
Package ‘SingleCellExperiment’
April 15, 2020

Version 1.8.0

Date 2019-09-28

Title S4 Classes for Single Cell Data

Depends SummarizedExperiment

Imports S4Vectors (>= 0.23.19), methods, BiocGenerics, utils, stats

Suggests testthat, BiocStyle, knitr, rmarkdown, scRNAseq, Rtsne,
Matrix

biocViews ImmunoOncology, DataRepresentation, DataImport,
Infrastructure, SingleCell

Description Defines a S4 class for storing data from single-cell
experiments. This includes specialized methods to store and
retrieve spike-in information, dimensionality reduction
coordinates and size factors for each cell, along with the
usual metadata for genes and libraries.

License GPL-3

VignetteBuilder knitr

RoxygenNote 6.1.1

git_url https://git.bioconductor.org/packages/SingleCellExperiment

git_branch RELEASE_3_10

git_last_commit 11bd3ff

git_last_commit_date 2019-10-29

Date/Publication 2020-04-14

Author Aaron Lun [aut, cph],
Davide Risso [aut, cre, cph],
Keegan Korthauer [ctb],
Kevin Rue-Albrecht [ctb]

Maintainer Davide Risso <risso.davide@gmail.com>

R topics documented:
altExps . 2
Combining LEMs . 4
Getter/setter methods . 5
LinearEmbeddingMatrix . 7

1

2 altExps

Miscellaneous LEM . 8
reducedDims . 9
SCE-assays . 10
SCE-combine . 11
SCE-internals . 13
SCE-miscellaneous . 14
SingleCellExperiment-class . 15
Size factor methods . 16
Spike-in methods . 18
splitAltExps . 19
Subsetting LEMs . 20
swapAltExp . 22
updateObject . 23

Index 25

altExps Alternative Experiment methods

Description

In some experiments, different features must be normalized differently or have different row-level
metadata. Typical examples would be for spike-in transcripts in plate-based experiments and anti-
body or CRISPR tags in CITE-seq experiments. These data cannot be stored in the main assays of
the SingleCellExperiment itself. However, it is still desirable to store these features somewhere in
the SingleCellExperiment. This simplifies book-keeping in long workflows and ensure that samples
remain synchronised.

To facilitate this, the SingleCellExperiment class allows for “alternative Experiments”. Nested
SummarizedExperiment-class objects are stored inside the SingleCellExperiment object x, in a
manner that guarantees that the nested objects have the same columns in the same order as those
in x. Methods are provided to enable convenient access to and manipulation of these alternative
Experiments. Each alternative Experiment should contain experimental data and row metadata for
a distinct set of features.

Getters

In the following examples, x is a SingleCellExperiment object.

altExp(x, e, withColData=TRUE): Retrieves a SummarizedExperiment containing alternative fea-
tures (rows) for all cells (columns) in x. e is either a string specifying the name of the alterna-
tive Experiment in x to retrieve, or a numeric scalar specifying the index of the desired Exper-
iment. If withColData=TRUE, the column metadata of the output object is set to colData(x).

altExpNames(x): Returns a character vector containing the names of all alternative Experiments
in x. This is guaranteed to be of the same length as the number of results, though the names
may not be unique.

altExps(x, withColData=TRUE): Returns a named List of matrices containing one or more Sum-
marizedExperiment objects. Each object has the same number of columns. If withColData=TRUE,
the column metadata of each output object is set to colData(x).

altExps 3

Single-object setter

altExp(x,e) <-value will add or replace an alternative Experiment in a SingleCellExperiment
object x. The value of e determines how the result is added or replaced:

• If e is missing, value is assigned to the first result. If the result already exists, its name is
preserved; otherwise it is given a default name "unnamed1".

• If e is a numeric scalar, it must be within the range of existing results, and value will be
assigned to the result at that index.

• If e is a string and a result exists with this name, value is assigned to to that result. Otherwise
a new result with this name is append to the existing list of results.

value is expected to be a SummarizedExperiment object with number of columns equal to ncol(x).
Alternatively, if value is NULL, the alternative Experiment at e is removed from the object.

Other setters

In the following examples, x is a SingleCellExperiment object.

altExps(x) <- value: Replaces all alterrnative Experiments in x with those in value. The latter
should be a list-like object containing any number of SummarizedExperiment objects with
number of columns equal to ncol(x).
If value is named, those names will be used to name the alternative Experiments in x. Other-
wise, unnamed results are assigned default names prefixed with "unnamed".
If value is NULL, all alternative Experiments in x are removed.

altExpNames(x) <- value: Replaces all names for alternative Experiments in x with a character
vector value. This should be of length equal to the number of results currently in x.

removeAltExps(x) will remove all alternative Experiments from x. This has the same effect as
altExps(x) <-NULL but may be more convenient as it directly returns a SingleCellExperiment.

Author(s)

Aaron Lun

See Also

splitAltExps, for a convenient way of adding alternative Experiments from existing features.

swapAltExp, to swap the main and alternative Experiments.

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example
dim(counts(sce))

Mocking up some alternative Experiments.
se1 <- SummarizedExperiment(matrix(rpois(1000, 5), ncol=ncol(se)))
rowData(se1)$stuff <- sample(LETTERS, nrow(se1), replace=TRUE)
se2 <- SummarizedExperiment(matrix(rpois(500, 5), ncol=ncol(se)))
rowData(se2)$blah <- sample(letters, nrow(se2), replace=TRUE)

Setting the alternative Experiments.
altExp(sce, "spike-in") <- se1
altExp(sce, "CRISPR") <- se2

4 Combining LEMs

Getting alternative Experimental data.
altExpNames(sce)
altExp(sce, "spike-in")
altExp(sce, 2)

Setting alternative Experimental data.
altExpNames(sce) <- c("ERCC", "Ab")
altExp(sce, "ERCC") <- se1[1:2,]

Combining LEMs LEM combining methods

Description

Methods to combine LinearEmbeddingMatrix objects.

Usage

S4 method for signature 'LinearEmbeddingMatrix'
rbind(..., deparse.level=1)

S4 method for signature 'LinearEmbeddingMatrix'
cbind(..., deparse.level=1)

Arguments

... One or more LinearEmbeddingMatrix objects.

deparse.level An integer scalar; see ?base::cbind for a description of this argument.

Details

For rbind, LinearEmbeddingMatrix objects are combined row-wise, i.e., rows in successive objects
are appended to the first object. This corresponds to adding more samples to the first object. Note
that featureLoadings and factorData will only be taken from the first element in the list; no
checks are performed to determine whether they are consistent or not across objects.

For cbind, LinearEmbeddingMatrix objects are combined columns-wise, i.e., columns in succes-
sive objects are appended to the first object. This corresponds to adding more factors to the first
object. featureLoadings will also be combined column-wise across objects, provided that the
number of features is the same across objects. Similarly, factorData will be combined row-wise
across objects.

Combining objects with and without row names will result in the removal of all row names; simi-
larly for column names. Duplicate row names are currently supported by duplicate column names
are not, and will be de-duplicated appropriately.

Value

A LinearEmbeddingMatrix object containing all rows/columns of the supplied objects.

Author(s)

Aaron Lun

Getter/setter methods 5

Examples

example(LinearEmbeddingMatrix, echo=FALSE) # using the class example
rbind(lem, lem)
cbind(lem, lem)

Getter/setter methods LinearEmbeddingMatrix getters/setters

Description

Getter/setter methods for the LinearEmbeddingMatrix class.

Usage

S4 method for signature 'LinearEmbeddingMatrix'
sampleFactors(x, withDimnames=TRUE)

S4 replacement method for signature 'LinearEmbeddingMatrix'
sampleFactors(x) <- value

S4 method for signature 'LinearEmbeddingMatrix'
featureLoadings(x, withDimnames=TRUE)

S4 replacement method for signature 'LinearEmbeddingMatrix'
featureLoadings(x) <- value

S4 method for signature 'LinearEmbeddingMatrix'
factorData(x)

S4 replacement method for signature 'LinearEmbeddingMatrix'
factorData(x) <- value

S4 method for signature 'LinearEmbeddingMatrix'
as.matrix(x, ...)

S4 method for signature 'LinearEmbeddingMatrix'
dim(x)

S4 method for signature 'LinearEmbeddingMatrix'
dimnames(x)

S4 replacement method for signature 'LinearEmbeddingMatrix'
dimnames(x) <- value

S4 method for signature 'LinearEmbeddingMatrix'
x$name

S4 replacement method for signature 'LinearEmbeddingMatrix'
x$name <- value

6 Getter/setter methods

Arguments

x A LinearEmbeddingMatrix object.

value An appropriate value to assign to the relevant slot.

withDimnames A logical scalar indicating whether dimension names should be attached to the
returned object.

name A string specifying a field of the factorData slot.

... Further arguments, ignored.

Details

Any value to assign to sampleFactors and featureLoadings should be matrix-like objects, while
factorData should be a DataFrame - ee LinearEmbeddingMatrix for details.

The as.matrix method will return the matrix of sample factors, consistent with the fact that the Lin-
earEmbeddingMatrix mimics a sample-factor matrix. However, unlike the sampleFactors method,
this is always guaranteed to return an ordinary R matrix, even if an alternative representation was
stored in the slot. This ensures consistency with as.matrix methods for other matrix-like S4
classes.

For assignment to dimnames, a list of length 2 should be used containing vectors of row and column
names.

Value

For the getter methods sampleFactors, featureLoadings and factorData, the value of the slot
with the same name is returned. For the corresponding setter methods, a LinearEmbeddingMatrix
is returned with modifications to the named slot.

For dim, the dimensions of the sampleFactors slot are returned in an integer vector of length 2.
For dimnames, a list of length 2 containing the row and column names is returned. For as.matrix,
an ordinary matrix derived from sampleFactors is returned.

For $, the value of the named field of the factorData slot is returned. For $<-, a LinearEmbed-
dingMatrix is returned with the modified field in factorData.

Author(s)

Keegan Korthauer, Davide Risso and Aaron Lun

See Also

LinearEmbeddingMatrix

Examples

example(LinearEmbeddingMatrix, echo=FALSE) # Using the class example

sampleFactors(lem)
sampleFactors(lem) <- sampleFactors(lem) * -1

featureLoadings(lem)
featureLoadings(lem) <- featureLoadings(lem) * -1

factorData(lem)
factorData(lem)$whee <- 1

LinearEmbeddingMatrix 7

nrow(lem)
ncol(lem)
colnames(lem) <- LETTERS[seq_len(ncol(lem))]
as.matrix(lem)

LinearEmbeddingMatrix LinearEmbeddingMatrix class

Description

A description of the LinearEmbeddingMatrix class for storing low-dimensional embeddings from
linear dimensionality reduction methods.

Usage

LinearEmbeddingMatrix(sampleFactors = matrix(nrow = 0, ncol = 0),
featureLoadings = matrix(nrow = 0, ncol = 0), factorData = NULL,
metadata = list())

Arguments

sampleFactors A matrix-like object of sample embeddings, where rows are samples and columns
are factors.

featureLoadings

A matrix-like object of feature loadings, where rows are features and columns
are factors.

factorData A DataFrame containing factor-level information, with one row per factor.

metadata An optional list of arbitrary content describing the overall experiment.

Details

The LinearEmbeddingMatrix class is a matrix-like object that supports dim, dimnames and as.matrix.
It is designed for the storage of results from linear dimensionality reduction methods like principal
components analysis (PCA), factor analysis and non-negative matrix factorization.

The sampleFactors slot is intended to store The low-dimensional representation of the samples,
such as the principal coordinates from PCA. The feature loadings contributing to each factor are
stored in featureLoadings, and should have the same number of columns as sampleFactors. The
factorData stores additional factor-level information, such as the percentage of variance explained
by each factor, and should have the same number of rows as sampleFactors.

The intended use of this class is to allow PCA and other results to be stored in the reducedDims
slot of a SingleCellExperiment object. This means that feature loadings remain attached to the
embedding, allowing it to be used in downstream analyses.

Value

A LinearEmbeddingMatrix object is returned from the constructor.

Author(s)

Aaron Lun, Davide Risso and Keegan Korthauer

8 Miscellaneous LEM

Examples

lem <- LinearEmbeddingMatrix(matrix(rnorm(1000), ncol=5),
matrix(runif(20000), ncol=5))

lem

Miscellaneous LEM Miscellaneous LEM methods

Description

Various methods for the LinearEmbeddingMatrix class.

Usage

S4 method for signature 'LinearEmbeddingMatrix'
show(object)

Arguments

object A LinearEmbeddingMatrix object.

Details

The show method will print out information about the data contained in object. This includes
the number of samples, the number of factors, the number of genes and the fields available in
factorData.

Value

A message is printed to screen describing the data stored in object.

Author(s)

Davide Risso

See Also

LinearEmbeddingMatrix

Examples

example(LinearEmbeddingMatrix, echo=FALSE) # Using the class example
show(lem)

reducedDims 9

reducedDims Reduced dimensions methods

Description

Methods to get or set dimensionality reduction results in a SingleCellExperiment object. These are
typically used to store and retrieve low-dimensional representations of single-cell datasets. Each
row of a reduced dimension result is expected to correspond to a column of the SingleCellExperi-
ment object.

Getters

In the following examples, x is a SingleCellExperiment object.

reducedDim(x, type, withDimnames=TRUE): Retrieves a matrix (or matrix-like object) contain-
ing reduced dimension coordinates for cells (rows) and dimensions (columns). type is either a
string specifying the name of the dimensionality reduction result in x to retrieve, or a numeric
scalar specifying the index of the desired result. If withDimnames=TRUE, row names of the
output matrix are replaced with the column names of x.

reducedDimNames(x): Returns a character vector containing the names of all dimensionality re-
duction results in x. This is guaranteed to be of the same length as the number of results,
though the names may not be unique.

reducedDims(x, withDimnames=TRUE): Returns a named List of matrices containing one or more
dimensionality reduction results. Each result is a matrix (or matrix-like object) with the same
number of rows. If withDimnames=TRUE, row names of each matrix are replaced with the
column names of x.

Single-result setter

reducedDim(x,type) <-value will add or replace a dimensionality reduction result in a Single-
CellExperiment object x. The value of type determines how the result is added or replaced:

• If type is missing, value is assigned to the first result. If the result already exists, its name is
preserved; otherwise it is given a default name "unnamed1".

• If type is a numeric scalar, it must be within the range of existing results, and value will be
assigned to the result at that index.

• If type is a string and a result exists with this name, value is assigned to to that result.
Otherwise a new result with this name is append to the existing list of results.

value is expected to be a matrix or matrix-like object with number of rows equal to ncol(x).
Alternatively, if value is NULL, the result corresponding to type is removed from the object.

Other setters

In the following examples, x is a SingleCellExperiment object.

reducedDims(x) <- value: Replaces all dimensionality reduction results in x with those in value.
The latter should be a list-like object containing any number of matrices or matrix-like objects
with number of rows equal to ncol(x).
If value is named, those names will be used to name the dimensionality reduction results in
x. Otherwise, unnamed results are assigned default names prefixed with "unnamed".
If value is NULL, all dimensionality reduction results in x are removed.

10 SCE-assays

reducedDimNames(x) <- value: Replaces all names for dimensionality reduction results in x with
a character vector value. This should be of length equal to the number of results currently in
x.

Author(s)

Aaron Lun and Kevin Rue-Albrecht

Examples

example(SingleCellExperiment, echo=FALSE)
reducedDim(sce, "PCA")
reducedDim(sce, "tSNE")
reducedDims(sce)

reducedDim(sce, "PCA") <- NULL
reducedDims(sce)

reducedDims(sce) <- SimpleList()
reducedDims(sce)

SCE-assays Named assay getters and setters

Description

These are methods for getting or setting assay(sce,i=X,...) where sce is a SingleCellExperi-
ment object and X is the name of the method. For example, counts will get or set X="counts".
This provides some convenience for users as well as encouraging standardization of assay names
across packages.

Available methods

In the following code snippets, x is a SingleCellExperiment object, value is a matrix-like object
with the same dimensions as x, and ... are further arguments passed to assay (for the getter) or
assay<- (for the setter).

counts(x, ...), counts(x, ...) <- value: Get or set a matrix of raw count data, e.g., number
of reads or transcripts.

normcounts(x, ...), normcounts(x, ...) <- value: Get or set a matrix of normalized values
on the same scale as the original counts. For example, counts divided by cell-specific size
factors that are centred at unity.

logcounts(x, ...), logcounts(x, ...) <- value: Get or set a matrix of log-transformed counts
or count-like values. In most cases, this will be defined as log-transformed normcounts, e.g.,
using log base 2 and a pseudo-count of 1.

cpm(x, ...), cpm(x, ...) <- value: Get or set a matrix of counts-per-million values. This is the
read count for each gene in each cell, divided by the library size of each cell in millions.

tpm(x, ...), tpm(x, ...) <- value: Get or set a matrix of transcripts-per-million values. This is
the number of transcripts for each gene in each cell, divided by the total number of transcripts
in that cell (in millions).

weights(x, ...), weights(x, ...) <- value: Get or set a matrix of weights, e.g., observational
weights to be used in differential expression analysis.

SCE-combine 11

Author(s)

Aaron Lun

See Also

assay and assay<-, for the wrapped methods.

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example
counts(sce) <- matrix(rnorm(nrow(sce)*ncol(sce)), ncol=ncol(sce))
dim(counts(sce))

One possible way of computing normalized "counts"
sf <- 2^rnorm(ncol(sce))
sf <- sf/mean(sf)
normcounts(sce) <- t(t(counts(sce))/sf)
dim(normcounts(sce))

One possible way of computing log-counts
logcounts(sce) <- log2(normcounts(sce)+1)
dim(normcounts(sce))

SCE-combine Combining or subsetting SingleCellExperiment objects

Description

An overview of methods to combine multiple SingleCellExperiment objects by row or column, or
to subset a SingleCellExperiment by row or column. These methods are useful for ensuring that all
data fields remain synchronized when cells or genes are added or removed.

Combining

In the following code snippets, ... contains one or more SingleCellExperiment objects.

rbind(..., deparse.level=1): Returns a SingleCellExperiment where all objects in ... are
combined row-wise, i.e., rows in successive objects are appended to the first object.
Refer to ?"rbind,SummarizedExperiment-method" for details on how metadata is com-
bined in the output object. Refer to ?rbind for the interpretation of deparse.level.
Note that all objects in ... must have the exact same values for reducedDims and altExps.
Any sizeFactors should either be NULL or contain the same values across objects.

cbind(..., deparse.level=1): Returns a SingleCellExperiment where all objects in ... are
combined column-wise, i.e., columns in successive objects are appended to the first object.
Each object x in ... must have the same values of reducedDimNames(x) (though they can
be unordered). Dimensionality reduction results with the same name across objects will be
combined row-wise to create the corresponding entry in the output object.
Each object x in ... must have the same values of altExpNames(x) (though they can be
unordered). Alternative Experiments with the same name across objects will be combined
column-wise to create the corresponding entry in the output object.

12 SCE-combine

sizeFactors should be either set to NULL in all objects, or set to a numeric vector in all
objects.
Refer to ?"cbind,SummarizedExperiment-method" for details on how metadata is com-
bined in the output object. Refer to ?cbind for the interpretation of deparse.level.

Subsetting

In the following code snippets, x is a SingleCellExperiment object.

x[i, j, ..., drop=TRUE]: Returns a SingleCellExperiment containing the specified rows i and
columns j.
i and j can be a logical, integer or character vector of subscripts, indicating the rows and
columns respectively to retain. Either can be missing, in which case subsetting is only per-
formed in the specified dimension. If both are missing, no subsetting is performed.
Arguments in ... and drop are passed to to [,SummarizedExperiment-method.

x[i, j, ...] <- value: Replaces all data for rows i and columns j with the corresponding fields
in a SingleCellExperiment value.
i and j can be a logical, integer or character vector of subscripts, indicating the rows and
columns respectively to replace. Either can be missing, in which case replacement is only
performed in the specified dimension. If both are missing, x is replaced entirely with value.
If j is specified, value is expected to have the same name and order of reducedDimNames and
altExpNames as x. If sizeFactors is set for x, it should also be set for value.
Arguments in ... are passed to the corresponding SummarizedExperiment method.

Author(s)

Aaron Lun

Examples

example(SingleCellExperiment, echo=FALSE) # using the class example

Combining:
rbind(sce, sce)
cbind(sce, sce)

Subsetting:
sce[1:10,]
sce[,1:5]

sce2 <- sce
sce2[1:10,] <- sce[11:20,]

Can also use subset()
sce$WHEE <- sample(LETTERS, ncol(sce), replace=TRUE)
subset(sce, , WHEE=="A")

Can also use split()
split(sce, sample(LETTERS, nrow(sce), replace=TRUE))

SCE-internals 13

SCE-internals Internal SingleCellExperiment functions

Description

Methods to get or set internal fields from the SingleCellExperiment class. Thse functions are in-
tended for package developers who want to add protected fields to a SingleCellExperiment. They
should not be used by ordinary users of the SingleCellExperiment package.

Getters

In the following code snippets, x is a SingleCellExperiment.

int_elementMetadata(x): Returns a DataFrame of internal row metadata, with number of rows
equal to nrow(x). This is analogous to the user-visible colData.

int_colData(x): Returns a DataFrame of internal column metadata, with number of rows equal
to ncol(x). This is analogous to the user-visible rowData.

int_metadata(x): Returns a list of internal metadata, analogous to the user-visible metadata.

It may occasionally be useful to return both the visible and the internal colData in a single DataFrame.
This is facilitated by the following methods:

rowData(x, ..., internal=FALSE): Returns a DataFrame of the user-visible row metadata. If
internal=TRUE, the internal row metadata is added column-wise to the user-visible metadata.
A warning is emitted if the user-visible metadata column names overlap with the internal
fields. Any arguments in ... are passed to rowData,SummarizedExperiment-method.

colData(x, ..., internal=FALSE): Returns a DataFrame of the user-visible column metadata.
If internal=TRUE, the internal column metadata is added column-wise to the user-visible
metadata. A warning is emitted if the user-visible metadata column names overlap with the in-
ternal fields. Any arguments in ... are passed to colData,SummarizedExperiment-method.

Setters

In the following code snippets, x is a SingleCellExperiment.

int_elementMetadata(x) <- value: Replaces the internal row metadata with value, a DataFrame
with number of rows equal to nrow(x). This is analogous to the user-visible colData<-.

int_colData(x) <- value: Replaces the internal column metadata with value, a DataFrame with
number of rows equal to ncol(x). This is analogous to the user-visible rowData<-.

int_metadata(x) <- value: Replaces the internal metadata with value, analogous to the user-
visible metadata<-.

Comments

The internal metadata fields allow easy and extensible storage of additional elements that are parallel
to the rows or columns of a SingleCellExperiment class. This avoids the need to specify new
slots and adjust the subsetting/combining code for a new data element. For example, altExps and
reducedDims are implemented as fields in the internal column metadata.

That these elements are internal is important as this ensures that the implementation details are
abstracted away. Any user interaction with these internal fields should be done via the designated

14 SCE-miscellaneous

getter and setter methods, e.g., reducedDim and friends for retrieving or modifying reduced dimen-
sions. This provides developers with more freedom to change the internal representation without
breaking user code.

Package developers intending to use these methods to store their own content should read the de-
velopment vignette for guidance.

Author(s)

Aaron Lun

See Also

colData, rowData and metadata for the user-visible equivalents.

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example
int_metadata(sce)$whee <- 1

SCE-miscellaneous Miscellaneous SingleCellExperiment methods

Description

Miscellaneous methods for the SingleCellExperiment class that do not fit in any other documenta-
tion category.

Available methods

In the following code snippets, x and object are SingleCellExperiment objects.

show(object): Print a message to screen describing the contents of object.

objectVersion(x): Return the version of the package with which x was constructed.

sizeFactors(object): Return a numeric vector of size factors of length equal to ncol(object).
If no size factors are available in object, return NULL instead.

sizeFactors(object) <- value: Replace the size factors with value, usually expected to be a
numeric vector or vector-like object. Alternatively, value can be NULL in which case any size
factors in object are removed.

Author(s)

Aaron Lun

See Also

updateObject, where objectVersion is used.

SingleCellExperiment-class 15

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example

show(sce)

objectVersion(sce)

Setting/getting size factors.
sizeFactors(sce) <- runif(ncol(sce))
sizeFactors(sce)

sizeFactors(sce) <- NULL
sizeFactors(sce)

SingleCellExperiment-class

The SingleCellExperiment class

Description

The SingleCellExperiment class is designed to represent single-cell sequencing data. It inherits
from the RangedSummarizedExperiment class and is used in the same manner. In addition, the
class supports storage of dimensionality reduction results (e.g., PCA, t-SNE) via reducedDims, and
storage of alternative feature types (e.g., spike-ins) via altExps.

Usage

SingleCellExperiment(..., reducedDims = list(), altExps = list())

Arguments

... Arguments passed to the SummarizedExperiment constructor to fill the slots of
the base class.

reducedDims A list of any number of matrix-like objects containing dimensionality reduc-
tion results, each of which should have the same number of rows as the output
SingleCellExperiment object.

altExps A list of any number of SummarizedExperiment objects containing alternative
Experiments, each of which should have the same number of columns as the
output SingleCellExperiment object.

Details

In this class, rows should represent genomic features (e.g., genes) while columns represent samples
generated from single cells. As with any SummarizedExperiment derivative, different quantifica-
tions (e.g., counts, CPMs, log-expression) can be stored simultaneously in the assays slot, and row
and column metadata can be attached using rowData and colData, respectively.

The reducedDims and altExps concepts are the main extensions of the SingleCellExperiment
class. This enables formalized representation of data structures that are commonly encountered
during single-cell data analysis. Readers are referred to the specific documentation pages for more
details.

16 Size factor methods

A SingleCellExperiment can also be created by coercing from a SummarizedExperiment or Ranged-
SummarizedExperiment instance.

Value

A SingleCellExperiment object.

Author(s)

Aaron Lun and Davide Risso

See Also

reducedDims, for representation of dimensionality reduction results.

altExps, for representation of data for alternative feature sets.

sizeFactors, to store size factors for normalization.

?"SCE-combine", to combine or subset a SingleCellExperiment object.

?"SCE-internals", for developer use.

Examples

ncells <- 100
u <- matrix(rpois(20000, 5), ncol=ncells)
v <- log2(u + 1)

pca <- matrix(runif(ncells*5), ncells)
tsne <- matrix(rnorm(ncells*2), ncells)

sce <- SingleCellExperiment(assays=list(counts=u, logcounts=v),
reducedDims=SimpleList(PCA=pca, tSNE=tsne))

sce

coercion from SummarizedExperiment
se <- SummarizedExperiment(assays=list(counts=u, logcounts=v))
as(se, "SingleCellExperiment")

Size factor methods Size factors methods

Description

Gets or sets the size factors for all cells.

Usage

S4 method for signature 'SingleCellExperiment'
sizeFactors(object, type=NULL)

S4 replacement method for signature 'SingleCellExperiment'
sizeFactors(object, type=NULL) <- value

Size factor methods 17

S4 method for signature 'SingleCellExperiment'
clearSizeFactors(object)

S4 method for signature 'SingleCellExperiment'
sizeFactorNames(object)

Arguments

object A SingleCellExperiment object.

type A string specifying the type of size factor to get or set.

value A numeric vector of size factors for all cells.

Details

A size factor is a scaling factor used to divide the raw counts of a particular cell to obtain normalized
expression values. The sizeFactors methods can be used to get or set size factors for all cells.

The type argument is deprecated, as are the sizeFactorNames and clearSizeFactors functions.

Value

For sizeFactors, a numeric vector is returned containing size factors for all cells.

For sizeFactors<-, a SingleCellExperiment is returned with size factors stored in the internal
metadata fields.

For clearSizeFactors, a SingleCellExperiment is returned with no size factor information.

For sizeFactorNames, a character vector is returned containing the names of all named size factor
sets.

Author(s)

Aaron Lun

See Also

SingleCellExperiment-class

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example
sizeFactors(sce) <- runif(ncol(sce))
sizeFactors(sce)

18 Spike-in methods

Spike-in methods Spike-in methods

Description

Gets or sets the rows corresponding to spike-in transcripts.

Note: these methods have been deprecated in favour of storing spike-in information as alternative
Experiments, see altExps for details.

Usage

S4 method for signature 'SingleCellExperiment,character'
isSpike(x, type)

S4 method for signature 'SingleCellExperiment,missing'
isSpike(x, type)

S4 method for signature 'SingleCellExperiment,NULL'
isSpike(x, type)

S4 replacement method for signature 'SingleCellExperiment,character'
isSpike(x, type) <- value

S4 method for signature 'SingleCellExperiment'
clearSpikes(x)

S4 method for signature 'SingleCellExperiment'
spikeNames(x)

Arguments

x A SingleCellExperiment object.

type A string containing the name of the spike-in set.

value A vector indicating which rows correspond to spike-in transcripts.

Details

Spike-in transcripts may be added during library preparation in single-cell RNA sequencing ex-
periments. These usually need to be handled differently during data analysis, compared to the
endogenous genes. Thus, it is important to indicate which rows correspond to spike-in transcripts.

The isSpike<- method accepts any value that indicates which rows correspond to spike-ins. This
can be a logical or integer subsetting vector, or a vector of row names. The type should be set to
the name of the spike-in set, e.g., "ERCC" or "SIRV".

In this manner, multiple types of spike-in sets are supported for a single experiment. This is useful
not only when different spike-ins are used, but also for different mixtures of the same set (e.g.,
ERCC mixes 1 and 2). The names of all available spike-in sets can be obtained using spikeNames.

To remove spike-ins for a particular set, value should be set to NULL when using isSpike<-. To re-
move all spike-in information, clearSpikes should be used to obtain a new SingleCellExperiment
object with no spike-ins specified.

splitAltExps 19

In previous versions (<= 1.1.1), if value was NULL in isSpike<-, all existing spike-in sets would
be removed. This behaviour is now deprecated, and clearSpikes should be used instead. Also,
if type was missing or NULL for isSpike<-, the spike-in set would be automatically assigned an
empty name. This is also deprecated, and all spike-ins should be given a user-supplied name.

The isSpike getter methods will return a logical vector indicatng which rows represent spike-ins
of the set specified by type. If type is missing or NULL, the vector will instead indicate whether
each row is in any spike-in set. If type is specified but not available, an error will be raised.

Value

For isSpike, a logical vector is returned indicating whether each row is in the specified set type or
any set.

For isSpike<-, a SingleCellExperiment is returned with spike-in information stored in the internal
metadata fields.

For spikeNames, a character vector is returned containing the names of available spike-in sets.

For clearSpikes, a SingleCellExperiment is returned with no spike-in information.

Author(s)

Aaron Lun

See Also

SingleCellExperiment-class

Examples

example(SingleCellExperiment, echo=FALSE) # Using the class example
isSpike(sce, "ERCC") <- 1:10
isSpike(sce)

isSpike(sce, "SIRV") <- 11:20
spikeNames(sce)
which(isSpike(sce))
which(isSpike(sce, "SIRV"))

isSpike(sce, "ERCC") <- NULL
spikeNames(sce)

splitAltExps Split off alternative features

Description

Split a SingleCellExperiment based on the feature type, creating alternative Experiments to hold
features that are not in the majority set.

Usage

splitAltExps(x, f, ref = NULL)

20 Subsetting LEMs

Arguments

x A SingleCellExperiment object.

f A character vector or factor of length equal to nrow(x), specifying the feature
type of each row.

ref String indicating which level of f should be treated as the main set.

Details

This function provides a convenient way to create a SingleCellExperiment with alternative Ex-
periments. For example, a SingleCellExperiment with rows corresponding to all features can be
quickly split into endogenous genes (main) and other alternative features like spike-in transcripts
and antibody tags.

By default, the most frequent level of f is treated as the ref if the latter is not specified.

Value

A SingleCellExperiment where each row corresponds to a feature in the main set. Each other feature
type is stored as an alternative Experiment, accessible by altExp.

Author(s)

Aaron Lun

See Also

altExp, to access and manipulate the alternative Experiment fields.

Examples

example(SingleCellExperiment, echo=FALSE)
feat.type <- sample(c("endog", "ERCC", "CITE"), nrow(sce),

replace=TRUE, p=c(0.8, 0.1, 0.1))

sce2 <- splitAltExps(sce, feat.type)
sce2

Subsetting LEMs LEM subsetting methods

Description

Methods to subset LinearEmbeddingMatrix objects.

Usage

S4 method for signature 'LinearEmbeddingMatrix,ANY,ANY'
x[i, j, ..., drop=TRUE]

S4 replacement method for signature
'LinearEmbeddingMatrix,ANY,ANY,LinearEmbeddingMatrix'
x[i, j] <- value

Subsetting LEMs 21

Arguments

x A LinearEmbeddingMatrix object.

i, j A vector of logical or integer subscripts, indicating the rows and columns to be
subsetted for i and j, respectively.

... Extra arguments that are ignored.

drop A logical scalar indicating whether the result should be coerced to the lowest
possible dimension.

value A LinearEmbeddingMatrix object with number of rows equal to length of i (or
that of x, if i is not specified). The number of columns must be equal to the
length of j (or number of columns in x, if j is not specified).

Details

Subsetting yields a LinearEmbeddingMatrix object containing the specified rows (samples) and
columns (factors). If column subsetting is performed, values of featureLoadings and factorData
will be modified to retain only the selected factors.

If drop=TRUE and the subsetting would produce dimensions of length 1, those dimensions are
dropped and a vector is returned directly from sampleFactors. This mimics the expected behaviour
from a matrix-like object. Users should set drop=FALSE to ensure that a LinearEmbeddingMatrix
is returned.

For subset replacement, if neither i or j are set, x will be effectively replaced by value. However,
row and column names will not change, consistent with replacement in ordinary matrices.

Value

For [, a subsetted LinearEmbeddingMatrix object is returned.

For [<-, a modified LinearEmbeddingMatrix object is returned.

Author(s)

Aaron Lun

See Also

LinearEmbeddingMatrix-class

Examples

example(LinearEmbeddingMatrix, echo=FALSE) # using the class example

lem[1:10,]
lem[,1:5]

lem2 <- lem
lem2[1:10,] <- lem[11:20,]

22 swapAltExp

swapAltExp Swap main and alternative Experiments

Description

Swap the main Experiment for an alternative Experiment in a SingleCellExperiment object.

Usage

swapAltExp(x, name, saved = NULL, withColData = TRUE)

Arguments

x A SingleCellExperiment object.

name String or integer scalar specifying the alternative Experiment to use to replace
the main Experiment.

saved String specifying the name to use to save the original x as an alternative experi-
ment in the output. If NULL, the original is not saved.

withColData Logical scalar specifying whether the column metadata of x should be preserved
in the output.

Details

During the course of an analysis, we may need to perform operations on each of the alternative
Experiments in turn. This would require us to repeatedly call altExp(x,name) prior to running
downstream functions on those Experiments. In such cases, it may be more convenient to switch
the main Experiment with the desired alternative Experiments, allowing a particular section of the
analysis to be performed on the latter by default.

For example, the initial phases of the analysis might use the entire set of features. At some point,
we might want to focus only on a subset of features of interest, but we do not want to discard the
rest of the features. This can be achieved by storing the subset as an alternative Experiment and
swapping it with the main Experiment, as shown in the Examples below.

Value

A SingleCellExperiment derived from altExp(x,name). This contains all alternative Experiments
in altExps(x), with an additional entry containing x if saved is specified. If withColData=TRUE,
the column metadata is set to colData(x).

Author(s)

Aaron Lun

See Also

altExps, for a description of the alternative Experiment concept.

updateObject 23

Examples

example(SingleCellExperiment, echo=FALSE) # using the class example

Let's say we defined a subset of genes of interest.
We can save the feature set as its own altExp.
hvgs <- 1:10
altExp(sce, "subset") <- sce[hvgs,]

At some point, we want to do our analysis on the HVGs only,
but we want to hold onto the other features for later reference.
sce <- swapAltExp(sce, name="subset", saved="all")
sce

Once we're done, it is straightforward to switch back.
swapAltExp(sce, "all")

updateObject Update a SingleCellExperiment object

Description

Update a SingleCellExperiment object

Usage

S4 method for signature 'SingleCellExperiment'
updateObject(object, ...,
verbose = FALSE)

Arguments

object A old SingleCellExperiment object.

... Additional arguments that are ignored.

verbose Logical scalar indicating whether a message should be emitted as the object is
updated.

Details

This function updates the SingleCellExperiment to match changes in the internal class representa-
tion. Changes are as follows:

• Objects created before 1.7.1 are modified to include altExps and reducedDims fields in their
internal column metadata. Reduced dimension results previously in the reducedDims slot are
transferred to the reducedDims field.

Value

An updated version of object.

Author(s)

Aaron Lun

24 updateObject

See Also

objectVersion, which is used to determine if the object is up-to-date.

Index

[,LinearEmbeddingMatrix,ANY,ANY,ANY-method
(Subsetting LEMs), 20

[,LinearEmbeddingMatrix,ANY,ANY-method
(Subsetting LEMs), 20

[,LinearEmbeddingMatrix,ANY-method
(Subsetting LEMs), 20

[,SingleCellExperiment,ANY,ANY,ANY-method
(SCE-combine), 11

[,SingleCellExperiment,ANY,ANY-method
(SCE-combine), 11

[,SingleCellExperiment,ANY-method
(SCE-combine), 11

[,SummarizedExperimentByColumn,ANY,ANY,ANY-method
(altExps), 2

[<-,LinearEmbeddingMatrix,ANY,ANY,LinearEmbeddingMatrix-method
(Subsetting LEMs), 20

[<-,SingleCellExperiment,ANY,ANY,SingleCellExperiment-method
(SCE-combine), 11

[<-,SummarizedExperimentByColumn,ANY,ANY,ANY-method
(altExps), 2

$,LinearEmbeddingMatrix-method
(Getter/setter methods), 5

$<-,LinearEmbeddingMatrix-method
(Getter/setter methods), 5

% (altExps), 2

altExp, 20
altExp (altExps), 2
altExp,SingleCellExperiment,character-method

(altExps), 2
altExp,SingleCellExperiment,missing-method

(altExps), 2
altExp,SingleCellExperiment,numeric-method

(altExps), 2
altExp<- (altExps), 2
altExp<-,SingleCellExperiment,character-method

(altExps), 2
altExp<-,SingleCellExperiment,missing-method

(altExps), 2
altExp<-,SingleCellExperiment,numeric-method

(altExps), 2
altExpNames, 11, 12
altExpNames (altExps), 2

altExpNames,SingleCellExperiment-method
(altExps), 2

altExpNames<- (altExps), 2
altExpNames<-,SingleCellExperiment,character-method

(altExps), 2
altExps, 2, 11, 13, 15, 16, 18, 22, 23
altExps,SingleCellExperiment-method

(altExps), 2
altExps<- (altExps), 2
altExps<-,SingleCellExperiment-method

(altExps), 2
as.matrix,LinearEmbeddingMatrix-method

(Getter/setter methods), 5
assay, 10, 11
assays, 15

c,SummarizedExperimentByColumn-method
(altExps), 2

cbind, 4, 12
cbind,LinearEmbeddingMatrix-method

(Combining LEMs), 4
cbind,SingleCellExperiment-method

(SCE-combine), 11
check (altExps), 2
clearSizeFactors (Size factor methods),

16
clearSizeFactors,SingleCellExperiment-method

(Size factor methods), 16
clearSpikes (Spike-in methods), 18
clearSpikes,SingleCellExperiment-method

(Spike-in methods), 18
coerce,RangedSummarizedExperiment,SingleCellExperiment-method

(SingleCellExperiment-class),
15

coerce,SummarizedExperiment,SingleCellExperiment-method
(SingleCellExperiment-class),
15

colData, 2, 13–15
colData,SingleCellExperiment-method

(SCE-internals), 13
Combining LEMs, 4
complain. (altExps), 2
counts (SCE-assays), 10

25

26 INDEX

counts,SingleCellExperiment-method
(SCE-assays), 10

counts<- (SCE-assays), 10
counts<-,SingleCellExperiment-method

(SCE-assays), 10
cpm (SCE-assays), 10
cpm,SingleCellExperiment-method

(SCE-assays), 10
cpm<- (SCE-assays), 10
cpm<-,SingleCellExperiment-method

(SCE-assays), 10

DataFrame, 13
dim,LinearEmbeddingMatrix-method

(Getter/setter methods), 5
dimnames,LinearEmbeddingMatrix-method

(Getter/setter methods), 5
dimnames<-,LinearEmbeddingMatrix,ANY-method

(Getter/setter methods), 5
dimnames<-,LinearEmbeddingMatrix-method

(Getter/setter methods), 5
doesn’t (altExps), 2
Dumping (altExps), 2

factorData (Getter/setter methods), 5
factorData,LinearEmbeddingMatrix-method

(Getter/setter methods), 5
factorData<- (Getter/setter methods), 5
factorData<-,LinearEmbeddingMatrix-method

(Getter/setter methods), 5
featureLoadings (Getter/setter

methods), 5
featureLoadings,LinearEmbeddingMatrix-method

(Getter/setter methods), 5
featureLoadings<- (Getter/setter

methods), 5
featureLoadings<-,LinearEmbeddingMatrix-method

(Getter/setter methods), 5

Getter/setter methods, 5

here, (altExps), 2

int_colData (SCE-internals), 13
int_colData,SingleCellExperiment-method

(SCE-internals), 13
int_colData<- (SCE-internals), 13
int_colData<-,SingleCellExperiment-method

(SCE-internals), 13
int_elementMetadata (SCE-internals), 13
int_elementMetadata,SingleCellExperiment-method

(SCE-internals), 13
int_elementMetadata<- (SCE-internals),

13

int_elementMetadata<-,SingleCellExperiment-method
(SCE-internals), 13

int_metadata (SCE-internals), 13
int_metadata,SingleCellExperiment-method

(SCE-internals), 13
int_metadata<- (SCE-internals), 13
int_metadata<-,SingleCellExperiment-method

(SCE-internals), 13
isSpike (Spike-in methods), 18
isSpike,SingleCellExperiment,character-method

(Spike-in methods), 18
isSpike,SingleCellExperiment,missing-method

(Spike-in methods), 18
isSpike,SingleCellExperiment,NULL-method

(Spike-in methods), 18
isSpike<- (Spike-in methods), 18
isSpike<-,SingleCellExperiment,character-method

(Spike-in methods), 18

length,SummarizedExperimentByColumn-method
(altExps), 2

LinearEmbeddingMatrix, 6, 7, 8
LinearEmbeddingMatrix-class

(LinearEmbeddingMatrix), 7
List, 2, 9
logcounts (SCE-assays), 10
logcounts,SingleCellExperiment-method

(SCE-assays), 10
logcounts<- (SCE-assays), 10
logcounts<-,SingleCellExperiment-method

(SCE-assays), 10

metadata, 13, 14
methods (altExps), 2
Miscellaneous LEM, 8

names,SummarizedExperimentByColumn-method
(altExps), 2

names<-,SummarizedExperimentByColumn-method
(altExps), 2

normcounts (SCE-assays), 10
normcounts,SingleCellExperiment-method

(SCE-assays), 10
normcounts<- (SCE-assays), 10
normcounts<-,SingleCellExperiment-method

(SCE-assays), 10

objectVersion, 24
objectVersion (SCE-miscellaneous), 14
objectVersion,SingleCellExperiment-method

(SCE-miscellaneous), 14

RangedSummarizedExperiment, 15, 16

INDEX 27

rbind, 11
rbind,LinearEmbeddingMatrix-method

(Combining LEMs), 4
rbind,SingleCellExperiment-method

(SCE-combine), 11
reducedDim, 14
reducedDim (reducedDims), 9
reducedDim,SingleCellExperiment,character-method

(reducedDims), 9
reducedDim,SingleCellExperiment,missing-method

(reducedDims), 9
reducedDim,SingleCellExperiment,numeric-method

(reducedDims), 9
reducedDim<- (reducedDims), 9
reducedDim<-,SingleCellExperiment,character-method

(reducedDims), 9
reducedDim<-,SingleCellExperiment,missing-method

(reducedDims), 9
reducedDim<-,SingleCellExperiment,numeric-method

(reducedDims), 9
reducedDimNames, 11, 12
reducedDimNames (reducedDims), 9
reducedDimNames,SingleCellExperiment-method

(reducedDims), 9
reducedDimNames<- (reducedDims), 9
reducedDimNames<-,SingleCellExperiment,character-method

(reducedDims), 9
reducedDims, 7, 9, 11, 13, 15, 16, 23
reducedDims,SingleCellExperiment-method

(reducedDims), 9
reducedDims<- (reducedDims), 9
reducedDims<-,SingleCellExperiment-method

(reducedDims), 9
removeAltExps (altExps), 2
rowData, 13–15
rowData,SingleCellExperiment-method

(SCE-internals), 13

sampleFactors (Getter/setter methods), 5
sampleFactors,LinearEmbeddingMatrix-method

(Getter/setter methods), 5
sampleFactors<- (Getter/setter

methods), 5
sampleFactors<-,LinearEmbeddingMatrix-method

(Getter/setter methods), 5
SCE-assays, 10
SCE-combine, 11
SCE-internals, 13
SCE-miscellaneous, 14
SEBC (altExps), 2
show,LinearEmbeddingMatrix-method

(Miscellaneous LEM), 8

show,SingleCellExperiment-method
(SCE-miscellaneous), 14

SingleCellExperiment, 2, 3, 9–14, 19, 20,
22, 23

SingleCellExperiment
(SingleCellExperiment-class),
15

SingleCellExperiment-class, 15
Size factor methods, 16
sizeFactorNames (Size factor methods),

16
sizeFactorNames,SingleCellExperiment-method

(Size factor methods), 16
sizeFactors, 11, 12, 16
sizeFactors (Size factor methods), 16
sizeFactors,SingleCellExperiment-method

(Size factor methods), 16
sizeFactors<-,SingleCellExperiment-method

(Size factor methods), 16
so (altExps), 2
Spike-in methods, 18
spikeNames (Spike-in methods), 18
spikeNames,SingleCellExperiment-method

(Spike-in methods), 18
splitAltExps, 3, 19
Subsetting LEMs, 20
SummarizedExperiment, 2, 12, 15, 16
swapAltExp, 3, 22

that (altExps), 2
the (altExps), 2
tpm (SCE-assays), 10
tpm,SingleCellExperiment-method

(SCE-assays), 10
tpm<- (SCE-assays), 10
tpm<-,SingleCellExperiment-method

(SCE-assays), 10

updateObject, 14, 23
updateObject,SingleCellExperiment-method

(updateObject), 23

weights (SCE-assays), 10
weights,SingleCellExperiment-method

(SCE-assays), 10
weights<- (SCE-assays), 10
weights<-,SingleCellExperiment-method

(SCE-assays), 10

	altExps
	Combining LEMs
	Getter/setter methods
	LinearEmbeddingMatrix
	Miscellaneous LEM
	reducedDims
	SCE-assays
	SCE-combine
	SCE-internals
	SCE-miscellaneous
	SingleCellExperiment-class
	Size factor methods
	Spike-in methods
	splitAltExps
	Subsetting LEMs
	swapAltExp
	updateObject
	Index

