImputation, 74
getTextForproteinImputation, 75
GetTypeofData, 76
GetUniqueTags, 76
globalAdjPval, 78
GlobalQuantileAlignment, 79
GOAnalysisSave, 79
GraphPepProt, 81
group_GO, 81

hc_logFC_DensityPlot, 82
hc_mvTypePlot2, 83
heatmapD, 84
heatmapForMissingValues, 85
histPValue_HC, 86

impute.pa2, 87
inner.aggregate.iter, 88
inner.aggregate.topn, 89
inner.mean, 90
inner.sum, 91
is.subset, 91

LH0, 92
LH0.lm, 93
LH1, 93
LH1.lm, 94
limmaCompleteTest, 36, 38, 95
listSheets, 96
LOESS, 96

make.contrast, 97
make.design, 98
make.design.1, 99
make.design.2, 99
make.design.3, 100
match.metacell, 101
MeanCentering, 101
metacell.def, 102

Metacell_DIA_NN, 109
Metacell_generic, 110
Metacell_maxquant, 111
Metacell_proline, 112
MetaCellFiltering, 103
MetacellFilteringScope, 105
metacellHisto_HC, 106
metacellPerLinesHisto_HC, 108
metacellPerLinesHistoPerCondition_HC,

107
metacombine, 113
mvImage, 114
my_hc_chart, 114
my_hc_ExportMenu, 115

nonzero, 116
normalizeMethods.dapar, 117
NumericalFiltering, 117
NumericalgetIndicesOfLinesToRemove,

118

OWAnova, 119

Parent, 120
pepa.test, 120
pkgs.require, 121
plotJitter, 122
plotJitter_rCharts, 122
plotPCA_Eigen, 123
plotPCA_Eigen_hc, 124
plotPCA_Ind, 125
plotPCA_Var, 125
postHocTest, 126
proportionConRev_HC, 127

QuantileCentering, 128

rbindMSnset, 129
readExcel, 129
reIntroduceMEC, 130
removeLines, 131

samLRT, 131
saveParameters, 132
scatterplotEnrichGO_HC, 133
search.metacell.tags, 134
separateAdjPval, 135
Set_POV_MEC_tags, 137
SetCC, 135
SetMatAdj, 136

INDEX 171

splitAdjacencyMat, 138
StringBasedFiltering, 139
StringBasedFiltering2, 140
SumByColumns, 140
SymFilteringOperators, 141

test.design, 142
testAnovaModels, 142
thresholdpval4fdr, 143
translatedRandomBeta, 144

univ_AnnotDbPkg, 145
UpdateMetacellAfterImputation, 145

violinPlotD, 146
visualizeClusters, 147
vsn, 148

wrapper.compareNormalizationD_HC, 149
wrapper.corrMatrixD_HC, 150
wrapper.CVDistD_HC, 151
wrapper.dapar.impute.mi, 151
wrapper.heatmapD, 153
wrapper.impute.detQuant, 154
wrapper.impute.fixedValue, 155
wrapper.impute.KNN, 156
wrapper.impute.mle, 156
wrapper.impute.pa, 157
wrapper.impute.pa2, 158
wrapper.impute.slsa, 159
wrapper.mvImage, 159
wrapper.normalizeD, 160
wrapper.pca, 161
wrapperCalibrationPlot, 162
wrapperClassic1wayAnova, 163
wrapperRunClustering, 164
write.excel, 166
writeMSnsetToCSV, 167
writeMSnsetToExcel, 167

	aggregateIter
	aggregateIterParallel
	aggregateMean
	AggregateMetacell
	aggregateSum
	aggregateTopn
	applyAnovasOnProteins
	averageIntensities
	barplotEnrichGO_HC
	barplotGroupGO_HC
	boxPlotD_HC
	BuildAdjacencyMatrix
	BuildColumnToProteinDataset
	buildGraph
	BuildMetaCell
	check.conditions
	check.design
	checkClusterability
	Check_Dataset_Validity
	Check_NbValues_In_Columns
	Children
	classic1wayAnova
	compareNormalizationD_HC
	compute.selection.table
	compute_t_tests
	corrMatrixD_HC
	CountPep
	createMSnset
	createMSnset2
	CVDistD_HC
	dapar_hc_chart
	dapar_hc_ExportMenu
	deleteLinesFromIndices
	densityPlotD_HC
	diffAnaComputeAdjustedPValues
	diffAnaComputeFDR
	diffAnaGetSignificant
	diffAnaSave
	diffAnaVolcanoplot
	diffAnaVolcanoplot_rCharts
	display.CC.visNet
	enrich_GO
	ExtendPalette
	finalizeAggregation
	findMECBlock
	formatHSDResults
	formatLimmaResult
	formatPHResults
	formatPHTResults
	fudge2LRT
	get.pep.prot.cc
	GetCC
	GetColorsForConditions
	getDesignLevel
	GetDetailedNbPeptides
	GetDetailedNbPeptidesUsed
	getIndicesConditions
	getIndicesOfLinesToRemove
	GetIndices_BasedOnConditions
	GetIndices_MetacellFiltering
	GetIndices_WholeLine
	GetIndices_WholeMatrix
	GetKeyId
	getListNbValuesInLines
	GetMatAdj
	GetMetacell
	GetMetacellTags
	GetNbPeptidesUsed
	GetNbTags
	getNumberOf
	getNumberOfEmptyLines
	getPourcentageOfMV
	getProcessingInfo
	getProteinsStats
	getQuantile4Imp
	GetSoftAvailables
	getTextForAggregation
	getTextForAnaDiff
	getTextForFiltering
	getTextForGOAnalysis
	getTextForHypothesisTest
	getTextForNewDataset
	getTextForNormalization
	getTextForpeptideImputation
	getTextForproteinImputation
	GetTypeofData
	GetUniqueTags
	Get_AllComparisons
	globalAdjPval
	GlobalQuantileAlignment
	GOAnalysisSave
	GraphPepProt
	group_GO
	hc_logFC_DensityPlot
	hc_mvTypePlot2
	heatmapD
	heatmapForMissingValues
	histPValue_HC
	impute.pa2
	inner.aggregate.iter
	inner.aggregate.topn
	inner.mean
	inner.sum
	is.subset
	LH0
	LH0.lm
	LH1
	LH1.lm
	limmaCompleteTest
	listSheets
	LOESS
	make.contrast
	make.design
	make.design.1
	make.design.2
	make.design.3
	match.metacell
	MeanCentering
	metacell.def
	MetaCellFiltering
	MetacellFilteringScope
	metacellHisto_HC
	metacellPerLinesHistoPerCondition_HC
	metacellPerLinesHisto_HC
	Metacell_DIA_NN
	Metacell_generic
	Metacell_maxquant
	Metacell_proline
	metacombine
	mvImage
	my_hc_chart
	my_hc_ExportMenu
	nonzero
	normalizeMethods.dapar
	NumericalFiltering
	NumericalgetIndicesOfLinesToRemove
	OWAnova
	Parent
	pepa.test
	pkgs.require
	plotJitter
	plotJitter_rCharts
	plotPCA_Eigen
	plotPCA_Eigen_hc
	plotPCA_Ind
	plotPCA_Var
	postHocTest
	proportionConRev_HC
	QuantileCentering
	rbindMSnset
	readExcel
	reIntroduceMEC
	removeLines
	samLRT
	saveParameters
	scatterplotEnrichGO_HC
	search.metacell.tags
	separateAdjPval
	SetCC
	SetMatAdj
	Set_POV_MEC_tags
	splitAdjacencyMat
	StringBasedFiltering
	StringBasedFiltering2
	SumByColumns
	SymFilteringOperators
	test.design
	testAnovaModels
	thresholdpval4fdr
	translatedRandomBeta
	univ_AnnotDbPkg
	UpdateMetacellAfterImputation
	violinPlotD
	visualizeClusters
	vsn
	wrapper.compareNormalizationD_HC
	wrapper.corrMatrixD_HC
	wrapper.CVDistD_HC
	wrapper.dapar.impute.mi
	wrapper.heatmapD
	wrapper.impute.detQuant
	wrapper.impute.fixedValue
	wrapper.impute.KNN
	wrapper.impute.mle
	wrapper.impute.pa
	wrapper.impute.pa2
	wrapper.impute.slsa
	wrapper.mvImage
	wrapper.normalizeD
	wrapper.pca
	wrapperCalibrationPlot
	wrapperClassic1wayAnova
	wrapperRunClustering
	write.excel
	writeMSnsetToCSV
	writeMSnsetToExcel
	Index

