
System Analysis Total Environment for Laboratory
— Language and InTeractive Execution

Biological and Physiological Engineering Laboratory
Department of Information and Computer Sciences

Toyohashi University of Technology, Toyohashi 441–8580, JAPAN

— User’s Manual —

Contents

1 What is SATELLITE? 1
1.1 Concept of SATELLITE . 1
1.2 SATELLITE Modules . 2
1.3 Platform Support . 4
1.4 Examples . 5

2 SATELLITE Shell and its functions 8
2.1 Introduction . 8
2.2 How to start SATELLITE . 8
2.3 Operation . 10

2.3.1 Prompts and a window title . 10
2.3.2 Editing . 11
2.3.3 Preprocessor . 14
2.3.4 Arithmetical operation . 14

2.4 Data handling . 14
2.4.1 Objects and classes . 14
2.4.2 Class definition . 20
2.4.3 Conversions between two or more object classes . 20
2.4.4 Type of object . 21

2.5 Expressions and operators . 21
2.6 Internal constants . 22
2.7 Control sequence . 23

2.7.1 IF sequence . 23
2.7.2 WHILE and DO-WHILE sequences . 24
2.7.3 FOR sequence . 25

2.8 Functions and procedures . 25
2.8.1 The scope of variables and constants, and arguments in functions and procedures . 25
2.8.2 Internal functions . 26
2.8.3 User-defined function . 27
2.8.4 Input and output . 29
2.8.5 Data stream handling . 30

2.9 Programming . 31
2.9.1 Online message . 31
2.9.2 Loading a program from a file . 31

3 SYSTEM Module — SYSTEM 33
3.1 HELP — displaying a command manual . 33
3.2 HEADER — displaying or modifying the header information of a data file 33
3.3 WAIT — interrupting the execution of a program . 33
3.4 REFORM — changing the size or index of data . 34
3.5 BM — data monitoring . 35
3.6 SAM — sampling frequency setting . 35
3.7 CUT — selecting a subset of data . 36

i

CONTENTS ii

3.8 PUT — replacing old data with new one . 38
3.9 MERGE — merging two data sets . 39
3.10 FILL — filling data with a specified value . 40
3.11 ZERO — filling data with 0 . 40
3.12 REVERSE — reversing the order of data . 41
3.13 ROTATE — rotating data . 43
3.14 MABI — selecting the subsequence of data . 44
3.15 GET — getting a value at the specified position of data 45
3.16 MAXPOS — getting the position of the maximum in data 46
3.17 MAX — getting the maximum of data . 47
3.18 FIND — finding the value close to the specified one in data 48

4 Interactive Signal Processing Package — ISPP 50
4.1 The command system of ISPP . 50
4.2 Examples to use . 50

4.2.1 Fourier transform . 50
4.2.2 Filtering . 57
4.2.3 Matrix operation . 63

5 Graphic Package Module — GPM 65
5.1 Introduction . 65
5.2 Drawing and Printing . 65
5.3 Examples . 67

5.3.1 Displaying 1-dimensional objects . 67
5.3.2 Displaying 2-dimensional objects . 70

6 Back-Propagation Simulator — BPS 72
6.1 Introduction . 72
6.2 The file types used in BPS . 72
6.3 BPS use example . 72

6.3.1 Preparation of “input”, “teach”, and “test” data files 73
6.3.2 Setting learning parameters . 74
6.3.3 Initialization of weights . 77
6.3.4 Learning . 79
6.3.5 MLP testing . 81
6.3.6 Tracing connection weights and errors . 82
6.3.7 Internal representation analysis of MLP . 83

7 Neural Circuit Simulator — NCS 85
7.1 Introduction . 85

7.1.1 Basic specifications . 85
7.1.2 Concept of modularization . 85

7.2 NCS Language . 88
7.2.1 Reserved words . 89
7.2.2 Library functions . 89
7.2.3 Description of modules . 92
7.2.4 Example — Hodgkin-Huxley model . 100

7.3 How to use NCS . 104
7.3.1 Preparation of a model file . 104
7.3.2 Registration of a model file . 104
7.3.3 Preparation of an execution and a simulation condition file 105
7.3.4 Setting simulation conditions . 105
7.3.5 Execution of simulation . 110
7.3.6 Use of batch file . 110
7.3.7 Display and analysis of simulation results . 111

Chapter 1

What is SATELLITE?

1.1 Concept of SATELLITE

It is generally agreed that the biological system is one of the most complex and sophisticated mechanisms

on earth. However, in this moment, since there are few systematic theories for approaching such systems,

trial and error studies based on knowledge of physiology, psychology, etc., has to continue. Environment

to support and realize the ideas of scientists could be so important to advance the research. We assert

that the establishment of basic platform for data analysis and model simulation could be relevant for

analyzing the complex systems such as neural systems.

The basic concept of system analysis forms the cycle: data analysis, modeling, computer simulation,

evaluation and experimental testing, as shown in Figure 1.1. SATELLITE (System Analysis Total

Environment for Laboratory — Language and InTeractive Execution) has been developed considering

this scheme.

ISPP NCS NPE BPS

measurement
Signal

Processing
Modeling

Parameter Estimation Simulation

Evaluation

GPM

Figure 1.1: A general flow chart of biological system analysis.

SATELLITE consists of the SATELLITE-shell which provides interactive and C-like language process-

ing system, and several modules which together cover more than 200 commands and (signal processing,

numerical simulation, etc. See also Figure 1.2). The most important facility of SATELLITE-shell is an

interactive operating environment. User can execute command sequence from the text file (batch pro-

cessing) in case of the complex and large scale simulations (see also Figure 1.3). One can also visualize

data and print it.

1

CHAPTER 1. WHAT IS SATELLITE? 2

Interpreter

Program
(Analysis Algorithm)

Interface
Protocol

External Functions

Execute
Extensity

FunctionsObjects
 built-in functions

operators
data

Procedures

Digital signal
processing

ISPP
drawing & reporting

GPM Application
Softwares

Utilities

SL-UTIL

Neural network
simulation

BPS

NCS
Ionic current model

 simulation

Nonlinear parameter
 estimation

NPE

Figure 1.2: A modular scheme of SATELLITE system.

1.2 SATELLITE Modules

SATELLITE organizes analysis techniques for various systems by grouping its functions into modules,

according to the purpose or method. There are several modules containing basic tools for system analysis,

such as digital signal processing, numerical simulation, model parameter estimation, etc., as listed below.

Details are described in the subsequent chapters.

SYSTEM module is a gathering of basic functions for handling data. It includes the functions such

as picking up data, finding a maximum or minimum of a sequence, modifying data format, displaying

header information of data files, etc.

ISPP (Interactive Signal Processing Package) is a module for data analysis based on signal

processing and statistical theories. They are extremely important for modeling and extracting the char-

acteristics from experimental data. Built-in commands can be applied to not only the time series, but

also the multi-dimensional data (see also Figure 1.4).

NCS (Neural Circuit Simulator) is a neural modeling and simulation environment. In this system,

special description language is utilized to describe the neuronal properties and the network structure.

This language offers an environment in which the large scale physiological model can be described easily

in NCS (see also Figure 1.5).

BPS (Back-Propagation Simulator) is developed to examine neural network characteristics and

capabilities. Function for tracing weight change offers precious data for analysis of learning process, local

minima, and internal network representation (see also Figure 1.6).

CHAPTER 1. WHAT IS SATELLITE? 3

interactive operating system

C like descriptions

on-line message

Figure 1.3: SATELLITE — interactive terminal.

CHAPTER 1. WHAT IS SATELLITE? 4

GPM (Graphic Package Module) From the standpoint of data analysis, visualization of data is

much more important than numerical evaluation. GPM module provides various graphic functions for

making charts, contour maps, bird’s-eye pictures, etc. The images can also be printed.

1.3 Platform Support

SATELLITE runs on the following platforms:

Operating system : from SunOS 4.1.2
: from Solaris 2.5
: from HP-UX 9.05
: from HP-UX 10.01
: from DEC OSF/1 V3.0
: from Digital UNIX V3.2c
: from FreeBSD 2.1.0R
: from Linux 2.0.0

Window system : from X Window Ver.11 R4
: from OSF/Motif Ver.1.1

Language to code : C Language

CHAPTER 1. WHAT IS SATELLITE? 5

1.4 Examples

Figure 1.4: Biological signals during micro gravity (Example of ISPP).

CHAPTER 1. WHAT IS SATELLITE? 6

Figure 1.5: Simulation of a realistic neural etwork (Example of NCS).

CHAPTER 1. WHAT IS SATELLITE? 7

Figure 1.6: Simulation of artificial neural network (Example of BPS).

Chapter 2

SATELLITE Shell and its functions

2.1 Introduction

Signal processing techniques, simulations using mathematical models, etc., are effective for analysis of

the organizations and biological systems. Various software systems, such as Mathematica, LabVIEW

and AVS have been provided. However, if we use these software products, the whole efficiency may fall

remarkably because of data conversion to other systems.

SATELLITE enables to perform the consistent processing even if we use the completely different appli-

cation software systems. It places simulators and signal processing packages as its external functions and

organizes them along with API (Application Program Interface) specification. The merit of SATELLITE

is that several different data sets, such as (multi-dimensional) time series, matrices, and so on, can be

processed to make analyzing the biological system easier.

The processing system of SATELLITE is an interpreter. Programs are translated into the intermediate

stack code. The stack machine code is executed by stack machines. Therefore, the repetition procedures

or functions, such as for command and while command, are performed at slightly higher speed. The

internal composition is shown as follows:

Simple line editor

↓
Preprocessor

↓
Lexical and syntax analysis

↓
Stack machine code

↓
Stack machine (execution)

If the program is syntactically correct, the processing system will translate it into the stack machine

code, and execute it. Frequently, one may want to use an editor, check a file name, change a current

directory, use UNIX commands, etc. If the token that appears at the beginning of a sentence is not

defined and is not substitution, SATELLITE passes such commands to Bourne shell of UNIX.

2.2 How to start SATELLITE

SATELLITE is started by typing “sl”, shown as follows:

8

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 9

Figure 2.1: X-Window after starting SATELLITE

% sl ←↩

where ←↩ stands for CR key. The X-Window after starting SATELLITE is shown in Figure 2.1.

Right after starting, the rc file (/usr/local/satellite/lib/satellite/rc.sl) which is prepared by the system

is automatically read at first, and the setup file (˜/.setup.sl) which is set by each user is read the next.

Since these files are processed in the state of “echo off”, messages of UNIX commands are not displayed

on a terminal, except the standard output errors. To display the messages, it is necessary to use the

standard output errors, or redirect the output as

echo "Welcome to SATELLITE WORLD" > /dev/tty

Fundamentally, we can write anything to the system rc file and the user setup file, as long as it is

syntactically correct. However, the starting will become slow if we call external executions frequently.

Generally we put the definitions of system modules in the system rc file, and the definitions of user

modules (commands), aliases, sampling frequency, the functions used often, and the variables used in the

user setup file.

This system is terminated by typing either “close”, “exit”, or Ctrl-D, shown as follows:

[]SATELLITE[]/home/tom:[1]% close ←↩

[]SATELLITE[]/home/tom:[1]% exit ←↩

[]SATELLITE[]/home/tom:[1]% ^D

Right after terminating, the user clean file (/.clean.sl) is executed. Then the history is saved to the file

(/.history.sl), after execution of the closing commands of system modules, release of the system common

area (shared memory), destruction of system parameter area (temporary directory), dispatch of the end

signals to all child processes, etc., are performed.

The options for starting SATELLITE are as follows:

- read a program from a standard input (terminal)

-rc do not read the system rc file

-setup do not read the user setup file

-clean do not read the user clean file

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 10

Figure 2.2: Title of the window while using SATELLITE

-log specify a directory name for the error log file

-work specify a directory name for the work domain (system parameter area)

The work directory (SLxxxx) is deleted after termination.

-temp same as -work

Moreover, if we have another file to read automatically besides the user setup file, we can specify it as

follows:

% sl setup2.sl ←↩

Not providing option “-” means that reading from the standard input (terminal) is not performed and

the system closes right after termination. However, if the files are read, except the rc file, the setup file,

and the clean file, the system state is “echo on”. Then the command messages are displayed.

2.3 Operation

2.3.1 Prompts and a window title

The interpreter shows prompt. As shown below, the prompt of SATELLITE displays the current directory

name and the line number. Only last two parts of a current directory name are displayed because of

the length of the prompt. When a path name is not complete, “˜” appears before the path name. For

example,

[]SATELLITE[]/home/tom:[62]% cd work ←↩

[]SATELLITE[]~tom/work:[63]%

Moreover, when a program exceeds 1 line, we are urged by the prompt “+”. For example, if we input

[]SATELLITE[]~tom/work:[63]% n = 0 ←↩

[]SATELLITE[]~tom/work:[64]% for(i = 0; i < 10; i++) { ←↩

the following is displayed:

+

In such case, process is completed by inputting the following:

n = n + 1 } ←↩

In the case of X-Window terminal emulator (Xterm, Kterm, DECterm, etc.), the host name and the

complete path name of the directory are displayed at the window title (see Figure 2.2). That helps us

compensate the imperfect information displayed at the prompt.

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 11

Table 2.1: Key binds of the line editor for SATELLITE

beginning of line ˆA
backward char ˆB, ←
interrupt ˆC
delete char ˆD, DEL
end of file ˆD
listing up files ˆD
end of lines ˆE
forward char ˆF, →
backward delete char ˆH, BS
newline ˆJ
kill line ˆK
newline ˆM
down history ˆN, ↓
up history ˆP, ↑
tty start output ˆQ
tty stop output ˆS
keyword completion ˆW
filename completion TAB, ESC-ESC
command completion TAB, ESC-ESC

2.3.2 Editing

The micro line editor for deletion or insertion of characters offers comfortable environment for interactive

programming from a terminal. This editor has internal buffers for editing. The contents in the buffers

are usually consistent with the character sequences which a user inputs, and displayed on the editing line

(back from the prompt).

Line editing

SATELLITE has a “GNU Emacs-like” micro line editor. The editing line is always in insert mode, and

we can move the cursor position by Ctrl-F (→), Ctrl-B (←), Ctrl-A, and Ctrl-E keys. Moreover, Ctrl-D

(DEL), Ctrl-H (BS), and Ctrl-K can perform deletion of characters. For example, when we input the

character sequence shown as follows:

[]SATELLITE[]~tom/rose:[63]% n = 0 ←↩

the cursor is at the right-hand side of “0” now. By pressing Ctrl-H, “0” is eliminated and the cursor is

moved left. On the other hand, the cursor is moved left by Ctrl-B, without eliminating “0”. The cursor

moves to the head of the sentence, that is, to the position of “n”, by pressing Ctrl-A. The list of key

binds is shown in Table 2.1.

History

The inputs from a terminal are recorded in the history buffers. By pressing Ctrl-P, the history buffers

are traced back and the history is copied to the editing buffers. Ctrl-N performs the history search in

ascending order. We can freely edit and execute commands from the history buffers. For example,

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 12

[]SATELLITE[]~tom/rose:[63]% n = 0 ←↩

[]SATELLITE[]~tom/rose:[64]% j = 0 ←↩

[]SATELLITE[]~tom/rose:[65]%

The following can be displayed by pressing Ctrl-P.

[]SATELLITE[]~tom/rose:[65]% ^P

[]SATELLITE[]~tom/rose:[64]% j = 0

Again, the following can be displayed by pressing Ctrl-P.

[]SATELLITE[]~tom/rose:[64]% j = 0 ^P

[]SATELLITE[]~tom/rose:[63]% n = 0

Moreover, the following can be displayed by pressing Ctrl-N.

[]SATELLITE[]~tom/rose:[63]% n = 0 ^N

[]SATELLITE[]~tom/rose:[64]% j = 0

When a character sequence is already in the editing buffer, only the history lines whose heads match

the character sequence are called. For example,

[]SATELLITE[]~tom/rose:[63]% n = 0 ←↩

[]SATELLITE[]~tom/rose:[64]% j = 0 ←↩

[]SATELLITE[]~tom/rose:[65]% n

By pressing Ctrl-P, the following is displayed:

[]SATELLITE[]~tom/rose:[65]% n ^P

[]SATELLITE[]~tom/rose:[63]% n = 0

Completion of file names and commands

If TAB key is pressed after inputting characters the help commands will be uniquely identified by the

head of the editing buffer. A command name will be completed and the full name will be displayed on

the terminal (and the editing buffer). The first candidate is shown if the command cannot be specified

uniquely. The next candidate is called by pressing TAB key again. For example, suppose that there are

six files in the current directory, namely, report1.tex, report2.tex, report3.tex, work1.tex, work2.tex, and

work3.tex. The file name or the directory name that starts with “wo” is searched and displayed from the

current directory, shown as follows:

[]SATELLITE[]~tom/rose:[88]% wo TAB

[]SATELLITE[]~tom/rose:[88]% work1.tex

The 2nd candidate is displayed by pressing TAB key again as follows:

[]SATELLITE[]~tom/rose:[88]% work1.tex TAB

[]SATELLITE[]~tom/rose:[88]% work2.tex

The candidates are searched in paths and order described by the environment variable PATH. If the

search cycle is completed, the editing buffer is cleared. After that, if TAB key is pressed again, the first

candidate will be called again. If there is no candidate, there is nothing to display.

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 13

Completion of file names, UNIX commands, and directory names can be performed in the arbitrary

position of the editing buffer. The keywords for discrimination between both cases are the blank, just

before the cursor, the equaling character (=), and the character sequence divided by a double quotation

mark (”).

Reserved words or variable names in the symbol table of the interpreter can also be completed by

pressing Ctrl-W. For example, if we want to complete the reserved word or the variable name that starts

with “i”,

[]SATELLITE[]~tom/rose:[89]% i ^W

[]SATELLITE[]~tom/rose:[89]% if

By pressing Ctrl-W again, the 2nd candidate is displayed as follows:

[]SATELLITE[]~tom/rose:[89]% if ^W

[]SATELLITE[]~tom/rose:[89]% inline

Listing files

File names can be listed by Ctrl-D halfway. This function is helpful for checking the file names while

typing a program, or using UNIX commands such as cd, cp, mv, etc. For example,

[]SATELLITE[]~tom/rose:[8]% cd /home/tom/TeX/

As shown above, we can get the subdirectory names under /home/tom/Tex/ by pressing Ctrl-D, without

interrupting the input of character sequences.

[]SATELLITE[]~tom/rose:[8]% cd /home/tom/TeX/ ^D

RETINA1/ RETINA2/ work1.tex work2.tex

[]SATELLITE[]~tom/rose:[8]% cd /home/tom/TeX/

Character “/” is appended to the end of directory names, “*” to executable file names, “@” to symbolic

links, “=” to sockets, “—” to FIFOs (pipe with a name), “%” to character devices, and “#” to block

devices, respectively. After displaying the list, the command inputted halfway is redisplayed.

We can also obtain the list of the files that start with certain characters. In the following example, all

of file and subdirectory names that start with “RE” will be displayed.

[]SATELLITE[]~tom/rose:[9]% cd /home/tom/TeX/RE ^D

/home/tom/TeX/RETINA1/ /home/tom/TeX/RETINA2/

[]SATELLITE[]~tom/rose:[9]% cd /home/tom/TeX/

In the special case, the list of all files and subdirectories which are consistent with the character sequences

including wild cards in the current directory can be displayed as follows:

[]SATELLITE[]~tom/rose:[10]% ^D

where stands for a blank.

Calling UNIX commands

When the token not registered as reserved word or variable name appears in the head of the sentence,

the system leaves the processing to the UNIX shell. We can deal with UNIX commands in the same way

as the UNIX shell. When the variable with the same name as UNIX command is already registered, we

can avoid duplication by attaching the backslash (\) to the head of the commands.

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 14

2.3.3 Preprocessor

The character sequence edited by the simple line editor is handed over to the preprocessor. It mainly

performs (1) history substitution, (2) alias substitution, and (3) parameter passing to SATELLITE

commands.

History substitution

!! refers to the last history items.

!str refers to the newest history item which starts with “str”.

In both cases the head of the sentence is recognized as a history item, and the replacement can be

performed without destroying the character sequences before and after it.

Alias substitution

If aliases are already defined, just the first token of the sentence is replaced. That is similar to the C

shell of UNIX.

Parameter passing

One of the strongest points of SATELLITE is that several parameters required in each function can be

passed interactively. The details are described in §2.9.1.

2.3.4 Arithmetical operation

To perform arithmetical operations using SATELLITE, we can input them directly. For example doing

multiplication 3 × 6,

[]SATELLITE[]~tom/rose:[13]% 3*6 ←↩

18

[]SATELLITE[]~tom/rose:[14]%

Similarly dividing, as follows:

[]SATELLITE[]~tom/rose:[14]% 3/6 ←↩

0.5

[]SATELLITE[]~tom/rose:[15]%

2.4 Data handling

2.4.1 Objects and classes

Data obtained from biological systems or numerical simulations is usually a multi-dimensional series. We

rarely pay attention to one value but rather deal with a set. SATELLITE deal with such a time series as

a single data class (object) and provides a data structure, namely “Series object”, which can treat the

differences between the temporal changes and the spatial changes of the multi-dimensional data efficiently

(see also Figure 2.3).

There are 4 other kinds of object classes than the Series class: Snapshot, String, Scalar, and File

classes. These classes are divided with respect to values they deal with (numerical values and character

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 15

0

60

100

Time
2-dimensional Snapshot

Series

X[2][2]

File Object

X:[60]

X : 2-dimensional Series

Figure 2.3: Objects and their interrelationship

sequences). Scalar, Snapshot, Series, and File are objects expecting numerical values. The characteristics

of classes are inherited in the order of listing, taking Scalar as a super class. The Snapshot object is

a set of Scalar objects equivalent to the multi-dimensional arrangements for general-purpose languages.

The Series object can be viewed as a series of Snapshots in time, that is, 1-dimensional arrangement

of Snapshot objects. The File object requires a file name for handling the specified data on the UNIX

system.

Each object encapsulates data and processing methods. Arithmetical operations are different for

Scalar, Series, Snapshot, String, and File objects. In case of the Scalar object, the addition is performed

by adding up only 1-point data, as shown in Figure 2.4.

Figure 2.4: Addition between two Scalar objects

In case of the Series object, all values on the time-axis must be added simultaneously, as shown in Figure

2.5.

Time

Figure 2.5: Addition between two Series objects

5 kinds of object classes used in SATELLITE are explained in the pages that follow.

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 16

7
 6

 5
 4

 3
 2

 1

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 2.6: Data organization in 1-dimensional Series object

Series object

Series is the object class in which a set of multi-dimensional data is lined to the direction of a time-axis

(Figure 2.3). The Series object that includes a single value is the same as 1-dimensional array in general-

purpose languages (Figure 2.6). The operation between two or more Series classes is possible only when

each size of a data set (Snapshot) is the same. That is, we cannot deal with a 2-dimensional Series object

and a 1-dimensional Series object together. Moreover, when the length of the direction of the time-axis

is different, the operation is performed within the limits of the shorter one, and the remainder is copied

as it is.

A mixed operation between a Series object and a Scalar object can be performed, e.g., the multiplication

of the Scalar object and each element in the Series objects. The characteristics of Series objects are the

implicit calculations repeated to each element and the operation functions for time series data by the

operators “[]” and “:[]”, such as selection, filling, etc.

Here, some examples of operations on Series objects are shown below. Data from 1 to 7 are stored in

a 1-dimensional Series object by the following command (see also Figure 2.6):

[]SATELLITE[]~tom/rose:[27]% x = 1~7 ←↩

Here, ”˜” is the operator for generating an arithmetical series with a margin 1 (see §2.5 for further

details).

[]SATELLITE[]~tom/rose:[28]% x ←↩

[0]:% 1 2 3 4 5

[5]:% 6 7

[]SATELLITE[]~tom/rose:[29]%

We can check the 3rd element as follows:

[]SATELLITE[]~tom/rose:[29]% x:[3] ←↩

4

[]SATELLITE[]~tom/rose:[30]%

The next example shows the operation on a multi-dimensional object. The object class is defined as

follows (see §2.4.2 for further details):

[]SATELLITE[]~tom/rose:[30]% series y[2][2] ←↩

A value of y[0][1] is assigned, e.g.,

[]SATELLITE[]~tom/rose:[31]% y[0][1] = x ←↩

To display the value of y[0][1], type as follows (see also Figure 2.7):

[]SATELLITE[]~tom/rose:[32]% y[0][1] ←↩

[0]:% 1 2 3 4 5

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 17

7
 6

 5
 4

 3
 2

 1

7
 6

 5
 4

 3
 2

 1

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 2.7: Data organization in 2-dimensional Series object (Example 1)

4

7
 6

 5
 4

 3
 2

 1

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 2.8: Data organization in 2-dimensional Series object (Example 2)

[5]:% 6 7

[]SATELLITE[]~tom/rose:[33]%

To obtain the spatial data of certain time, type (see also Figure 2.8),

[]SATELLITE[] tom/rose:[33]% y:[3] ←↩

[0][1]:% 0 4

[0][0]:% 0 0

[]SATELLITE[] tom/rose:[34]%

Snapshot object

Snapshot is the object class similar to matrix (Figure 2.3). It is for dealing with static data sets, and

used as a subset of a Series object or a matrix. Only on Snapshot objects with the same size can be

performed operations. For the mixed operation with a Scalar object, the same operation is repeatedly

performed between each element of the Snapshot and the Scalar.

Some examples of operations on Snapshot objects are shown below (Figure 2.9). First, an object class

is defined as follows (see §2.4.2 for further details):

[]SATELLITE[]~tom/rose:[34]% snapshot z[2][2] ←↩

[]SATELLITE[]~tom/rose:[35]% z ←↩

[0][1]:% 0 0

[0][0]:% 0 0

[]SATELLITE[]~tom/rose:[36]%

A value is assigned to the item of this object as follows:

[]SATELLITE[]~tom/rose:[37]% z[0][1] = 4 ←↩

[]SATELLITE[]~tom/rose:[38]% z ←↩

4
4

Figure 2.9: Data organization in 2-dimensional Snapshot object.

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 18

Figure 2.10: A Scalar object.

[0][1]:% 0 4

[0][0]:% 0 0

[]SATELLITE[]~tom/rose:[39]%

We can get the value of certain item as follows:

[]SATELLITE[]~tom/rose:[39]% z[0][1] ←↩

4

[]SATELLITE[]~tom/rose:[40]%

Scalar object

Scalar is the object class for numbers, such as variables to control sequences, elements in Series objects,

etc.(Figure 2.10). It is expressed as the double precision number.

[]SATELLITE[]~tom/rose:[41]% k = 0.8 ←↩

[]SATELLITE[]~tom/rose:[42]% k ←↩

0.8

[]SATELLITE[]~tom/rose:[43]%

File object

This class is used for saving data in a file on a hard disk. Data can be loaded from files and stored to

files. Therefore, we can deal with it as with other objects, without taking care of the format or the data

type. Moreover, mixed operations with the Series object are also possible.

The File object has almost the same structure as Series, and can store two or more sets of multi-

dimensional data (Series, Snapshot) in the direction of the “Record” (see Figure 2.11). Record corresponds

to the time of the Series object, and has flexible length. Each data stored in a record must have the same

size. Moreover, since the number of dimensions and indexes of the File object depends on that of the

object stored in the first place, the object with the different number of dimensions and indexes is stored

after conversion.

Storing is performed by assigining a data element to File object. For example, y (a Series or Snapshot

object) is stored to the record 0 of data.dat.

[]SATELLITE[]~tom/rose:[26]% $"data.dat":[0] = y ←↩

In case of loading data, we just type the name of a File object in an editing line. SATELLITE will

automatically treat it as the Series object. For example, data in the record 0 of data.dat is loaded to x:

[]SATELLITE[]~tom/rose:[27]% x = $"data.dat":[0] ←↩

All records of data.dat can be loaded to y as follows:

[]SATELLITE[]~tom/rose:[28]% y = $"data.dat" ←↩

Both x and y are Series objects, and their dimension and index numbers depend on data.dat. For example,

when 2-dimensional data is stored in a record, x is 2 dimensional Series object and y is 3-dimensional

one.

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 19

Header part
256byte

Record 0

Record 1

Record n-1

Record n

File type

Data type

Owner

Comment

Date

Dimension

Index

Data part

Figure 2.11: Data file structure

String class

File names are basic and important information for managing data. They usually include the attributes

or “serial numbers” of data. The String object is used for labeling, e.g., in the case of drawing a chart,

outputting a message from a program, etc. The concatenation, deletion, repetition, and separation are

performed by sending operators “+”, “-”, “*”, and “/”, respectively. A character sequence should be

marked by double quotation marks (”).

For example, concatenating a character sequence with another one is performed as follows:

[]SATELLITE[]~tom/rose:[29]% "test" + ".dat" ←↩

test.dat

[]SATELLITE[]~tom/rose:[30]%

Moreover, we use “-” to delete a character sequence.

[]SATELLITE[]~tom/rose:[30]% "test.dat" - ".dat" ←↩

test

[]SATELLITE[]~tom/rose:[31]%

For repetition of a character sequence, “*” is used.

[]SATELLITE[]~tom/rose:[31]% "ABC" * 4 ←↩

ABCABCABCABC

[]SATELLITE[]~tom/rose:[32]%

In order to separate a character sequence, “/” is used.

[]SATELLITE[]~tom/rose:[32]% "A,BC,D,EFG,H,IJK," / "," ←↩

[0]% A BC D EFG H

[5]% IJK

[]SATELLITE[]~tom/rose:[33]%

where “[0]%” and “[5]%” represent the index of data for displaying two or more elements.

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 20

2.4.2 Class definition

Class definition of variables in SATELLITE does not restrain the types permanently, but generates the

objects whose contents are flexible. Definition of Series objects, with no index specifies the 1-dimensional

time series:

[]SATELLITE[]~tom/rose:[35]% series x ←↩

The Series object 64 × 64 is defined by as follows:

[]SATELLITE[]~tom/rose:[36]% series y[64][64] ←↩

Definition of Snapshot objects is performed as follows:

[]SATELLITE[]~tom/rose:[37]% snapshot a[10], b[20][20] ←↩

In the case of Snapshot, we cannot omit the size. Scalar objects are defined as follows:

[]SATELLITE[]~tom/rose:[38]% scalar i, j, k ←↩

Scalar objects are not allowed to have the size, that is, each object deal with only one value. Finally,

definition of String objects is performed as follows:

[]SATELLITE[]~tom/rose:[39]% string str, mstr[10] ←↩

It is possible for String objects to specify their size.

2.4.3 Conversions between two or more object classes

The object class (type) of variables in SATELLITE is determined at the time of substitution. It is

the same as the size of the class on the right side of the equality work. The above-mentioned definition

method is used only for receiving values as arguments of a function, assigning values to multi-dimensional

objects, etc. We do not need to define the class in the case where it is determined by the assignment as

follows:

[]SATELLITE[]~tom/rose:[50]% a = 1 ←↩

We cannot use undefined variables for the arguments of functions or procedures. For example, FFTC in

the ISPP module is one of such commands;

[]SATELLITE[]~tom/rose:[51]% fftc(P,x,y,u,v) ←↩

where P is a flag for specifying the calculation method, x and y are input series, and u and v are output

series of the FFTC command. In this case, u and v should be defined before calling FFTC function.

Conversion between two object classes is automatically performed. In this way, we can change an

object class to another one. In case of the operation between String and Scalar objects, for example, the

Scalar value is converted to a character sequence. The resulting class is String, e.g.,

[]SATELLITE[]~tom/rose:[52]% "test" + 3 ←↩

test3

[]SATELLITE[]~tom/rose:[53]% "" + 3.1415926 ←↩

3.14159

[]SATELLITE[]~tom/rose:[54]%

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 21

The reason why the result of ”” + 3.1415926 becomes 3.14159 is due to round off for displaying. A

numerical value is obtained after changing String into Scalar as follows:

[]SATELLITE[]~tom/rose:[54]% 3 + "3.1415926" ←↩

6.1415926

[]SATELLITE[]~tom/rose:[55]% 0 + "1.08e-2" ←↩

0.0108

[]SATELLITE[]~tom/rose:[56]%

Similarly other object conversions can be performed, such as Series → String, String → Series, etc.

Conversion between more than two objects can be also performed.

2.4.4 Type of object

To obtain the object class of the variable whose class is unknown, the TYPEOF command is used.

Suppose that x is Series object and y is Snapshot object. Then we can get type of each class of these

variables by the following:

[]SATELLITE[]~tom/rose:[56]% typeof(x) ←↩

series

[]SATELLITE[]~tom/rose:[57]% typeof(y) ←↩

snapshot

[]SATELLITE[]~tom/rose:[58]%

In order to get the index of a object, we use the INDEX command. For example, if we define a series

object as

[]SATELLITE[]~tom/rose:[58]% a = 1~10 ←↩

then the index of the object can be obtained by

[]SATELLITE[]~tom/rose:[59]% index(a) ←↩

10

[]SATELLITE[]~tom/rose:[60]%

In case of multi-dimensional data, such as b[10][50], the information is displayed as follows:

[]SATELLITE[]~tom/rose:[60]% snapshot b[10][50] ←↩

[]SATELLITE[]~tom/rose:[61]% index(b) ←↩

[0]:% 10 50

[]SATELLITE[]~tom/rose:[62]%

2.5 Expressions and operators

Expression relates not only simple arithmetical operations but also substitutions, functions, etc. The

results of the evaluation of expressions are displayed automatically, except for substitutions. Although

the notation of operators of SATELLITE is different from its internal functions’ one, they are internally

treated equally. The operator and the internal function appeared in an expression is sent to the linked

object and the first argument object respectively, as a message. Therefore, even if two operators or

internal functions are the same, their performance may be different and depending on the object class.

Operators include arithmetical operators, relational operators, logical operators, increment and decrement

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 22

Table 2.2: Priority table for operators (in order of the high priority).

() [] : []
̂ right
! − ++ −− left
˜ left
∗ / % left
+ − left
> >= < <= == ! = left

&& left
|| left
= + = − = ∗ = / = ̂ = right

Notice: In the above table, “right” means that the operator is combined with the right-hand side object, and

“left” means that the operator is combined with the left-hand side object.

operators, the substitution operator “=”, the “˜” operator for generating a sequence with margin 1, the

operator “()” for connecting two or more series, etc. Followings are the examples of usage:

[]SATELLITE[]~tom/rose:[56]% x = -3~-1 ←↩

[]SATELLITE[]~tom/rose:[57]% x ←↩

[0]:% -3 -2 -1

[]SATELLITE[]~tom/rose:[58]% y = 1~3 ←↩

[]SATELLITE[]~tom/rose:[59]% y ←↩

[0]:% 1 2 3

[]SATELLITE[]~tom/rose:[60]% z = (x, 0, y) ←↩

[]SATELLITE[]~tom/rose:[61]% z ←↩

[0]:% -3 -2 -1 0 1

[5]:% 2 3

[]SATELLITE[] tom/rose:[62]%

Operators are interpreted by following the priority shown in Table 2.5. The following example demon-

strates for comparison operators.

[]SATELLITE[]~tom/rose:[63]% (z > 0) * z ←↩

[0]:% -0 -0 -0 0 1

[5]:% 2 3

[]SATELLITE[]~tom/rose:[64]%

Objects are destroyed after performing operations. If we want to keep the results of operations, we

have to assign them to variables. The variable mentioned here can be regarded as a simple container

for objects, without restricting the type of data. Therefore, even if object names are the same, there is

some possibility that their contents become different after substitution. Memory management of objects

is done by “garbage collecting” method.

2.6 Internal constants

SATELLITE has defined several internal constants in order to ease programming or operating internal

functions. There are three kinds of internal constants:

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 23

• Floating point constants, such as 3.0, 1.0e−5, etc, and character sequence constants, such as “Wel-

come to SATELLITE World”.

• Mathematical constants

180/π : DEG = 57.2957...

The base of log : E = 2.7182...

Euler’s constant : GAMMA = 0.5772...

Golden ratio : PHI = (
√

5 + 1)/2 = 1.6180...

π : PI = 3.1415...

• User-defined constants defined by the command CONST

For example,

[]SATELLITE[]~tom/rose:[56]% const Degree = PI/180 ←↩

SATELLITE treats the internal constants and user-defined constants equally. Moreover, we can change

the internal constant to the user-defined one by the command CONST. CONST can deal with the

expression in which its right-hand side is a formula or an object like Series. It is evaluated right after it

is defined. The difference between variables and constants is just in permission of substituting objects.

2.7 Control sequence

As in C language, we can use IF, WHILE, DO-WHILE, For as control sequences, and { ... } for

grouping statements together.

• if (expr1) stmt1

• if (expr1) stmt1 else stmt2

• while (expr1) stmt1

• do stmt1 while (expr1)

• for (expr1 ; expr2 ; expr3) stmt1

expr1, expr2, and expr3 are general expressions including substitutions or functions. stmt1 and stmt2

are single statements. A set of statements in parentheses { ... } is also regarded as the single statement.

AND operator “&&”, OR operator “| |” , and other relation operators can be used in expressions. If the

result of evaluation of an expression is equal to zero, it is treated as “false”, or else “true”. In the case

where two or more results are obtained by a logical operation, such as a comparison between two Series

objects, if all of them are not equal to zero, it is regarded as “true”.

2.7.1 IF sequence

If the result of the conditional expression expr1 is “true”, the first statement stmt1 is performed. If the

condition expr1 is evaluated as “false”, the next statement stmt2 is executed, instead of stmt1.

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 24

IF sequence(1):

if (expr1) {

stmt1;

}

IF sequence(2):

if (expr1) {

stmt1;

} else {

stmt2;

}

For example, processing of “If x is smaller than n, then add x to s” is described as follows:

[]SATELLITE[]~tom/rose:[86]% if (x < n) { ←↩

+ s = s + x ←↩

+ } ←↩

[]SATELLITE[]~tom/rose:[87]%

Processing of “If x is smaller than n, then add x to s, or else subtract x from s” is described as follows:

[]SATELLITE[]~tom/rose:[87]% if (x < n) { ←↩

+ s = s + x ←↩

+ } else { ←↩

+ s = s - x ←↩

+ } ←↩

[]SATELLITE[]~tom/rose:[88]%

2.7.2 WHILE and DO-WHILE sequences

WHILE and DO-WHILE sequences controll the loops. They perform the statement stmt1 repeatedly

until the condition expr1 is true. In case of WHILE sequence, the evaluation of expr1 is performed

before the execution of stmt1, including its effects. On the other hand, the statement in case of DO-

WHILE is processed after execution of stmt1.

WHILE sequence:

while (expr1) {

stmt1;

}

DO-WHILE sequence:

do {

stmt1;

} while (expr1);

Processing of “While x is smaller than n, add x to s” is described by the WHILE sequence as follows:

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 25

[]SATELLITE[]~tom/rose:[89]% while (x < n) { ←↩

+ s = s + x ←↩

+ n++ ←↩

+ } ←↩

[]SATELLITE[]~tom/rose:[90]%

The same example by the DO-WHILE sequence is as follows:

[]SATELLITE[]~tom/rose:[90]% do { ←↩

+ s = s + x ←↩

+ n++ ←↩

+ } while (x < n) ←↩

[]SATELLITE[]~tom/rose:[91]%

2.7.3 FOR sequence

In FOR sequence, the first expression expr1 is evaluated only once, that is, during the initialization of a

loop. FOR sequence is terminated if expr2 is false, which is evaluated before each iteration. Expression

expr3 is used for the re-initialization of a loop after repetition.

FOR sequence:

for(expr1; expr2; expr3) {

stmt1;

}

For example, processing of “Add x to s n times” is described by the FOR sequence as follows:

[]SATELLITE[]~tom/rose:[91]% for (i=1; i<=n; i++) { ←↩

+ s = s + x ←↩

+ } ←↩

[]SATELLITE[]~tom/rose:[92]%

BRAKE forces termination of a loop. CONTINUE returns a loop to its starting point.

2.8 Functions and procedures

2.8.1 The scope of variables and constants, and arguments in functions and

procedures

The variables in SATELLITE are effective only in the function or the procedure where they are defined,

that is, it is not allowed to refer to those variables in another function or procedure. In order to compare

external variables in a function or a procedure, we need to use the reserved word EXTERNAL.

Internal constants and the constants are defined by CONST. They are available in functions or

procedures after their definitions. Although we can define constants in a function or a procedure locally,

they become effective after processing.

Since all arguments of the functions and procedures in SATELLITE are handed over as variables, the

results obtained by operations on arguments inside return to the root.

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 26

2.8.2 Internal functions

SATELLITE has defined some internal functions for mathematical calculations or system management.

The mathematical function library apply to all objects. All internal functions have the same priority.

Mathematical and system functions are shown in the following list (cf. Command Reference Manual):

List of mathematical functions

abs(x) |x|

acos(x) cos−1 x

asin(x) sin−1 x

atan(x) tan−1 x

atan2(x,y) tan−1 x/y, same as atan(x/y)

cos(x) cosx

exp(x) ex

exp2(x) 2x

int(x) the integer part of x (rounding off decimal fractions)

mod(x,y) the remainder of x/y, same as x % y

log(x) loge x (a natural logarithm)

log2(x) log2 x

log10(x) log10 x

pow(x,y) xy, same as x^y

sgn(x) the sign of x

sin(x) sinx

sqrt(x)
√

x

tan(x) tanx

List of system functions

abort() Termination of a program by force

alias(x,y) Alias operation

history(x) History operation

index(x) Acquisition of an object’s index

inline(x) Execution of a program from a file

length(x) Acquisition of the number of data points / elements

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 27

printf(x, ...) Indication of objects

read(x) Reading an object

strlen(x) Acquisition of the length of a character sequence

typeof(x) Acquisition of an object class

undef(x) Elimination of a variable

unix(x) Execution of UNIX command

write type() Specification of a file type for writing

GarCo() Garbage collection

Symbols() Indication of a variable name (in symbol table)

Note: x and y are the function arguments. “...” stands for the arguments in which the number of them

is variable.

2.8.3 User-defined function

We can define functions and procedures of our own. For example, the function plusten that performs

“Add 10 to the argument n” is given as follows:

[]SATELLITE[]~tom/rose:[57]% func plusten(n) { ←↩

+ return n + 10 ←↩

+ } ←↩

[]SATELLITE[]~tom/rose:[58]%

The following is an example of calling this function:

[]SATELLITE[]~tom/rose:[58]% num = 8 ←↩

[]SATELLITE[]~tom/rose:[59]% plusten(num) ←↩

18

[]SATELLITE[]~tom/rose:[60]%

Moreover, functions can be called recursively. The function fac (for obtaining x!) is described as follows:

[]SATELLITE[]~tom/rose:[60]% func fac(x) { ←↩

+ if (x <= 0) return 1 else return x * fac(x-1) ←↩

+ } ←↩

[]SATELLITE[]~tom/rose:[61]%

The next example is the procedure that performs “Substitute n for the argument x and n + 1 for the

argument y”. At first, we have to define x and y before calling the procedure, as mentioned in §2.4.3.

[]SATELLITE[]~tom/rose:[61]% scalar x, y ←↩

[]SATELLITE[]~tom/rose:[62]% proc plusone(n, x, y) { ←↩

+ x = n ←↩

+ y = n + 1 ←↩

+ } ←↩

[]SATELLITE[]~tom/rose:[63]%

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 28

The following is an example of calling this procedure:

[]SATELLITE[]~tom/rose:[62]% plusone(14, x, y) ←↩

[]SATELLITE[]~tom/rose:[63]% x ←↩

14

[]SATELLITE[]~tom/rose:[64]% y ←↩

15

[]SATELLITE[]~tom/rose:[65]%

The variables used in a function and procedure are local ones. They are effective only in the function

or procedure unless EXTERNAL is used. In order to use global variables, it is required to define every

time in the function or the procedure. The following is the same operation as the above mentioned

example except for using EXTERNAL definition of x and y:

[]SATELLITE[]~tom/rose:[65]% proc subplusone(n) { ←↩

+ external x, y ←↩

+ x = n ←↩

+ y = n + 1 ←↩

+ } ←↩

[]SATELLITE[]~tom/rose:[66]%

Another example follows:

[]SATELLITE[]~tom/rose:[66]% func glplusone(gn) { ←↩

+ external x, y ←↩

+ subplusone(gn) ←↩

+ z = x + y ←↩

+ return z ←↩

+ } ←↩

[]SATELLITE[]~tom/rose:[67]% scalar x, y, z ←↩

[]SATELLITE[]~tom/rose:[68]% glplusone(4) ←↩

9

[]SATELLITE[]~tom/rose:[69]% x ←↩

4

[]SATELLITE[]~tom/rose:[70]% y ←↩

5

[]SATELLITE[]~tom/rose:[71]% z ←↩

0

[]SATELLITE[]~tom/rose:[72]%

Since functions never check their arguments classes, the ones having multi-defined operators and mathe-

matical functions are performed exactly, regardless of the object class of arguments (multi-state functions)

except the class the operators cannot deal with. The example of a sigmoidal function is shown. At first,

it is defined as follows:

[]SATELLITE[]~tom/rose:[72]% func sig(t) { ←↩

+ return 1/(1+exp(-t)) ←↩

} ←↩

[]SATELLITE[]~tom/rose:[73]%

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 29

When the argument t is a Scalar object, the return value of the function is also the Scalar object.

[]SATELLITE[]~tom/rose:[73]% sig(0) ←↩

0.5

[]SATELLITE[]~tom/rose:[74]%

In the case where t is a Series object, we have

[]SATELLITE[]~tom/rose:[74]% sig(-10~10) ←↩

[0]:% 4.54e-05 0.0001234 0.0003354 0.0009111 0.002473

[5]:% 0.006693 0.01799 0.04743 0.1192 0.2689

[10]:% 0.5 0.7311 0.8808 0.9526 0.982

[15]:% 0.9933 0.9975 0.9991 0.9997 0.9999

[20]:% 1

[]SATELLITE[]~tom/rose:[75]%

Thus, the series from −10 to 10 obtained by the operator “˜” (21 data points) is handed over to sig().

The result is the Series object with 21 elements. We can easily make programs dealing with time series

using mathematical formulas only. In the above mentioned example, the result is obtained just as we

intended in cases where the argument is a Scalar, Snapshot, Series, or File object. If the argument t is a

String object, an error message is returned.

[]SATELLITE[]~tom/rose:[75]% sig("test") ←↩

sl: string not supported method

[]SATELLITE[]~tom/rose:[76]%

2.8.4 Input and output

There are some external functions and commands for displaying objects. Using PRINT, we only have

to arrange the objects to display (separated by commas). In SATELLITE, the message is displayed on

line according to specific format, e.g.,

[]SATELLITE[]~tom/rose:[70]% x = 3 ←↩

[]SATELLITE[]~tom/rose:[71]% print "x = ", x, "\n" ←↩

x = 3

[]SATELLITE[]~tom/rose:[72]% print (1, 2, 3, 4, 5), "\n" ←↩

[0]:% 1 2 3 4 5

[]SATELLITE[]~tom/rose:[73]%

The function PRINTF is also available, We can specify the precision of displayed elements. Although

the usage is similar to the printf function of C language, it is internally different.

[]SATELLITE[]~tom/rose:[73]% x = 3 ←↩

[]SATELLITE[]~tom/rose:[74]% printf("x = %d\n", x) ←↩

x = 3

[]SATELLITE[]~tom/rose:[75]% printf("%9.4f\n",(1,2,3,4,5)) ←↩

[0]:% 1.0000 2.0000 3.0000 4.0000 5.0000

[]SATELLITE[]~tom/rose:[76]%

The READ function reads an object from a terminal. It receives an object class as argument in

character format and converts it to the class. The return value is the read object. In case of the objects

that consist of two or more elements like Series, the elements are separated by commas. For example,

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 30

[]SATELLITE[]~tom/rose:[77]% y = read(series) ←↩

1,2,3,4,5,6,7,8

The numerical values are stored in y as follows:

[]SATELLITE[]~tom/rose:[78]% y ←↩

[0]:% 1 2 3 4 5

[5]:% 6 7 8

[]SATELLITE[]~tom/rose:[79]%

2.8.5 Data stream handling

The redirection of data displayed on terminal to variables or UNIX commands can be performed by the

data stream handling in SATELLITE. It is similar to a pipe in UNIX. The function UNIX is used for

interfacing UNIX with SATELLITE. It hands over a UNIX command to the shell. In SATELLITE, the

input data is converted into the String object. Then it can be substituted to a variable. Data from the

standard output can also be handed over to an UNIX command using the “<<” operator.

The example of the collective operation for all files listed by the ls command of UNIX in a current

directory is shown as follows. Function UNIX is used:

[]SATELLITE[]~tom/rose:[79]% files = unix("ls *.dat") ←↩

[]SATELLITE[]~tom/rose:[80]% files ←↩

[0]% fnama1.dat fname2.dat fname3.dat

[3]% fname4.dat fname5.dat

[]SATELLITE[]~tom/rose:[81]% for(i=0;i<length(files);i++){ ←↩

+ (Operation of files[i])

+ } ←↩

[]SATELLITE[]~tom/rose:[82]%

The following is the example in which the data generated in SATELLITE is stored into a text file.

[]SATELLITE[]~tom/rose:[82]% t = 2 * PI * 0~1024 / 1024 ←↩

[]SATELLITE[]~tom/rose:[83]% unix("cat > data.txt")<<sin(t) ←↩

The next example is the reverse operation, that is, from a text file to an object.

[]SATELLITE[]~tom/rose:[84]% s = unix("cat data.txt") ←↩

The String object s is converted to the Series object t by the following:

[]SATELLITE[]~tom/rose:[85]% t = 0 + s ←↩

[]SATELLITE[]~tom/rose:[86]% t ←↩

[0]:% 0.000 0.006 0.012 0.018 0.024

[5]:% 0.030 0.036 0.042 0.049 0.055

(Omitted)

[1015]:% -0.05 -0.04 -0.04 -0.03 -0.03

[1020]:% -0.02 -0.01 -0.01 -0.00 -0.00

[]SATELLITE[]~tom/rose:[87]%

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 31

2.9 Programming

2.9.1 Online message

One of the special features of SATELLITE is that it allows us to deal with parameters interactively while

displaying their explanation. The parameters are separated by comma. Here, the example is shown, e.g.,

for function GRAPH:

[]SATELLITE[]~tom/rose:[13]% graph ←↩

[]SATELLITE[]~tom/rose:[13]% graph(x,

..... Y-AXIS DATA (Object or T F D)

It is required to input the object of Y-axis. If we input “volt”, for example, the following is displayed:

[]SATELLITE[]~tom/rose:[13]% graph(volt ←↩

[]SATELLITE[]~tom/rose:[13]% graph(volt,"T",

..... X-AXIS DATA (Object or T F D)

Next, the object of X-axis follows. Messages are displayed for all input parameters. If a default parameter

is acceptable, we just press the CR key to move to the next parameter.

The syntax of every SATELLITE command is checked. However, preprocessor can compensate for

simple mistakes. Parameters can be edited freely since they are stored in editting buffers.

2.9.2 Loading a program from a file

To make the interpreter load a program from a file, the function INLINE is used. Its argument is the file

name (it treats the file as the standard input). Each line of the program is processed one after another,

similarly as in the case of the input from a terminal. It is also possible to process the program of another

file from the one called. In fact, the INLINE is also processed in a syntactic mode and connects the

standard input of the interpreter to the file. The limitation is given by the number of files that can be

opened. If an error occurs while loading a file, the subsequent lines are not executed. The example of a

program file with name testsum.sl is shown as follows:

psum = 0;

for(i = 1; i <= 10; i++) {

sum = sum + i;

}

printf("sum = %d\n", sum);

Using INLINE the interpreter reads the above file.

[]SATELLITE[]~tom/rose:[14]% inline("testsum.sl") ←↩

sum = 55

[]SATELLITE[]~tom/rose:[15]%

When required to read a file in another file, use INLINE in the file as follows:

sum = 0;

for(i = 1; i <= 10; i++) {

sum = sum + i;

}

printf("sum = %d\n",sum);

inline("testsum2.sl");

CHAPTER 2. SATELLITE SHELL AND ITS FUNCTIONS 32

The limit number of available file calls is 10.

Chapter 3

SYSTEM Module — SYSTEM

SYSTEM module is a gathering of basic functions for handling data. It includes the functions for

extracting a subset of data, finding a maximum or minimum of a sequence, modifying data format,

displaying header information of data files, etc. They are illustrated in the following subsections.

3.1 HELP — displaying a command manual

Display the on-line reference of SATELLITE commands.

usage : help("com_name")

com_name stands for a command name. It needs to be put in double quotation marks. For example, the

explanation of HELP command is displayed by the following:

[]SATELLITE[]~tom/rose:[63]% help("help") ←↩

3.2 HEADER — displaying or modifying the header informa-

tion of a data file

This command is for confirmation or alteration of a data file header information (such as data format,

index, etc.).

usage : header(file_name, mode)

file_name stands for a file name and mode is the integer that selects the mode (0: display, 1: modify).

The following example displays information about the data file test.dat on a display.

[]SATELLITE[]~tom/rose:[64]% header("test.dat", 0) ←↩

3.3 WAIT — interrupting the execution of a program

It pauses the batch processing until CR key is pressed.

usage : wait()

33

CHAPTER 3. SYSTEM MODULE — SYSTEM 34

14
 13

 12
 11

 10
 9

 8
 7

 6
 5

 4
 3

 2
 1

13 14
 11 12

 9 10
 7 8

 5 6
 3 4

 1 2

13th
 12th

 11th
 10th

 9th
 8th

 7th
 6th

 Time 5th
 4th

 3rd
 2nd

 1st
 0th

Figure 3.1: An example of using REFORM(1).

13 14
 11 12

 9 10
 7 8

 5 6
 3 4

 1 2
1 2 3 4

0 0 0 0
 13 14 0 0

 5 6 7 8

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.2: An example of using REFORM(2).

3.4 REFORM — changing the size or index of data

Command for the modification of an object format.

usage : y = reform(x, index)

x stands for an input object, y for output, and index for the index of y. As shown in Figure 3.1, for

example, we can change a 1-dimensional Series object a to a 2-dimensional Series object b by the following:

[]SATELLITE[]~tom/rose:[65]% a = 1~14 ←↩

[]SATELLITE[]~tom/rose:[66]% a ←↩

[0]:% 1 2 3 4 5

[5]:% 6 7 8 9 10

[10]:% 11 12 13 14

[]SATELLITE[]~tom/rose:[67]% b = reform(a,(7,2)) ←↩

[]SATELLITE[]~tom/rose:[68]% b ←↩

[0]:[0]% 1 2

[1]:[0]% 3 4

[2]:[0]% 5 6

[3]:[0]% 7 8

[4]:[0]% 9 10

[5]:[0]% 11 12

[6]:[0]% 13 14

[]SATELLITE[]~tom/rose:[69]%

Conversion of 2-dimensional Series object b to 3-dimensional Series object c, shown in Figure 3.2, is

performed as follows. If the specified index size is bigger than the input object’s one, 0s are filled in the

tail of data.

[]SATELLITE[]~tom/rose:[69]% c = reform(b,(3,2,4)) ←↩

[]SATELLITE[]~tom/rose:[70]% c ←↩

[0]:[0][0]% 1 2 3 4

[0]:[1][0]% 5 6 7 8

[1]:[0][0]% 9 10 11 12

[1]:[1][0]% 13 14 0 0

[2]:[0][0]% 0 0 0 0

[2]:[1][0]% 0 0 0 0

[]SATELLITE[]~tom/rose:[71]%

Similarly can be reformatted Snapshot objects.

CHAPTER 3. SYSTEM MODULE — SYSTEM 35

Figure 3.3: Buffer monitor. Figure 3.4: Window for setting up a range to
draw.

3.5 BM — data monitoring

This command displays a window for monitoring objects simultaneously while processing other com-

mands.

usage : bm(x)

x stands for an object to monitor. Example:

[]SATELLITE[]~tom/rose:[72]% bm(x) ←↩

The example of the buffer monitor is in Figure 3.3. In this example, the object x has already been defined

by the following:

[]SATELLITE[]~tom/rose:[70]% t = 0~99 ←↩

[]SATELLITE[]~tom/rose:[71]% x = sin(2*PI*t/100) ←↩

Another window can be opened by clicking on the SCALE button. One can adjust scaling of a chart.

Figure 3.4 shows the window.

An example of 2-dimensional Series objects is given. First, we convert 1-dimensional Series object x

to 2-dimensional Series object y by REFORM as follows:

[]SATELLITE[]~tom/rose:[73]% y = reform(x,(2,50)) ←↩

If we want to monitor y, we can proceed similarly as in the previous example,

[]SATELLITE[]~tom/rose:[74]% bm(y) ←↩

The buffer monitor window of this example is shown in Figure 3.5. By clicking on the button >, the

chart is changed, as shown in Figure 3.6. Figure 3.5 is the chart of y:[0] and Figure 3.6 of y:[1]. That

is, Figure 3.5 corresponds to the chart from x:[0] to x:[49] and Figure 3.6 from x:[50] to x:[99].

3.6 SAM — sampling frequency setting

This command defines a sampling frequency.

usage : sam(frequency)

CHAPTER 3. SYSTEM MODULE — SYSTEM 36

Figure 3.5: Window for monitoring y:[0]. Figure 3.6: Window for monitoring y:[1].

frequency is a sampling frequency. For example, define a Series object a as follows:

[]SATELLITE[]~tom/rose:[77]% a = 1~10 ←↩

The chart of a, by using WOPEN, GRAPH, and AXIS commands, is shown in Figure 3.7. In this

case, the default sampling frequency is 1000Hz. Figure 3.8 displays the chart of a after changing the

sampling frequency as follows:

[]SATELLITE[]~tom/rose:[78]% sam(100) ←↩

The sampling frequency set by SAM is referred in commands of ISPP module or GRAPH command

of GPM module.

3.7 CUT — selecting a subset of data

This command allows selection of specified subset of data contained in an object.

usage : y = cut(x, start, end)

x is the original object, y is the object picked out, start is the starting point, and end is the end point.

The following example selects a part of a 1-dimensional Series object a, as shown in Figure 3.9:

[]SATELLITE[]~tom/rose:[79]% a = 1~7 ←↩

[]SATELLITE[]~tom/rose:[80]% a ←↩

[0]:% 1 2 3 4 5

[5]:% 6 7

[]SATELLITE[]~tom/rose:[81]% b = cut(a,3,5) ←↩

[]SATELLITE[]~tom/rose:[82]% b ←↩

[0]:% 4 5 6

[]SATELLITE[]~tom/rose:[83]%

One cannot obtain the proper result if the start point is replaced with the end one as follows:

[]SATELLITE[]~tom/rose:[81]% b = cut(a,5,3) ←↩

One can also select a part of the 2-dimensional Series object b by the following (see also Figure 3.10):

CHAPTER 3. SYSTEM MODULE — SYSTEM 37

0.0 2.0 4.0 6.0 8.0 10.0

2.
0

4.
0

6.
0

8.
0

10
.0

12
.0

Figure 3.7: A graphic using the sampling frequency = 1000Hz (default).

0.0 200.0 400.0 600.0 800.0 1000.0

2.
0

4.
0

6.
0

8.
0

10
.0

12
.0

Figure 3.8: A graphic using the sampling frequency = 10Hz.

CHAPTER 3. SYSTEM MODULE — SYSTEM 38

7
 6

 5
 4

 3
 2

 1

 6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

6
 5

 4

Figure 3.9: An example of using CUT on 1-dimensional Series object.

13 14
 11 12

 9 10
 7 8

 5 6
 3 4

 1 2

11
 9

 7

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.10: An example of using CUT on 2-dimensional Series object.

[]SATELLITE[]~tom/rose:[85]% a = 1~14 ←↩

[]SATELLITE[]~tom/rose:[86]% b = reform(a,(7,2)) ←↩

[]SATELLITE[]~tom/rose:[87]% c = cut(b,(3,0),(5,0)) ←↩

[]SATELLITE[]~tom/rose:[88]% c ←↩

[0]:[0]% 7

[1]:[0]% 9

[2]:[0]% 11

[]SATELLITE[]~tom/rose:[89]%

Similarly, selection can be performed on Snapshot objects.

3.8 PUT — replacing old data with new one

This command replaces a part of an object with another one.

usage : z = put(x, y, index)

x is the original object, y is the object to insert into x, z is the object after replacement, and index is

the position where to put y. The size of the object z is the same as that of x. For example, as shown in

Figure 3.11, replacement of a part of a 1-dimensional Series object a by b can be performed as follows:

[]SATELLITE[]~tom/rose:[89]% a = 1~7 ←↩

[]SATELLITE[]~tom/rose:[90]% b = 11~17 ←↩

[]SATELLITE[]~tom/rose:[91]% c = put(a,b,3) ←↩

[]SATELLITE[]~tom/rose:[92]% c ←↩

[0]:% 1 2 3 11 12

[5]:% 13 14

[]SATELLITE[]~tom/rose:[93]%

The next example is the case of 2-dimensional Series object replacement, as shown in Figure 3.12.

[]SATELLITE[]~tom/rose:[23]% a = 1~14 ←↩

[]SATELLITE[]~tom/rose:[24]% b = 31~36 ←↩

[]SATELLITE[]~tom/rose:[25]% ar = reform(a,(7,2)) ←↩

[]SATELLITE[]~tom/rose:[26]% br = reform(b,(3,2)) ←↩

CHAPTER 3. SYSTEM MODULE — SYSTEM 39

17
 16

 15
 14

 13
 12

 11

14
 13

 12
 11

 3
 2

 1

7
 6

 5
 4

 3
 2

 1

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.11: An example of using PUT on 1-dimensional Series object.

13 14
 11 12

 9 10
 7 8

 5 6
 3 4

 1 2

35 36
 33 34

 31 32

13 14
 11 12

 35 36
 33 34

 31 32
 3 4

 1 2

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.12: An example of using PUT on 2-dimensional Series object.

[]SATELLITE[]~tom/rose:[27]% c = put(ar,br,(2,0)) ←↩

[]SATELLITE[]~tom/rose:[28]% c ←↩

[0]:[0]% 1 2

[1]:[0]% 3 4

[2]:[0]% 30 31

[3]:[0]% 32 33

[4]:[0]% 34 35

[5]:[0]% 11 12

[6]:[0]% 13 14

[]SATELLITE[]~tom/rose:[29]%

Similarly, the operation can be performed on Snapshot objects.

3.9 MERGE — merging two data sets

This command merges two objects together.

usage : z = merge(x, y)

x and y are the objects to link, and z is the final object in which y is attached at the end x. The subindex

of x must be equal to the y’s one in the case of multi-dimensional objects. The example of merging

2-dimensional Series objects ar and br is shown below and depicted Figure 3.13:

[]SATELLITE[]~tom/rose:[29]% a = 1~8 ←↩

[]SATELLITE[]~tom/rose:[30]% b = 31~36 ←↩

[]SATELLITE[]~tom/rose:[31]% ar = reform(a,(4,2)) ←↩

[]SATELLITE[]~tom/rose:[32]% br = reform(b,(3,2)) ←↩

[]SATELLITE[]~tom/rose:[33]% c = merge(ar,br) ←↩

[]SATELLITE[]~tom/rose:[34]% c ←↩

[0]:[0]% 1 2

[1]:[0]% 3 4

[2]:[0]% 5 6

[3]:[0]% 7 8

[4]:[0]% 30 31

CHAPTER 3. SYSTEM MODULE — SYSTEM 40

 3rd
Time 2nd
 1st
 0th

 35 36
 33 34

 31 32
 7 8

 5 6
 3 4

 1 2

 7 8
 5 6

 3 4
 1 2

 35 36
 33 34

 31 32

Figure 3.13: An example of using MERGE on 2-dimensional Series object.

[5]:[0]% 32 33

[6]:[0]% 34 35

[]SATELLITE[]~tom/rose:[35]%

Similarly Snapshot objects.

3.10 FILL — filling data with a specified value

This command fills a part of an object with a particular value.

usage : y = fill(x, start, end, value)

x is the original object, y is the final object, and start and end are the start and end points for filling

the value. All range in x specified by start and end is filled with the same value value. If we want to

fill a part of 1-dimensional Series object a with 20 as shown in Figure 3.14, we proceed as follows:

[]SATELLITE[]~tom/rose:[35]% a = 1~7 ←↩

[]SATELLITE[]~tom/rose:[36]% b = fill(a,3,5,20) ←↩

[]SATELLITE[]~tom/rose:[37]% b ←↩

[0]:% 1 2 3 20 20

[5]:% 20 7

[]SATELLITE[]~tom/rose:[38]%

The example of filling 2-dimensional Series object follows (see also Figure 3.15):

[]SATELLITE[]~tom/rose:[38]% a = 1~14 ←↩

[]SATELLITE[]~tom/rose:[39]% b = reform(a,(7,2)) ←↩

[]SATELLITE[]~tom/rose:[40]% c = fill(b,(3,0),(5,0),30) ←↩

[]SATELLITE[]~tom/rose:[41]% c ←↩

[0]:[0]% 1 2

[1]:[0]% 3 4

[2]:[0]% 5 6

[3]:[0]% 30 8

[4]:[0]% 30 10

[5]:[0]% 30 12

[6]:[0]% 13 14

[]SATELLITE[]~tom/rose:[42]%

Similarly, the operation can be performed on Snapshot objects.

3.11 ZERO — filling data with 0

This command fills a part of an object with 0.

CHAPTER 3. SYSTEM MODULE — SYSTEM 41

7
 6

 5
 4

 3
 2

 1

7
 20

 20
 20

 3
 2

 1

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.14: An example of using FILL on 1-dimensional Series object.

13 14
 11 12

 9 10
 7 8

 5 6
 3 4

 1 2

13 14
 11 12

 30 10
 30 8

 30 6
 3 4

 1 2

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.15: An example of using FILL on 2-dimensional Series object.

usage : y = zero(x, start, end)

x is the original object, y is the filled object, and start and end are the start and end points. The range

in x specified by start and end is filled with 0. The following example is similar to the FILL’s one as

shown in Figure 3.16, except the specified value 20 is replaced with 0:

[]SATELLITE[]~tom/rose:[42]% a = 1~7 ←↩

[]SATELLITE[]~tom/rose:[43]% b = zero(a,3,5) ←↩

[]SATELLITE[]~tom/rose:[44]% b ←↩

[0]:% 1 2 3 0 0

[5]:% 0 7

[]SATELLITE[]~tom/rose:[45]%

In the case of 2-dimensional Series object, as shown in Figure 3.17, the following example is quite similar

to previous one.

[]SATELLITE[]~tom/rose:[45]% a = 1~14 ←↩

[]SATELLITE[]~tom/rose:[46]% b = reform(a,(7,2)) ←↩

[]SATELLITE[]~tom/rose:[47]% c = zero(b,(3,0),(5,0)) ←↩

[]SATELLITE[]~tom/rose:[48]% c ←↩

[0]:[0]% 1 2

[1]:[0]% 3 4

[2]:[0]% 5 6

[3]:[0]% 0 8

[4]:[0]% 0 10

[5]:[0]% 0 12

[6]:[0]% 13 14

[]SATELLITE[]~tom/rose:[49]%

Similarly, the operation can be performed on Snapshot objects.

3.12 REVERSE — reversing the order of data

This command reverses the order of data in an object.

CHAPTER 3. SYSTEM MODULE — SYSTEM 42

7
 6

 5
 4

 3
 2

 1

7
 0

 0
 0

 3
 2

 1

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.16: An example of using ZERO on 1-dimensional Series object.

13 14
 11 12

 9 10
 7 8

 5 6
 3 4

 1 2

13 14
 11 12

 0 10
 0 8

 0 6
 3 4

 1 2

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.17: An example of using ZERO on 2-dimensional Series object.

usage : y = reverse(x)

x is the original object, and y is the reversed one. For example, the reversed 1-dimensional Series object

a is obtained by the following:

[]SATELLITE[]~tom/rose:[49]% a = 1~7 ←↩

[]SATELLITE[]~tom/rose:[50]% b = reverse(a) ←↩

[]SATELLITE[]~tom/rose:[51]% a ←↩

[0]:% 1 2 3 4 5

[5]:% 6 7

[]SATELLITE[]~tom/rose:[52]% b ←↩

[0]:% 7 6 5 4 3

[5]:% 2 1

[]SATELLITE[]~tom/rose:[53]%

The case of 2-dimensional Series object (see also Figure 3.18):

[]SATELLITE[]~tom/rose:[54]% a = 1~14 ←↩

[]SATELLITE[]~tom/rose:[55]% b = reform(a,(7,2)) ←↩

[]SATELLITE[]~tom/rose:[56]% b ←↩

[0]:[0]% 1 2

[1]:[0]% 3 4

[2]:[0]% 5 6

[3]:[0]% 7 8

[4]:[0]% 9 10

[5]:[0]% 11 12

[6]:[0]% 13 14

[]SATELLITE[]~tom/rose:[57]% c = reverse(b) ←↩

[]SATELLITE[]~tom/rose:[58]% c ←↩

[0]:[0]% 14 13

[1]:[0]% 12 11

[2]:[0]% 10 9

[3]:[0]% 8 7

[4]:[0]% 6 5

CHAPTER 3. SYSTEM MODULE — SYSTEM 43

2 1
 4 3

 6 5
 8 7

 10 9
 12 11

 14 13

13 14
 11 12

 9 10
 7 8

 5 6
 3 4

 1 2

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.18: An example of using REVERSE on 2-dimensional Series object.

[5]:[0]% 4 3

[6]:[0]% 2 1

[]SATELLITE[]~tom/rose:[59]%

Similarly, the operation can be performed on Snapshot objects.

3.13 ROTATE — rotating data

This command moves the head pointer of an object to the specified position.

usage : y = rotate(x, index)

x is the original object, y is the rotated object, and index is the position of the front. An example is

shown in Figure 3.19:

[]SATELLITE[]~tom/rose:[59]% a = 1~7 ←↩

[]SATELLITE[]~tom/rose:[60]% a ←↩

[0]:% 1 2 3 4 5

[5]:% 6 7

[]SATELLITE[]~tom/rose:[61]% b = rotate(a,3) ←↩

[]SATELLITE[]~tom/rose:[62]% b ←↩

[0]:% 4 5 6 7 1

[5]:% 2 3

[]SATELLITE[]~tom/rose:[63]%

The following example is for 2-dimensional Series object, as shown in Figure 3.20.

[]SATELLITE[]~tom/rose:[63]% a = 1~14 ←↩

[]SATELLITE[]~tom/rose:[64]% b = reform(a,(7,2)) ←↩

[]SATELLITE[]~tom/rose:[65]% b ←↩

[0]:[0]% 1 2

[1]:[0]% 3 4

[2]:[0]% 5 6

[3]:[0]% 7 8

[4]:[0]% 9 10

[5]:[0]% 11 12

[6]:[0]% 13 14

[]SATELLITE[]~tom/rose:[66]% c = rotate(b,(3,0)) ←↩

[]SATELLITE[]~tom/rose:[67]% c ←↩

[0]:[0]% 7 8

[1]:[0]% 9 10

[2]:[0]% 11 12

CHAPTER 3. SYSTEM MODULE — SYSTEM 44

3
 2

 1
 7

 6
 5

 4

7
 6

 5
 4

 3
 2

 1

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.19: An example of using ROTATE on 1-dimensional Series object.

13 14
 11 12

 9 10
 7 8

 5 6
 3 4

 1 2

5 6
 3 4

 1 2
 13 14

 11 12
 9 10

 7 8

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.20: An example of using ROTATE on 2-dimensional Series object.

[3]:[0]% 13 14

[4]:[0]% 1 2

[5]:[0]% 3 4

[6]:[0]% 5 6

[]SATELLITE[]~tom/rose:[68]%

Similarly, the operation can be performed on Snapshot objects.

3.14 MABI — selecting the subsequence of data

This command selects from an object a subsequence of data specified by interval.

usage : y = mabi(x, step)

x is the original object, y is the resulting object, and step is the interval (at interval of step− 1 points).

There is no difference between x and y in the case where step = 0 or 1. The following example, and

Figure 3.21, shows MABI function on 1-dimensional Series object:

[]SATELLITE[]~tom/rose:[68]% a = 1~7 ←↩

[]SATELLITE[]~tom/rose:[69]% b = mabi(a,2) ←↩

[]SATELLITE[]~tom/rose:[70]% b ←↩

[7]->[4]

[0]:% 1 3 5 7

[]SATELLITE[]~tom/rose:[71]%

Selecting 2-dimensional Series object at some intervals is shown in Figure 3.22. The commands are as

follows:

[]SATELLITE[]~tom/rose:[71]% a = 1~21 ←↩

[]SATELLITE[]~tom/rose:[72]% b = reform(a,(7,3)) ←↩

[]SATELLITE[]~tom/rose:[73]% b ←↩

CHAPTER 3. SYSTEM MODULE — SYSTEM 45

7
 5

 3
 1

7
 6

 5
 4

 3
 2

 1

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.21: An example of using MABI on 1-dimensional Series object.

19 20 21
 16 17 18

 13 14 15
 10 11 12

 7 8 9
 4 5 6

 1 2 3

19 21
 10 12

 1 3

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.22: An example of using MABI on 2-dimensional Series object.

[0]:[0]% 1 2 3

[1]:[0]% 4 5 6

[2]:[0]% 7 8 9

[3]:[0]% 10 11 12

[4]:[0]% 13 14 15

[5]:[0]% 16 17 18

[6]:[0]% 19 20 21

[]SATELLITE[]~tom/rose:[74]% c = mabi(b,(3,2)) ←↩

[]SATELLITE[]~tom/rose:[75]% c ←↩

[7][3]->[3][2]

[0]:[0]% 1 3

[1]:[0]% 10 12

[2]:[0]% 19 21

[]SATELLITE[]~tom/rose:[76]%

Similarly, the operation can be performed on Snapshot objects.

3.15 GET — getting a value at the specified position of data

This function reads a value at the particular position of an object.

usage : y = get(x, position)

x is an object, and y is the value at position. A simple example is shown as follows (see also Figure

3.23):

[]SATELLITE[]~tom/rose:[77]% a = 1~7 ←↩

[]SATELLITE[]~tom/rose:[78]% b = get(a,3) ←↩

[]SATELLITE[]~tom/rose:[79]% b ←↩

CHAPTER 3. SYSTEM MODULE — SYSTEM 46

7
 6

 5
 4

 3
 2

 1

4
6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.23: An example of using GET on 1-dimensional Series object.

13 14
 11 12

 9 10
 7 8

 5 6
 3 4

 1 2

7

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.24: An example of using GET on 2-dimensional Series object.

4

[]SATELLITE[]~tom/rose:[80]%

In case of 2-dimensional Series object (as shown in Figure 3.24), we have

[]SATELLITE[]~tom/rose:[80]% a = 1~14 ←↩

[]SATELLITE[]~tom/rose:[81]% b = reform(a,(7,2)) ←↩

[]SATELLITE[]~tom/rose:[82]% c = get(b,(3,0)) ←↩

[]SATELLITE[]~tom/rose:[83]% c ←↩

7

[]SATELLITE[]~tom/rose:[84]%

Similarly, the operation can be performed on Snapshot objects.

3.16 MAXPOS — getting the position of the maximum in
data

This command obtains the position of the maximum in a object.

usage : y = maxpos(x, num)

x is an object, y is the Series object, and num is the number of positions to consider. For example, as

shown in Figure 3.25, if we need to obtain the position of the maximum in the 1-dimensional Series object

a, then,

[]SATELLITE[]~tom/rose:[84]% a =(3,7,5,1,6,2,4) ←↩

[]SATELLITE[]~tom/rose:[85]% c = maxpos(a,1) ←↩

[]SATELLITE[]~tom/rose:[86]% c ←↩

1

[]SATELLITE[]~tom/rose:[87]%

To get the positions of the 1st and 2nd maxima in a, as shown in Figure 3.26, is done by the following:

[]SATELLITE[]~tom/rose:[87]% c = maxpos(a,2) ←↩

[]SATELLITE[]~tom/rose:[88]% c ←↩

[0]:[0]% 1

CHAPTER 3. SYSTEM MODULE — SYSTEM 47

[1]:[0]% 4

[]SATELLITE[]~tom/rose:[89]%

As shown in Figure 3.27, to get the position of the maximum in 2-dimensional Series object b proceed as

follows:

[]SATELLITE[]~tom/rose:[18]% a = (7,13,1,3,12,6,11,4,14,2) ←↩

[]SATELLITE[]~tom/rose:[19]% b = reform(a,(5,2)) ←↩

[]SATELLITE[]~tom/rose:[20]% c = maxpos(b,1) ←↩

[]SATELLITE[]~tom/rose:[21]% c ←↩

[0]:[0]% 4 0

[]SATELLITE[]~tom/rose:[22]%

Similarly, the operation can be performed on Snapshot objects. There is a similar command for obtaining

the position of the minimum; MINPOS.

4
 2

 6
 1

 5
 7

 3

7

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.25: An example of using MAXPOS on 1-dimensional Series object(1).

Max

4
 2

 6
 1

 5
 7

 3

6

7

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.26: An example of using MAXPOS on 1-dimensional Series object(2).

 5 8
 9 10

 14 2
 11 4

 12 6
 1 3

 7 13

14
6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.27: An example of using MAXPOS on 2-dimensional Series object.

3.17 MAX — getting the maximum of data

This command obtains the maximum value of an object.

usage : y = max(x)

x is the object, and y is the maximum value of it. In case of 1-dimensional Series object, the example

follows:

[]SATELLITE[]~tom/rose:[23]% a =(3,7,5,1,6,2,4) ←↩

[]SATELLITE[]~tom/rose:[24]% c = max(a) ←↩

CHAPTER 3. SYSTEM MODULE — SYSTEM 48

[]SATELLITE[]~tom/rose:[25]% c ←↩

7

[]SATELLITE[]~tom/rose:[26]%

In case of a 2-dimensional Series object, the performance is similar.

[]SATELLITE[]~tom/rose:[26]% a = (7,13,1,3,12,6,11,4,14,2) ←↩

[]SATELLITE[]~tom/rose:[27]% b = reform(a,(5,2)) ←↩

[]SATELLITE[]~tom/rose:[28]% c = max(b) ←↩

[]SATELLITE[]~tom/rose:[29]% c ←↩

14

[]SATELLITE[]~tom/rose:[30]%

Similarly, the operation can be performed on Snapshot objects. There is a similar command for obtaining

the minimum; MIN.

3.18 FIND — finding the value close to the specified one in

data

This command obtains the nearest value to the specified one in an object.

usage : ip = find(x, val, num)

x is an object, ip is the returned value of the position of the nearest value, val is the value to locate,

and num is the number of values to find. As shown in Figure 3.28, for example, we can obtain the first

and second nearest values to the specified value 5.8 in a 1-dimensional Series object by the following:

[]SATELLITE[]~tom/rose:[30]% a = 1~7 ←↩

[]SATELLITE[]~tom/rose:[31]% c = find(a, 5.8, 2) ←↩

DATA[6] -- POINT:[5]

DATA[5] -- POINT:[4]

[]SATELLITE[]~tom/rose:[32]% c ←↩

[0]:[0]% 5

[1]:[0]% 4

[]SATELLITE[]~tom/rose:[33]%

The following example demonstrates FIND on 2-dimensional Series object (see also Figure 3.29):

[]SATELLITE[]~tom/rose:[33]% a = 1~14 ←↩

[]SATELLITE[]~tom/rose:[34]% b = reform(a,(7,2)) ←↩

[]SATELLITE[]~tom/rose:[35]% c = find(b, 6.8, 2) ←↩

DATA[7] -- POINT:[3][0]

DATA[6] -- POINT:[2][1]

[]SATELLITE[]~tom/rose:[36]% c ←↩

[0]:[0]% 3 0

[1]:[0]% 2 1

[]SATELLITE[]~tom/rose:[37]%

Similarly, the operation can be performed on Snapshot objects.

CHAPTER 3. SYSTEM MODULE — SYSTEM 49

7
 6

 5
 4

 3
 2

 1

5
 4

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.28: An example of using FIND on 1-dimensional Series object.

7
 6

13 14
 11 12

 9 10
 7 8

 5 6
 3 4

 1 2

6th
 5th
 4th
 3rd
Time 2nd
 1st
 0th

Figure 3.29: An example of using FIND on 2-dimensional Series object.

Chapter 4

Interactive Signal Processing
Package — ISPP

ISPP is the core module of SATELLITE. A lot of processing functions are represented by commands, which

cover the methodology of the digital signal processing such as the preprocessing by window functions,

FFT, spectrum analysis by linear prediction model, filtering, cepstrum analysis, etc. All commands

require to store data or data files. One can analyze data multilaterally using the signal processing or

statistical techniques.

4.1 The command system of ISPP

The commands of ISPP are classified into the categories shown in Table 4.1 and 4.2. By combining the

commands with fundamental functions, it is possible to carry out complicated analysis.

4.2 Examples to use

The fundamental use of ISPP is described, by referring to Fourier transform, filtering, and matrix oper-

ation.

4.2.1 Fourier transform

Fourier transform of a signal is shown. Signal is synthesized two sinusoidal waves overlapped by noise.

Generation of data

(1) Generation of a sinusoidal wave:

(1) t = 0~1999/2000;

Data is stored in the Series object t.

(2) a = 5*sin(2*PI*20*t) + 3;

b = 3*sin(2*PI*50*t) + 3;

The sine waves with DC in which their frequencies and amplitude values are different from each other

are stored in the Series objects a and b.

50

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 51

Table 4.1: ISPP commands (1).

Data generation
argen Data generation by AR model
gauss2 Generation of 2-dimensional Gaussian distribution function
arand Generation of random data with optional probability distribution
mnrand Generation of multi-dimensional Gaussian random data
nrand Generation of Gaussian random data
urand Generation of uniform random data

Data operation
dccut DC removal from data
norm Data normalization
shift Shifting the whole data so that the specified value is consistent

with a specified element of the data
Data interpolation

interp Interpolation of 2-dimensional data
akima Interpolation of 1-dimensional data by the Akima’s method
spline Interpolation of 1-dimensional data by the natural cubic spline

Arithmetic operation
average Calculation of the arithmetic mean of data
integ Calculation of the sum of data
det Calculation of the determinant
eigen Calculation of eigenvalues and eigenvectors
inv Calculation of the inverse matrix
mul Calculation of the product of two matrices
trans Calculation of the transposed matrix
nmeq Solving the normal equation

Table 4.2: ISPP commands (2).

Data analysis
bpbtw Design of IIR-type band-pass filter with the Butterworth property
burg Calculation of power spectra by the Burg method
cep Calculation of complex cepstrum
fftc Complex Fourier transform
fftn Complex Fourier transform for multi-dimensional data
fir Filtering by FIR-type filter

firmake Design of FIR-type filter
hil Hilbert transform

hpbtw Design of IIR-type high-pass filter with the Butterworth property
icep Inverse cepstrum analysis
iir Filtering by IIR-type filter

iircoef Calculation of the coefficients of IIR-type filter from zero points and poles
levin Calculation of power spectra by the Levinson-Durbin’s algorithm
lpbtw Design of IIR-type low-pass filter with Butterworth property
phase Calculation of the phase of a complex number
pole Calculation of poles from AR coefficients
power Calculation of the gain of a complex number
rank Calculation of histogram and the Gaussian density function value from data
spcf Calculation of power spectrum and phase of data
window Window processing for data

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 52

(2) Selecting a part of data of 1024-point from the 0th point to the 1023rd point of a sinusoidal

wave.

(3.1) acut =

bcut =

Series objects which store picked data are set.

(3.2) acut = cut(a,

bcut = cut(b,

Original objects are set.

(3.3) acut = cut(a,0

bcut = cut(b,0

Each starting point is set.

(3.4) acut = cut(a,0,1023);

bcut = cut(b,0,1023);

Each ending point is set.

By the above procedure, the selected data are stored in the Series objects acut and bcut.

(3) Generation of random numbers: We use NRAND command to generate the normal random

numbers.

(4.1) nois =

The Series object that stores generated random numbers is set.

(4.2) nois = nrand(1024,

The number of datum point to generate is set.

(4.3) nois = nrand(1024,1

The initial value to generate random numbers is set (This must be an odd number).

(4.4) nois = nrand(1024,1,0

The mean value of random numbers is set.

(4.5) nois = nrand(1024,1,0,1);

The variance of the random number is set.

By the above procedure, 1024-point standard normal random number data are stored in the Series

object nois. Furthermore, the URAND command is used for generating the uniform random numbers.

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 53

0 200 400 600 800 1000

Time[msec]

-2
0

0
20

Figure 4.1: Waveform of the synthetic signal.

(4) Synthesis of signals: The signals obtained by the above procedures are synthesized as follows:

(5.1) data =

The Series object that stores the synthetic signal is set.

(5.2) data = acut + bcut + nois;

Signals are synthesized.

Mixture of two sine waves and normal random numbers is stored in the Series object data. The

waveform of the synthetic signal is shown in Figure 4.1.

Preprocessing of data

The methods of DC removal and window processing are shown below.

(1) Removal of DC: The DCCUT command is used for removing the DC of data.

(1.1) data1 =

The Series object that stores the data after removing DC is set.

(1.2) data1 = dccut(data);

The original object is set.

By the above procedure, the data with removed DC is stored in the Series object data1. The signal

waveform is shown in Figure 4.2.

(2) Window processing: We use the WINDOW command for the window processing.

(2.1) data2 =

The Series object that stores the data after the window processing.

(2.2) data2 = window(data1,

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 54

0 200 400 600 800 1000

Time[msec]

-2
0

0
20

Figure 4.2: Signal waveform after the removal of DC.

0 200 400 600 800 1000

Time[msec]

-2
0

0
20

Figure 4.3: Signal waveform after the window processing.

The original object is set.

(2.3) data2 = window(data1,1,

The type of the window (1: Humming window, 2: Hanning window, 3: Blackman window, 4: Triangle

window) is set.

(2.4) data2 = window(data1,1,0);

1 is set if we want to correct data so that both integrated values of data before and after the window

processing become equal, but 0 if not.

By the above procedure, the data after the window processing is performed is stored in the Series

object data2. The signal waveform is shown in Figure 4.3.

Fourier transform

(1) Fourier transform: Using the FFTC command, it is possible to carry out Fourier transform and

inverse Fourier transform for complex number data. Since the FFT algorithm is used for the Fourier

transform, the number of data must be the power of 2.

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 55

0 20 40 60 80 100

Frequency[Hz]

-1
00

0
0

10
00

Figure 4.4: The signal waveform after Fourier transform (black line: the real parts of data, gray line: the
imaginary parts of data).

(1) series Rout,Iout;

The Series object that stores the real part and the imaginary part of an output time series is defined.

(2) rei = 0~1023*0;

In the case where the imaginary part of the original signal does not exist, 1024 zeros are stored in the

Series object rei.

(3.1) fftc(P,

The flag for calculation (P: Fourier transform, I: Inverse Fourier transform) is set.

(3.2) fftc(P,data2,

The real part of the original object is set.

(3.3) fftc(P,data2,rei,

The imaginary part of the original object is set.

(3.4) fftc(P,data2,rei,Rout,

The Series object that stores the real part of the data after Fourier transform is set.

(3.5) fftc(P,data2,rei,Rout,Iout);

The Series object that stores the imaginary part of the data after Fourier transform is set.

By the above procedure, the processed data is stored in the Series objects Rout, Iout. The signal

waveform after Fourier transform is shown in Figure 4.4.

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 56

0 20 40 60 80 100

Frequency[Hz]

0
10

20

*
10

5

Figure 4.5: Power spectrum.

(2) Power spectra: The POWER command is used for adding two squared objects. Using this

command, we can obtain the power spectrum of the original time series from the real part and the

imaginary part of the data after the Fourier transform.

(4.1) pw =

The Series object that stores the obtained power spectrum is set.

(4.2) pw = power(Rout,

The real part of the data after Fourier transform is set.

(4.3) pw = power(Rout,Iout);

The imaginary part of the data after Fourier transform is set.

The power spectrum data is stored in the Series object pw, and shown in Figure 4.5.

(3) Phase property: The PHASE command is used for obtaining the phase of the original time

series from the real part and the imaginary part of the data after the Fourier transform.

(5.1) phs =

The Series object that stores the obtained phase is set.

(5.2) phs = phase(Rout,

The real part of the data after Fourier transform is set.

(5.3) phs = phase(Rout,Iout,

The imaginary part of the data after Fourier transform is set.

(5.4) phs = phase(Rout,Iout,D,

The type of the output phase (D: degree, O: radian) is set.

(5.5) phs = phase(Rout,Iout,D,U);

U is set if we want to perform the phase rehydration, but O if not.

By the above procedure, the phase data is stored in the Series object phs.

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 57

Method for obtaining the power spectrum and the phase of the original data

Using the SPCF command, we can obtain both the power spectrum and the phase from an input time

series. The procedure is shown below.

(1) series pw,phs;

The Series objects that store the power spectrum and the phase are defined.

(2.1) spcf(data2,

The original time series is set.

(2.2) spcf(data2,pw,

The Series object that stores the obtained power spectrum is set.

(2.3) spcf(data2,pw,phs);

The Series object that stores the obtained phase is set.

The power spectrum and the phase data are stored in the Series objects pw and phs by the above.

4.2.2 Filtering

MA filter

Using the moving average method, the procedure for smoothing the source signal is shown as follows.

(1) coef = (1/5, 1/5, 1/5, 1/5, 1/5);

The coefficient vector of the filter is set.

(2.1) output =

The object that stores the smoothed signal is set.

(2.2) output = fir(coef,

The source signal is smoothed by using the FIR command. First, the coefficient of the filter coef is set.

(2.3) output = fir(coef, input);

The original signal input is set.

By the above procedure, the smoothed data is stored in the Series object output. The FIR command

carries out the processing shown in Figure 4.6. Therefore, the number of the filter coefficients (the order

of the filter) must be the odd number (it is assumed that this value is equal to 2n + 1). Besides, the

original data form the (n + 1)-th point is used for filtering, because the data from the beginning to the

n-th point is not possible to deal with precisely. Similarly the final data, the ones to the (n + 1)-th point

from behind is ignored.

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 58

Move

Time

Time

Input

Output

0

Σ

a a a a a2 3 4 51

Σ

a a a a a2 3 4 51

Series

Series

Copy

Copy

EndStart

Figure 4.6: Filtering by the FIR command.
(a1, a2, · · · , a5 are the filter coefficients)

FIR filter

When the FIR filter of the low-pass, high-pass or band-pass type is designed by the window function

method, the filtering by FIR is carried out after the filter coefficient is obtained using the FIRMAKE

command. The example of a low-pass filter is shown below.

(1) sam(1024);

The sampling frequency is set.

(2.1) coef =

The Series object for storing the filter coefficients is set.

(2.2) coef = firmake(1,

The filter is set to be the low-pass type (1: Low-pass, 2: High-pass, 3: Band-pass).

(2.3) coef = firmake(1,11,

The order of the filter is set. The value is the odd number used by the FIR command.

(2.4) coef = firmake(1,11,100,

The cut-off frequency is set.

(2.5) coef = firmake(1,11,100,3);

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 59

The type of the window function is set (0: Rectangle window, 1: Hanning window, 2: Humming window,

3: Blackman window, 4: Kayser window).

By the above procedure, the coefficients of the 11th-order FIR-type low-pass filter with the cut-off

frequency 100Hz is stored in the Series object coef. Similarly can be obtained high-pass type filter:

coef = firmake(2,11,400,3);

In this example, the 11th-order FIR-type high-pass filter with the cut-off frequency 400Hz is designed.

Band-pass filter with the cut-off frequencies 100Hz and 400Hz, and the order 11, for example, is obtained

as follows:

coef = firmake(3,11,(100,400),3);

Then, filtering can be performed by the FIR command with the coefficients coef as shown below.

(3) output = fir(coef,input);

IIR filter

In order to design an IIR filter of the low-pass, high-pass or band-pass type with the Butterworth

characteristics, it is first necessary to obtain zero points, poles, and gain of the transfer function using

the LPBTW, HPBTW, or BPBTW command, respectively. Then, filtering is carried out by using

FIR and IIR, after the zero points and poles are converted into the filter coefficients by the IIRCOEF

command. The example of a low-pass filter is shown below.

(1) sam(1024);

The sampling frequency is set.

(2) series zr,zi,pr,pi;

The Series objects for storing the zero points and poles of the transfer function are defined.

(3.1) gain =

The Scalar object for storing the gain of the designed filter is set.

(3.2) gain = lpbtw(100,

The cut-off frequency is set.

(3.3) gain = lpbtw(100,13,

The order of the filter is set. This value must be odd number (the maximum is 101).

(3.4) gain = lpbtw(100,13,zr,zi,

The Series objects for storing the zero points (real part and imaginary part) of the transfer function are

set.

(3.5) gain = lpbtw(100,13,zr,zi,pr,pi);

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 60

The Series objects for storing the poles (real part and imaginary part) of the transfer function are set.

By the above procedure, it is possible to obtain the zero points zr and zi, the poles pr and pi, and

the gain gain of the transfer function of the 13th-order IIR-type low-pass filter with the cut-off frequency

100Hz, with the Butterworth characteristics. The high-pass filter can be set as follows:

gain = hpbtw(400,13,zr,zi,pr,pi);

In this example, the 13th-order IIR-type high-pass filter with the cut-off frequency 400Hz is designed. In

case of band-pass type, two cut-off frequencies must be set. When the cut-off frequencies are 100Hz and

400Hz, and the order of the filter is 13, for example, the following is set:

gain = bpbtw(100,400,13,zr,zi,pr,pi);

Next, we calculate the filter coefficients from zr, zi, pr, and pi using the IIRCOEF command.

(4) series a,b;

The Series objects that store the coefficients of the denominator and numerator of the transfer function

are defined.

(5.1) iircoef(zr,zi,pi,pr,

The zero points and poles of the transfer function are set.

(5.2) iircoef(zr,zi,pr,pi,a,

The Series object that stores the coefficients of the denominator of the transfer function is set.

(5.3) iircoef(zr,zi,pr,pi,a,b);

The Series object that stores the coefficients of the numerator of the transfer function is set.

By the above procedure, the obtained filter coefficients can be used in both FIR and IIR. Finally,

filtering is carried out as follows.

(6) temp = fir(b,input);

The numerator of the transfer function is calculated.

(7) output = iir(a,temp)*gain;

The denominator of the transfer function is calculated, and the result of the filtering is obtained by gain

multiplication.

The signal after filtering is stored in the Series object output.

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 61

Move

Time

Time

Input

Output

0

Series

Series

Σ Σ

a1a2a3a4a5a1a2a3a4a5

Start End

Figure 4.7: Filtering by the IIR command.
(a1, a2, · · · , a5 are the filter coefficients)

Example

The design of the 13th-order IIR-type low-pass filter with the cut-off frequency 100Hz, and with the

Butterworth characteristics is provided. The procedure is shown below.

(1) sam(512);

The sampling frequency is set.

(2) series zr,zi,pr,pi;

(3) series a,b;

(4) series u,v;

The Series objects used in LPBTW, IIRCOEF, and SPCF are defined.

(5) delay = 50;

(6) datp = 511;

(7) impulse = (1,(1~datp)*0);

(8) d_impulse = ((0~delay)*0,impulse);

The impulse signal and the signal that contains zeros for delay are generated.

Since the output points within the filter order can not be calculated by the FIR command, the signal

d impulse is created as the union of delay 0s and impulse (Figure 4.8(a)), as shown in Figure 4.8(b).

The impulse response is obtained by shifting the delay points (Figure 4.9(b)) after filtering of d impulse

is performed (Figure 4.9(a)).

FIR command uses the future input in order to obtain the present output, as it was shown in Figure

4.6. Since the causality is not satisfied, the IIRCOEF command outputs the coefficients by joining

(filter order − 1) 0s to the coefficients of the numerator of the transfer function. Therefore, the data for

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 62

0 50 100 150 200

Data Point

0.
0

0.
5

1.
0

A
m

pl
itu

de

(a) inpulse

0 50 100 150 200

Data Point

0.
0

0.
5

1.
0

A
m

pl
itu

de

(b) inpulse

Figure 4.8: Impulse signal.

0 50 100 150 200

Data Point

0.
0

90
0.

0
18

00
.0

A
m

pl
itu

de

(a) firtemp

0 50 100 150 200

Data Point

0.
0

90
0.

0
18

00
.0

A
m

pl
itu

de

(b) firimp

Figure 4.9: Impulse response obtained by FIR command.

filtering has from ((2× filter order)− 1) points. In this example, since 2× 13− 1 = 25, it is possible to

obtain the accurate filtering result by defining delay as a value larger than 25, e.g., 50.

(9) gain = lpbtw(100,13,zr,zi,pr,pi);

(10) iircoef(zr,zi,pr,pi,a,b);

The filter is designed by obtaining the transfer function.

(11) firtemp = fir(b,d_impulse);

(12) firinp = cut(firtemp,delay+1,datp+delay+1);

By calculating the numerator part of the transfer function and removing 0s in d impulse, the impulse

response is shifted delay points.

(13) output = iir(a,firinp)*gain;

The part of the denominator of the transfer function is calculated, and the impulse response of the

designed filter multiplied the gain is obtained (Figure 4.10).

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 63

0 20 40 60 80 100 120 140 160

Data Point

0.
0

0.
3

A
m

pl
itu

de

Figure 4.10: Impulse response of the designed filter.

0 50 100 150 200 250

Frequency[Hz]

0.
0

0.
4

0.
8

Po
w

er
*

10
-5

Figure 4.11: Amplitude chart of the designed filter.

(14) spcf(output,u,v);

By executing Fourier transform of the impulse response output and calculating power spectrum, we obtain

the amplitude chart of the designed filter is obtained (Figure 4.11). We can confirms the Butterworth

characteristics can be confirmed.

4.2.3 Matrix operation

Matrix operations are one of the features of ISPP. Here, as a practical example, we obtain the solution

of a system of n linear equations.

x11θ1 + · · ·+ x1nθn = y1,

...

xm1θ1 + · · ·+ xmnθn = ym.

System of equations can be written in the matrix form as follows:




x11 · · · x1n

...
. . .

...
xn1 · · · xnn







θ1

...
θn


 =




y1

...
yn


 . (4.1)

Xθ = Y. (4.2)

The solution of Eq.(4.1) is as follows under the assumption that the matrix X is regular.

θ = X−1Y, (4.3)

CHAPTER 4. INTERACTIVE SIGNAL PROCESSING PACKAGE — ISPP 64

The procedure to calculate Eq.(4.3) by ISPP is shown in the following:

X =




1 1 1
1 2 1
2 1 3


 , Y =




10
7
16


 , θ =




θ1

θ2

θ3


 .

In the ISPP Module, there are several matrix operation commands, such as MUL command (to get

the product of two matrices), INV (to calculate the inverse matrix), etc.

(1) tempx = (1,1,1,1,2,1,2,1,3);

(2) x = reform(tempx,(3,3));

Matrix X is created.

(3) tempy = (10,7,16);

(4) y = reform(tempy,(3,1));

In the same way, matrix Y is formed.

(5) ix = inv(x);

The inverse matrix of X is calculated and stored in ix.

(6) theta = mul(ix,y);

By obtaining the product of X−1 and Y, the solution is obtained.

Moreover, the procedure from step (5) and (6) can be realized by setting commands as the arguments

of other commands:

theta = mul(inv(x),y);

The result of the above operation is the solution of a system of linear equations.

θ =




θ1

θ2

θ3


 =




20
−3
−7


 .

Chapter 5

Graphic Package Module — GPM

5.1 Introduction

GPM is the module for visualization of the data processed or analyzed by modules ISPP, BPS, NCS, etc.

in SATELLITE. From the standpoint of data analysis, visualization of data is much more important than

numerical evaluation. The GPM module provides various graphic functions for making charts useful for

writing articles or presentation.

The GPM module consists of about 30 commands, which are divided into the following two categories:

• Commands for drawing graphic charts.

• Parameter setting commands.

The main commands are described in Table 5.1. The commands for drawing can also be classified as

follows:

• Commands for displaying 1-dimensional objects.

• Commands for displaying 2-dimensional objects, such as contour maps, bird’s-eye pictures, etc.

Many parameters such as line type, width, color, etc. are needed in order to draw pictures. They can

be set up by the commands such as LTYPE, LWIDTH, or COLOR. Even if one do not know how to

use GPM commands exactly, it is possible to make beautiful charts by using the online message function

(see §2.9.1). The parameters related to drawing are initialized to default values at the time of starting

SATELLITE.

5.2 Drawing and Printing

WOPEN command is used for opening a window for drawing figures or charts. Conversely, the command

for closing it is WCLOSE. Many windows can be opened. CHWIN specifies the target window. It is

not allowed to draw charts on two or more windows simultaneously. WE is the command for erasing

graphics in the window.

After making the charts by GPM commands, they can be preserved as files or printed. In order to

print graphics in a window, proceed as follows:

% gpm2ps GPMDVIFILE1 > filename.ps

% lpr -Pxxx filename.ps

65

CHAPTER 5. GRAPHIC PACKAGE MODULE — GPM 66

Table 5.1: Commands in GPM module.

Related to X-windows

wopen Open a window
wclose Close a window
we Erase pictures in a window

newpage Renew a window
chwin Change a target window to draw

Related to charts

graph Draw a chart
axis Draw the coordinate axes
frame Draw a frame
draw Draw a line with specified level
line Draw a line (or a rectangle)
label Draw labels

Related to 2-dimensional graphics

cont Draw a contour map
gsolm Draw a bird’s-eye picture
map Draw a color map

Setting parameters

color Set colors for charts and frames
factor Set magnification for charts
font Set character font
ltype Set line type
lwidth Set line width
origin Set the origin of the coordinate axes
scale Set a range of drawing
size Set a size of charts
title Set labels of the coordinate axes

Others

ginit Initialize the parameters for drawing
gstat Check the current status of parameters

CHAPTER 5. GRAPHIC PACKAGE MODULE — GPM 67

0.0 0.2 0.4 0.6 0.8 1.0

-0
.8

-0
.4

0.
0

0.
4

0.
8

Figure 5.1: A sinusoidal curve.

GPMDVIFILE1 is the middle file generated by GPM, and xxx is a printer name. GPM2PS command

converts the file GPMDVIFILE1 to the PostScript (PS) file filename.ps. Encapsulated PostScript (EPS)

file for LaTeX, PowerPoint, or tgif, can be made as follows:

% gpm2eps GPMDVIFILE1 > filename.eps

5.3 Examples

The followings are examples showing the use of GPM commands. See also the Command Reference for

further details.

5.3.1 Displaying 1-dimensional objects

Example 1 — displaying a sinusoidal curve.

Program from the line editor, and also file can be processed by using the INLINE command (see §2.9.2).

Figure 5.1 shows the chart drawn by the following:

wopen(1,"A4",0,1); #Open a window (A4-size).

t = (0~100) / 100; #Substitute numerical values

from 0 to 1 for the Series object t.

y = sin(2 * PI * t); #Calculate the sinusoidal function.

scale("N","A","N","A"); #Set the range of drawing.

graph(y,t,0,0,0,0,0); #Draw the chart

frame(); #Draw frame.

axis(1,1,"XY","XY",3.5,0,0,0,0,0);

#Draw the coordinate axes.

All the beginning, it is required to open a drawing window. The first line command, WOPEN, does

it. The last argument should be set to 1 if we want to print the picture, otherwise 0 is the default value.

CHAPTER 5. GRAPHIC PACKAGE MODULE — GPM 68

Table 5.2: Colors for drawing

Number Color

0 black
1 blue
2 red
3 magenta
4 green
5 cyan
6 yellow
7 white

The type and range of the coordinate axes is defined in the fourth line. The axis type can be "N"

(linear), or "L" (logarithmic). We choose "N" for both X- and Y-axis. The argument "A" in SCALE

means that the range is set automatically. This is default if we do not use the SCALE command. In

order to specify the range, we need to set the argument to "F", and set the minimum and maximum

values for X- and/or Y-axis as the fifth and sixth arguments. If we omit those, SATELLITE presses us to

set (see §2.9.1). The chart is drawn by the commands in the fifth line. Sixth and Seventh lines display

the frame and the coordinate axes.

In this example, the color of the chart is white by default. To specify the color, use COLOR command

before GRAPH command. There are 8 possible colors to display for both charts and frames, as shown

in Table 5.2. Although the numbers (0 to 7) are usually used for specification of colors, one can write the

name of the color instead of number. Mix capital letters with small letters for describing colors is not

allowed.

Example 2 — displaying two sinusoidal curves with different amplitude and frequency.

wopen(1,"A4",0,1);

origin(40,40); #Set the origin of the coordinate axes.

size(80,80); #Set the size of the chart.

title(1,"time","f(t)"); #Set the labels of X-axis and Y-axis.

t = (0~100) / 100;

y1 = sin(PI * 5 * t);

y2 = 0.5 * sin(2 * PI * 5 * t);

scale("N","F","N","F",0.0,1.0,-1.2,1.2);

lwidth(1,2); #Set the width of the lines.

graph(y1,t,0,0,0,0,0);

lwidth(2,2);

graph(y2,t,0,0,0,0,0);

axis(1,1,"XY","XY",4,0,0,0,0,0);

lwidth(1,2);

ltype(1,2); #Set the dashed line type.

draw("Y",0); #Draw a line such that Y = 0.

ltype(1,1);

frame();

CHAPTER 5. GRAPHIC PACKAGE MODULE — GPM 69

0.0 0.2 0.4 0.6 0.8 1.0

time

-0
.6

-0
.0

0.
6

1.
2

f(
t)

Figure 5.2: Two sinusoidal curves with different amplitude and frequency.

The result is shown in Figure 5.2. The origin of the coordinate axes (second line), the size of the

chart (third line), the labels of X- and Y-axis (fourth line), and the width of lines (ninth, eleventh, and

fourteenth lines) were set. The argument values of ORIGIN command should be the absolute coordinate

values from the bottom-left corner of a window. They can be displayed by moving a mouse cursor in the

window.

In order to draw two curves in one chart, the range of drawing should be fixed by setting the second

and fourth arguments in SCALE to "F". If they are set to "A", the range can be adjusted by setting

the second and fourth arguments in SCALE to "D" before the GRAPH command (twelfth line). In the

fifteenth line, the command LTYPE changes the line type. The dashed line y = 0 is drawn by DRAW

in the sixteenth line.

Example 3 — Displaying time series.

One of the merits of SATELLITE (for analysis of biological data) is efficient time series manipulation.

Here, the example of a Gaussian noise sequence (time series):

x = nrand(1000,1,0,1); #Generate a Gaussian noise sequence.

wopen(1,"A4",0,1);

sam(10000); #Set the sampling frequency.

size(80,80);

origin(20,200);

title(1,"time[msec]","value");

scale("N","A","N","A");

graph(x,"T",0,0,0,0,0); #Draw time series.

axis(1,1,"XY","XY",3.5,0,0,0,0,0);

frame();

label("I",20,70,5.0,0,"example4"); #Display labels.

CHAPTER 5. GRAPHIC PACKAGE MODULE — GPM 70

0.0 30.0 60.0 90.0

time[msec]

-2
.0

0.
0

2.
0

va
lu

e

example4

Figure 5.3: A Gaussian noise sequence.

The result of display is shown in Figure 5.3.

We generated 1000 Gaussian random values. The SAM command in the third line sets the sampling

frequency to 10000Hz in order to consider them as a time series with the range 0.1sec (the default is

1000Hz). The argument related to the X-axis in the eighth line is "T". It means that the horizontal axis

corresponds to time. If it is set to "D", then X-axis corresponds to data points. In the eleventh line, the

LABEL command displays labels. The specified coordinates are relative values from the origin defined

by ORIGIN. The FONT command can set the font type of characters displayed by LABEL.

5.3.2 Displaying 2-dimensional objects

Example 4 — displaying 2-dimensional random values

The following examples show a bird’s-eye view, a contour map, and a color map of 2-dimensional Series

object.

wopen(1,"A4",0,1);

size(80,80);

x = nrand(128,1,0,1); #Generate Gaussian noise sequence

y = reform(x,(16,8)); #Convert 1-D Series to 2-D

origin(20,200);

gsolm(y,0.3,0.4,0,0,0,4,0,1,1,"X",1,0); #Draw bird’s-eye picture

origin(20,100);

cont(y,.5,"X",1,0); #Draw contour map

origin(120,200);

map(y,"X",1,0,1); #Draw color map (Type 1)

origin(120,100);

map(y,"X",0,0,1); #Draw color map (Type 2)

The result of the above command sequence is shown in Figure 5.4.

CHAPTER 5. GRAPHIC PACKAGE MODULE — GPM 71

0 2 4 6 0

5

10

15

-2
.0

-1
.0

0.
0

1.
0

Figure 5.4: Various kinds of displays for 2-dimensional Gaussian noise sequence.

The command converting a 1-dimensional Series object to 2-dimensional one is REFORM (fourth

line). It changes 128-point object to 16×8 object.

In the sixth line, the object is displayed as a bird’s-eye picture, in which the hidden-line elimination

is done. The contour map is drawn in the eighth line. The tenth and twelfth lines are displaying color

maps. There are two sorts of displays for color maps: The first, normalized numerical values (according

to min/max range) correspond to the rectangle size. The second, normalized numerical values correspond

to colors.

Chapter 6

Back-Propagation Simulator —
BPS

6.1 Introduction

BPS is one of the system modules of SATELLITE. It consists of the functions and procedures for simu-

lating a multi-layered perceptron model (MLP). It is possible to use the error back-propagation method

(BP) and its five accelerated modifications as the learning algorithms. A little background about MLP

and its learning algorithm is required for using BPS module.

Followings are the features of BPS:

• Using the SATELLITE interactive programming environment, it is possible to define the structure

of MLP easily. Setting, changing the parameters (connection weights) of MLP, and execution of

simulations can also be done easily.

• Using the INLINE command, it is possible to batch-process setting of parameters and the network

structure, learning, testing, the trace of internal weight representation, etc.

• Using the buffer monitoring function BM, it is possible to monitor the real-time change of the error

during learning. It is also possible to display the simulation results easily by the GPM module in

SATELLITE.

• Using the ISPP module of SATELLITE, we can carry out the multilateral and detailed analysis of

MLP.

6.2 The file types used in BPS

In BPS, the exchange of data during learning or testing of MLP is carried out through files. There

are seven file types, as shown in Table 6.1. Although all file formats are in conformity to SATELLITE

ones, each type is different (see below for further details). There is another type of files, the parameter

file (ASCII file), which is for preserving the parameters of network structure, learning conditions, the

management of data, etc.

6.3 BPS use example

In the following, the use of BPS is explained on the concrete examples of the MLP simulation. The

example is XOR (Exclusive OR) problem. There are two input variables and one output variable (Table

72

CHAPTER 6. BACK-PROPAGATION SIMULATOR — BPS 73

Table 6.1: File types for the BPS module.
File type Contents Commands

Input data file Input data for learning teach∗, setrec∗

Teaching data file Teaching data for learning teach∗

Initial weight File Initial weight values
walgo∗, winit∗∗,
weight∗

Weight history file
The weight values
during learning

weight∗, setrec∗,
learn∗∗, wgtload∗,
errfunc∗, rvmap∗,
sigmoid∗

Error history file The error during leaning
error∗, learn∗∗,
errload∗

Test data file Input data for testing setrec∗

Test result file
Output results

for testing
setrec∗, rec∗∗,
actload∗

∗ : Using the file for input
∗∗ : Using the file for output

Table 6.2: The XOR problem.

Inputs Output
0 0 0
0 1 1
1 0 1
1 1 0

6.2).

6.3.1 Preparation of “input”, “teach”, and “test” data files

In order to learn MLP, “input” and “teach” data files must be made. The record direction corresponds to

the patterns and the data-point direction to the input (or output) units, as shown in Figure 6.1. The test

result files generated by the REC command also take this form. There is no limitation in the number of

patterns and the number of units.

The number of input units and output units are 2 and 1, respectively. The number of patterns is 4 in

case of the XOR problem. The type of data is given as Series type or Snapshot type. Suppose that the

names of objects for the “input” and “teach” data are in and out, respectively. The substitution of each

object is as follows:

CHAPTER 6. BACK-PROPAGATION SIMULATOR — BPS 74

data 11 data 12 data 13 data 1n

data 21 data 22 data 23 data 2n

data 31 data 32 data 33 data 3n

data m1 data m2 data m3 data mn

pattern 1

pattern 2

pattern 3

pattern m

D
irection of record

Figure 6.1: Format of input data, teach data, test data, and test result files.

Series objects Snapshot objects

series in[2], out[1]; snapshot in[4][2], out[4];

#

in:[0] = (0,0); in[0][0] = 0; in[0][1] = 0;

in:[1] = (0,1); in[1][0] = 0; in[1][1] = 1;

in:[2] = (1,0); in[2][0] = 1; in[2][1] = 0;

in:[3] = (1,1); in[3][0] = 1; in[3][1] = 1;

#

out:[0] = 0; out[0] = 0;

out:[1] = 1; out[1] = 1;

out:[2] = 1; out[2] = 1;

out:[3] = 0; out[3] = 0;

“Input” and “teach” data are stored in files as follows:

$"in.dat" = in;

$"out.dat" = out;

In this example, in.dat and out.dat are “input” data and “teach” data files respectively.

The test data file is required when performing the test of MLP. If one wants to observe the MLP’s

output on the same input data used during learning, the input data file can be used as a test data file.

6.3.2 Setting learning parameters

Some parameters must be set before the learning and testing of MLP are executed. There are four types

of parameters:

• MLP’s structure parameters.

• Parameters for generating the initial values of connection weights

• Learning parameters.

• Testing parameters.

CHAPTER 6. BACK-PROPAGATION SIMULATOR — BPS 75

It is possible to store the parameters using the BPSAVE command to a parameter file. The parame-

ters can be read from the parameter file by the BPLOAD command. Since the parameter file is the

ASCII type, another simulation under the different conditions can be carried out easily by changing the

parameters using an editor. The content of the parameter file is shown in the following.

Contents of the learning parameter file:

? number of layers

? number of cells in each layer

? status of activation functions and bias units

? weight initialization algorithm

? initial weight file name stored by WINIT

? seed of random number generator for weight initialization

? maximum for initial weights

? minimum for initial weights

? initial weight file name loaded by LEARN

? weight history file name

? interval to store weight history

? mode to store weight history

? error history file name

? interval to store error history

? direction to store error history

? mode to store error history

? input data file name for learning

? teaching data file name for learning

? first pattern number for learning

? last pattern number for learning

? learning mode

? learning algorithm

? learning rate

? momentum

? increasing factor for learning rate

? reduction factor for learning rate

? threshold for Vogl’s method

? factor for Ochiai’s method

? minimum error to stop learning

? maximum steps to stop learning

? interval to display comments

? comment

? weight file name for testing

? weight history number for testing

? test data file name

? first pattern number for testing

? last pattern number for testing

? input layer number for testing

CHAPTER 6. BACK-PROPAGATION SIMULATOR — BPS 76

? output layer number for testing

? test result file name

MLP structure parameters

The structure parameters for MLP, namely the number of layers, the number of units in each layer, and

the type of activation functions, must be set in all cases of generating the initial values of connection

weights, learning, testing, tracing, etc. The parameters are set by the LAYER and FUNCTION

commands. The activation functions of units in the input layer (the 0th layer) are linear. FUNCTION

has to be executed after the number of layers is set by LAYER.

In the XOR problem, the number of output units is 1 and the number of input units is 2. The hidden

layer is composed of 2 units with sigmoidal activation functions. The activation function of the output

unit is linear, and each unit in the hidden and output layers has the threshold. Then, setting parameters

for the MLP is carried out as follows (see also the Command Reference Manual) :

layer(3,2,2,1);

function("LN","SA","LA");

Weight initialization parameters

The initial weight file which stores the initial values of connection weights is generated by the WINIT

command. WINIT requires several parameters. They specify the algorithm for generating initial values,

the name of the initial weight file (details are described later), the seed for generating random numbers,

and the maximum and minimum of initial values. There are two methods for generating initial weight

value; using random numbers generated from a given seed (R) and the Jia’s algorithm (J). When the

Jia’s algorithm is used, the bias unit must be added in each layer. These parameters are set using the

WALGO command.

In the XOR problem, for example, the parameters for the initial values of connection weights are set

by the following:

walgo(R,"initwf",1,1.0,-1.0);

winit();

Learning parameters

The WEIGHT, ERROR, TEACH, LALGO, LEND, and DISP commands are used to set the

parameters for learning.

The WEIGHT command sets the following: The name of the initial weight file (the initial values of

connection weights are read from this file), the name of the weight history file (the histories of connection

weights), the interval for storing weights, and the mode for storing weights (there are two kinds of storing

methods; append "A" or overwrite "O"). It is also possible to set the generated weight file. In this case,

the final history written to the file is used for setting of initial values. If it is not necessary to store the

history, the mode should be “overwrite”. The details on weight history file format and the mode for

storing are described later.

The ERROR command is for setting the name of the error history file (storing the histories of the

sum of square error) and the interval, the direction (record direction "R" or data-point direction "D"),

and the mode for storing error. When the direction for storing error is set to the record direction, the

error of each output unit and the sum of them are stored. However, if the direction is set to “data point”,

only the sum of error is stored. The details on the error history file are described later.

CHAPTER 6. BACK-PROPAGATION SIMULATOR — BPS 77

In the TEACH command, the following are set: Input data file name, teach data file name, the

number of patterns (the beginning and end points of the input and teach data). When the numbers are

set from the 0th to the 0th, all patterns are used for learning.

The LALGO command sets the mode for learning (on-line learning "P", or batch-learning "S"), the

learning algorithm (six methods; steepest descent method, conjugate gradient method, etc.), the learning

rate and the necessary parameters for each algorithm.

In the LEND command, the maximum number of iterations and the tolerance are set as the termi-

nation conditions for learning.

In the DISP command, the followings are set : The interval to display the number of iterations and

the square error value, and a comment sentence.

The example of setting the learning parameters for the XOR problem is shown:

weight("initwf","wgt",200,"A");

error("err",200,"D");

teach("in","out",0,0);

lalgo("S","6",0.005,0.6,0.0003,0.75,0.6);

lend(0.0,5000);

disp(200,"I’M LEARNING!");

Testing parameters

The parameters for testing MLP are the weight file name (the weight values of MLP after learning), the

weight history number to use, the test data file name, the pattern numbers to use, the input layer and

output layer numbers, and the test result file name. If the pattern numbers are set from the 0th to the

0th, all patterns are used for testing. These parameters are set by the SETREC command.

setrec("wgt",0,"in",0,0,0,2,"res");

6.3.3 Initialization of weights

An initial weight file is necessary in order to carry out learning. However, there is no necessity of

executing the WINIT command when the history stored in the weight history file, generated during

previous learning, is utilized as the initial weight files.

The example of the WINIT command execution is shown in Figure 6.2. The followings are displayed:

The MLP’s structure and the parameter values for generating the initial values of connection weights.

If the initial weight file with given name does not exist, the message that a new file has been created is

displayed. The following confirmation message is shown:

*** File [filename] already exists. ***

Overwrite ? (y/n) :

If y, the following message is displayed:

File [filename] has been overwritten.

If n is chosen, the error message is shown. In this case, the file name has to be reset.

CHAPTER 6. BACK-PROPAGATION SIMULATOR — BPS 78

Figure 6.2: Execution of WINIT.

CHAPTER 6. BACK-PROPAGATION SIMULATOR — BPS 79

Threshold

Threshold

Input layer

Hidden layer

Output layer

1 2 3 4 5 6

7 8 9

Figure 6.3: The example of an MLP’s structure.

6.3.4 Learning

Learning of MLP is carried out by the LEARN command. LEARN reads “input” data, “teach” data,

and initial values of connection weights from files. It writes the history of connection weights and square

errors during learning.

It is also possible to store the sum of errors at each iteration, by giving a Series (or Snapshot) object

as an argument to LEARN. The real-time buffer monitoring function BM can be used. For example,

series x; or snapshot x[lc]

bm(x);

learn(x);

lc stands for the number of iterations. If the sum of errors does not have to be stored, set learn(0).

The connection weight history during learning is stored to the weight history file, and the square error

values to the error history file. There are 2 kinds of storing modes for the weight history file: “Append

mode” in which the history is added in order of storing, and “Overwrite mode” in which the history is

overwritten.

The MLP (Figure 6.3) is used to illustrate usage of LEARN. MLP consists of 3 layers. The number

of units is 2, 2, and 1 for the input, hidden, and output layers, respectively. The hidden layer and the

output layer have the bias terms. In Figure 6.3, the circles and the squares stand for units and bias units,

respectively. The number on each weight corresponds to the order of storing in the file. The weights are

stored as shown in Figure 6.4.

Weight 1 Weight 2 Weight 3 Weight 9

Figure 6.4: Format for storing connection weights.

For the interruption/restart of learning, the revised values of the connection weights 1 step before are

CHAPTER 6. BACK-PROPAGATION SIMULATOR — BPS 80

stored at the end of the connection weight data file, as shown in Figure 6.5. In the initial weight file, all of

the values are 0. In Figure 6.5, m records from record n, or m records from record n+m+1, correspond

to 1 data block. The WINIT command creates 2 data blocks that consist of the initial connection weight

values and the 0 values. The LEARN command reads the last 2 data blocks in the initial weight file,

and carries out the processing. In this way, it is possible to perform the learning process by continuing

from the point where the learning was interrupted or terminated.

Record n

Record n+m

Record n+m+1

Record n+2m+1

Connection weight data

pre-correction amount

Figure 6.5: Format of a weight history file.

Append mode and Overwrite mode are explained next. The Append mode is the mode where the

weight values and previous revisions are stored in 1 data block after the last “history”, as shown in

Figure 6.6. By utilizing this storing method, it is possible to put the latest data at the end of the file,

and leave the history from the start point to the end point of learning.

The Overwrite mode is the mode where the weight data are overwritten to the initial values, as shown

in Figure 6.7. This mode is useful in the cases where the scale of the MLP’s structure is large and there

are many weights, or it is not required to observe the history of the connection weights.

There are 2 kinds of methods for storing the error history; record direction and data-point direction.

Moreover, Append mode and Overwrite mode are provided. Record direction storing is the method for

storing error of each unit in the output layer and totals, as shown in 6.8. The data length of 1 block is

equal to (number of output units) + 1.

Figure 6.9 shows the execution of LEARN. The MLP’s structure and the learning parameters are

displayed. The message that new files are created is displayed if the specified weight history file and error

history file do not exist. When either of them exists, the notifying message is displayed, and it is storing

mode confirmed (Append or Overwrite). In the case the mode is Overwrite, the mode is reconfirmed by

pressing y. If n is pressed , the command is terminated and the file name must be reset. In the case the

mode is Append, no message is displayed but the mode is set by pressing y. The input “n” means that

the mode is changed to Overwrite, with the message on display.

When the learning is in progress, the number of iterations, the sum of square errors, the difference

from previous error value, and comments are displayed. Assume that the number of output units is N .

Then the squared error ei for each pattern is as follows:

ei =

N∑

j=1

(tij − oij)
2,

where tij is teaching data and oij is output data of MLP. Assume that the number of all patterns is M .

CHAPTER 6. BACK-PROPAGATION SIMULATOR — BPS 81

weight data n

weight data n+1

weight data n+2

weight data n

weight data n+1

weight data n+2

pre-correction n

history n history n+1 history n+2

pre-correction n+1

pre-correction n+2

pre-correction n+2

Figure 6.6: Weight history file format in Append mode.

Then the sum of them is given by the following equation:

E =

M∑

i=1

e2
i .

The initial value of error is the difference between the teaching data and the output of MLP with the

initial weight values.

Learning is terminated if the sum of errors is less than the set tolerance, or the number of iterations

reaches the maximum. At that time, the following message is displayed:

*** Learning is done ! ***

6.3.5 MLP testing

MLP is tested by the REC command. REC reads the test data and the connection weights from files,

and writes the output results to a file. It is possible to show the activity of units by change of a square

size or color in the display of the structure of MLP. In that case, it is required to open a graphic window

by the WOPEN command. Using SIZE, ORIGIN, and COLOR in the GPM module, we can set the

size, position, and color of the connection weights of MLP, respectively.

Figure 6.10 is the picture while executing REC. The MLP structure and the test parameters are

displayed during the execution. The message that a new file is created is displayed, when designated test

CHAPTER 6. BACK-PROPAGATION SIMULATOR — BPS 82

Weight data n Weight data n+1 Weight data n+2

History n History n+1 History n+2

Pre-correction amount n

Weight data n+2

Pre-correction amount n+1 Pre-correction amount n+2

Pre-correction amount n+2

Figure 6.7: Weight history file format in Overwrite mode.

History 1

History 2

History n

Error Error Error

ErrorErrorError

Error Error Error

Total Error(Unit 1) (Unit 2) (Unit n)

Total Error

Total Error

Figure 6.8: Format of error history file (Record direction mode).

result file does not exist. If the file exists, the mode of overwriting is confirmed. The message that the

overwriting has been performed is displayed if y is pressed. The command will be terminated and the

file name must be reset, when n is chosen.

6.3.6 Tracing connection weights and errors

By combining the commands of BPS with the GPM’s ones, the trace of the internal parameters of MLP

can be performed. The data sets which are necessary for tracing are read from the weight history file,

the error history file, and the test result file generated during the learning and testing of MLP using the

following commands:

errload : Data are read from the error history file.

wgtload : Data are read from the weight history file.

actload : Data are read from the test result file.

As previously mentioned, the WOPEN command is used for opening graphic windows. By using

GPM commands such as CONT, GRAPH, GSOLM, and MAP, it is possible to display the data in

buffers.

CHAPTER 6. BACK-PROPAGATION SIMULATOR — BPS 83

Figure 6.9: Execution of LEARN.

6.3.7 Internal representation analysis of MLP

Even if the ISPP commands are used, we can carry out the analysis of the internal state of MLP.

The following commands have been implemented into BPS commands for it: RVMAP, SIGMOID,

ERRFUNC, and COR.

rvmap : The inverse projection operation is carried out for the connection weights, and the results are

stored to 2-dimensional objects. They can be displayed by using GPM commands.

sigmoid : This command tests MLP with the test parameters. The total input value and activation value

of the unit are displayed in the quadrature axis and the vertical line, respectively. Furthermore,

the activation values of some inputs can be plotted on the curve. It is also possible to show the

histogram of input values.

errfunc : Two connection weights between optional units are chosen and the values of the weights change

a little, when the other weight values are fixed. Then, the data are presented to MLP, the square

errors of the outputs are calculated. Since they are stored to the object, it is possible to display

them using GPM commands.

cor : The command for obtaining the correlation matrix of objects. Data are read from the weight

history file to the object using the WGTLOAD command.

CHAPTER 6. BACK-PROPAGATION SIMULATOR — BPS 84

Figure 6.10: Example of REC execution.

Chapter 7

Neural Circuit Simulator — NCS

7.1 Introduction

The information processing mechanism in the brain and nervous system of human is described mathemat-

ically based on the results of physiological experiments. Generally, mathematical models are described

by nonlinear multi-dimensional simultaneous differential equations, and the solutions are obtained by the

numerical calculations. Simulation programs are coded by general-purposive programming languages.

The Neural Circuit Simulator (NCS) has been developed as a software system supporting research.

In NCS, characteristics or connecting states of cells are described using the NCS language which is the

exclusive model description language. It is possible to efficiently carry out the simulations under various

conditions without rewriting the model description. Followings are the features of NCS:

• It is possible to perform the large-scale neural circuit model simulation based on a physiological

knowledge.

• It is possible to handle not only the model with faithful physiological evidence, but also the general

continuous system model.

• Programming, except the mathematical model construction, is unnecessary.

• Simulations are possible without recompiling if the conditions are changed.

7.1.1 Basic specifications

The NCS system structure is shown in Figure 7.1. The NCS consists of three components: NCS prepro-

cessor, NCS library, and a command group for setting conditions. NCS preprocessor converts a neural

circuit model described in the NCS language into a simulation program and a simulation condition file

group coded in C language. The simulation program compiled by the C compiler becomes a simulation

execution file by linking the NCS library. The NCS library is aggregate of the basic programs for executing

the simulation, including the processing before the simulation starts, numerical integration routines, etc.

The simulation condition file group is the assembly of the files containing information on the execution of

the simulation, such as outside stimulation conditions, model parameters, signal delay information, etc.

The simulation is carried out using the condition file group and the execution file.

7.1.2 Concept of modularization

The relationships between the type, module, and component in NCS are shown in Figure 7.2 and Figure

7.3.

85

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 86

 NCS Preprocessor Commands

Compiler
Linker

NCS

Model Description
(NCS Language)

Control Files
Simulation
Program

NCS Library

Create

Refer

Executive File

Figure 7.1: Composition of NCS.

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 87

Neural Network

HC(0) HC(1) CONE(0) CONE(1)

Cell Synapse Gap

Horizontal Cell
 (HC)

CONE

Component

Module

Neural Network
Model

Glutamate
 (GLU)

GABA

......

......

GABA(0) GABA(1)...

......

GLU(0) GLU(1)....

Type

......

......

GAP(0) GAP(1)....

Figure 7.2: Neural circuit elements and the model structure in NCS.

CONE(0) CONE(1) CONE(2)

HC(0) HC(1)

GABA(0)
GABA(1)

CONE module

HC module

GABA module

SYNAPSE type

component

CELL type

Figure 7.3: Correspondence to the real neural circuit.

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 88

A neural circuit consists of large number of neurons combined by chemical synapses and electric

synapses (gap junctions). The elements constituting the neural circuit are: electric synapse, chemical

synapse, and neuron. All neural circuits are made of the combination of these elements, and each of them

has the specific function in the neural circuit. In the model description by NCS, they are regarded as

“type”. Neural circuit is classified into 3 types: cell type (neuron) , synapse type (chemical synapse),

and gap type (electric synapse). By using the notation of the set theory, it can be described as follows:

Elements in a neural network = {cell type , synapse type , gap type}.

Although the type is a cluster of all elements with the identical function, it can be subdivided into

“modules”. In case of retina, for example, there are some cell-type modules, namely the cone photore-

ceptor (CONE) which receives the light, and the horizontal cell (HC) which controls and modifies visual

information. Their characteristics are different each other. Every element with different characteristics

is divided and defined as a module in NCS. The cell type is,

cell type = {HC module , CONE module , · · ·},

and similarly other types. The expression for the HC module is as follows:

HC module = {HC[0], HC[1], · · ·}.

The element in the module is called “component”. It corresponds to the substance of the elements which

are parts of the neural network. The component is indicated by index which is attached to the module

name, as follows:

HC[0], HC[1], · · ·,

A module name and a suffix specify one element.

7.2 NCS Language

Language called the NCS language is used to describe a model. User can construct various models by

describing the model for each module and changing its description if needed. Moreover, some special

descriptions are used in order to deal with large-scale models. The NCS language has been composed

of reserved words, NCS library functions, sentences and special descriptions. For example, the neural

circuit model (Figure 7.4) in which the Hodgkin-Huxley (H-H) model (Table 7.1) is connected in series

by resistances can be described as shown in Listing 1.

From the 2nd to the 12th line: A network description.

It is certainly necessary for model files. The connected form in Figure 7.4 is defined.

From the 14th to the 47th line: The description of the H-H model.

The membrane potential V is the input of the gap current Ig . The simultaneous differential equa-

tions in Table 7.1 are described in the function sentence.

From the 49th to the 56th line: The description of electric synapses.

The current outputs in proportion to the membrane potential.

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 89

HH[0] HH[1] HH[10]

G[0] G[9]G[1]

Figure 7.4: Example of a neural circuit model.

The descriptions by the NCS language can be divided roughly into the module description using differ-

ential equations (from the 14th to the 62nd line) and the network description which shows the connected

modules (from the 2nd to the 12th line). As mentioned in §7.1.2, three types of module descriptions

are provided: electric synapse, chemical synapse, and cell. In the listing, lines from the 14th to the

52nd line correspond to the cell-type module, and lines from the 54th to the 62nd line describe the

electric-synapse-type module.

Details of reserved words, NCS library functions, sentences, and special descriptions used in the NCS

language are explained next.

7.2.1 Reserved words

The following 5 words are defined as the reserved words by the system:

1. TIME

The simulation time. It can be used for all modules.

2. CN

The component number. It can be used for all modules.

3. PRECN

The cell module that is the input value to the chemical/electrical synapse is called “presynaptic

cell module” of the synapse. PRECN holds its component number. It can be used for chemical and

electrical synapse modules.

4. POSTCN

The cell module that is the output value from chemical/electrical synapse is called “postsynaptic

cell module” of the synapse.

POSTCN holds its component number. It can be used for chemical and electrical synapse modules.

5. POSOUT

The output value from the postsynaptic cell module. It can be used for chemical and electrical

synapse modules.

7.2.2 Library functions

The following 5 kinds of functions have been implemented. Mathematical library functions of C language

can be also used, as shown in Table 7.2.

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 90

Table 7.1: The Hodgkin-Huxley model.

Membrane potential
V : membrane potential[mV]

Cm

dV

dt
= I − INa − IK − IL Cm : membrane capacity[µF/cm2]

I : total membrane current[µA/cm2]

Sodium current

INa = ḡNa · m
3
· h(V − ENa)

dm

dt
= αm(1 − m) − βm · m INa : sodium current[µA/cm2]

αm =
0.1(25 − V)

exp[(25 − V)/10] − 1

βm = 4 exp

(
−

V

18

)
ḡNa : membrane conductance 120[mS/cm2]

dh

dt
= αh(1 − h) − βh · h

αh = 0.07 exp

(
−

V

20

)
ENa : reversal potential 115[mV]

βh =
1

exp[(30 − V)/10] + 1

Potassium current

IK = ḡK · n4(V − EK) IK : potassium current[µA/cm2]

dn

dt
= αn(1 − n) − βn · n ḡK : membrane conductance 36[mS/cm2]

αn =
0.01(10 − V)

exp[(10 − V)/10] − 1
EK : reversal potential − 12[mV]

βn = 0.125 exp

(
−

V

80

)

Leak current

ḡL : membrane conductance 0.3[mS/cm2]
IL = ḡL(V − EL)

EL : reversal potential 10.6[mV]

Table 7.2: Mathematical library functions of C language that can be used in NCS.

Function Description Definition

exp y = exp(x) y = ex

pow y = pow(x, a) y = xa

sin y = sin (x) y = sin (x)
cos y = cos (x) y = cos (x)
tan y = tan (x) y = tan (x)

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 91

1 /* Hodgkin-Huxley’s cell model */
2 type: NETWORK;
3 module: SQUID;
4 cell: HH[11];
5 gap: G[10];
6 connection:
7 HH[0] < (G[0] < HH[1]);
8 for(n = 1; n <= 9; n++){
9 HH[n] < (G[n-1] < HH[n-1] + G[n] < HH[n+1]);
10 }
11 HH[10] < (G[9] < HH[9]);
12 end;

13 /* HH module */
14 type: CELL;
15 module: HH;
16 exinput: Iex;
17 input: Ig;
18 output: V;
19 observable: INa, IK, Il, Ig;
20 constant: VNa = 115.0, VK = -12.0, Vl = 10.6;
21 parameter: Cm = 1.0, mNa0 = 0.05293, GNa =120.0, GK = 36.0,
22 Gl = 0.3, hNa0 = 0.5961, nK0 = 0.3177, V0 = 0.;
23 function:
24 if(V != 25.){ /* sodium current */
25 am = 0.1*(25.-V)/(exp((25.-V)/10.)-1.); }
26 else{
27 am = 0.1*10.; }
28 bm = 4.*exp(-V/18.);
29 dmNa = am*(1. - mNa) - bm*mNa;
30 mNa = integral(mNa0, dmNa);
31 ah = 0.07*exp(-V/20.);
32 bh = 1./(exp((30.-V)/10.)+1.);
33 dhNa = ah*(1. - hNa) -bh*hNa;
34 hNa = integral(hNa0, dhNa);
35 INa = GNa*pow(mNa,3.0)*hNa*(V-VNa);
36 if(V != 10.){ /* potassium current */
37 an = 0.01*(10.-V)/(exp((10.-V)/10.)-1.);}
38 else{
39 an = 0.01*10.; }
40 bn = 0.125*exp(-V/80.);
41 dnK = an*(1. - nK) - bn*nK;
42 nK = integral(nK0, dnK);
43 IK = GK*pow(nK, 4.0)*(V-VK);
44 Il = Gl*(V-Vl); /* leakage current */
45 Iall = Iex - INa - IK - Il + Ig;
46 dV = Iall/Cm;
47 V = integral(V0, dV);
48 end;

49 /* G module */
50 type: GAP;
51 module: G;
52 input: VOP(0.1,0);
53 output: Ig;
54 parameter: GL = 5.0;
55 function:
56 Ig = GL * (VOP - POSOUT);
57 end;

List 1: Description of the Hodgkin-Huxley model by the NCS Language.

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 92

• PULSE

Description : y = pulse(a, b, c, d, e)
Arguments : 1. a : Starting time for input

2. b : Initial input value
3. c : Pulse height
4. d : Time width
5. e : Time period

• RAMP

Decription : y = ramp(a, b, c)
Arguments : 1. a : Starting time for input

2. b : Initial input value
3. c : slope

• INTEGRAL

Description : y = integral(A, P)

Definition : y(t) =

∫

t

Pdt, y(0) = A

• SIGMOID

Description : y = sigmoid(−x)

Definition : y =
1

1 + exp(x)

• RCASB

Description : y = rcasb(V, a, b, c, d, e, f, g)

Definition : y =
a · exp{b · (V + c)}+ d · (V + e)

exp{f · (V + c)}+ g

a

b

c
d

e

t

y

Figure 7.5: Pulse.

a

b

c =

d

e

t

y

e
d

v

Figure 7.6: Ramp.

7.2.3 Description of modules

Each module is described using the “sentences” explained in the next subsection. The combination of

these sentences depends on types. The details of sentences and different-type description methods are

shown in the following.

Sentence

Each sentence should be started with the definition that specifies what is described, and completed with

a semicolon. The contents are divided by colons, as follows:

Definition : contentA, contentB, ... contentZ ;

1. type

It defines the type of the module. There are 3 types:

CELL Cell type

SYNAPSE Chemical synapse type

GAP Electrical synapse type

The combination of them:

type : NETWORK;

Example:

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 93

/* Definition of the network type */

type : NETWORK;

/* Definition of the cell type */

type : CELL;

2. module

It defines the module name. Use letters of alphabet for the beginning of a module name.

Example:

/* Setting the module name "HH" */

module : HH;

3. cell

In the network description, the cell module used in a model is defined by this. The module name

and the number of components are required. In order to set two or more cell modules, we use

commas to link them.

Example:

/* Definition of the cell module with 11 components,

with name "HH" */

cell : HH[11];

4. synapse

In the network description, the chemical synapse module used in a model is defined by this. The

module name and the number of components are required. In order to set two or more cell modules,

we use commas to link them.

Example:

/* Definition of the chemical synapse module

with 5 components, with name "SYN" */

synapse : SYN[5];

5. gap

In the network description, the electrical synapse module used in a model is defined by this. The

module name and the number of components are required. In order to set two or more cell modules,

we use commas to link them.

Example:

/* Definition of the electric synapse module

with 10 components, with name "G" */

gap : G[10];

6. exinput

It defines the name of an external input variable in a cell module. The number of external input

variables is just one.

Example:

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 94

/* Definition of "Iex" as an external input variable */

exinput : Iex;

7. input

It defines the name of an input variable in a module. The number and description order of input

variables in the cell module should correspond to the descriptions in the connection sentences. The

number of input variables in the chemical or electrical synapse module is one. In order to set two

or more cell modules, use commas to link them. Moreover, it is possible to add delay information

to the input sentence for the chemical and electrical synapse. The delay information is described

by the following:

input : name of a variable (delay time, initial value);

initial value is output in the interval from 0 to delay time.

Example:

/* Definition of "Ig" as an input variable */

input : Ig;

/* Definition of "VOP" as an input variable

with the delay = 0.1 and the initial value = 0.0 */

input : VOP(0.1, 0);

8. output

It defines the name of an output variable in a module. The number of output variables is one.

Example:

/* Definition of "V" as an output variable */

output : V;

9. observable

It defines the name of the variable of which value is to be observed (used in the function sentence).

Specify the output by the NOUT command. The value of the defined variable can be observed

while the simulation is running.

Example:

/* Definitions of "INa", "IK", "Il", "Ig"

as the variables to observe */

observable : INa, IK, Il, Ig;

10. constant

It defines the name and value of a constant used in the function sentence. Use the “double”

notation for constants even if they are integers1.

Example:

/* Definition of "VNa", "VK", "Vl" as constants

with the values 115, -12, 10.6, respectively */

constant : VNa = 115.0, VK = -12.0, Vl = 10.6;

1The variables become double type when the NCS program is converted into C language through the NCS preprocessor.
Therefore, it would happen that the desirable values are not substituted if we used an old compiler of C language.

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 95

11. parameter

It defines parameter variables. The parameters defined here are registered in a simulation condition

file, and can be changed using the NPARA command. Use the “double” notation for parameters

even if they are integers.

Example:

/* Definitions of "Cm", "mNa0", "GNa", "GK", "Gl"

as parameters with values 1.0, 0.05293, 120,

36, 0.3, respectively */

parameter : Cm = 1.0, mNa0 = 0.05293, GNa =120.0,

GK = 36.0, Gl = 0.3;

12. connection

It defines the relationship of between two or more components. It is called a relative expression.

“<” in the relative expression stands for the composition in which the the output of the right-hand

side is input of the left-hand side. Each input is in parentheses. For example,

mdl[i] < (input1)(input2);

input1 and input2 are substituted for the first and the second inputs of the i-th component of

the module mdl. As mentioned before, the number of input variables in the input sentence should

be equal to the relative expression’s one. That is, two input variables have to be defined for the

description of mdl as follows:

input : V1, V2;

In this case, the outputs from input1 and input2 are substituted for V1 and V2, respectively.

If the module does not have any inputs, that is, there is no input sentence, the relative expression

for such a module is given as follows:

mdl[i] < ();

The input of the cell module must be inputted through the components of the chemical or electrical

synapse modules. For example, the description that the output from the j-th component of the

module mdl is substituted for the first input of its i-th component through the k-th component of

the chemical (or electric) synapse is

mdl[i] < (syn[k] < mdl[j])(input2);

It is also possible to designate the result of adding the outputs of components of modules to the

input of the component of each module. In this case, we use “+” to link them. For example, the

second input of the i-th component of the cell module mdl is the sum of the output of the n-th

component of mdl through the m-th component of the synaptic module syn and the output of the

l-th component of mdl through the o-th component of syn:

mdl[i] < (input1)(syn[m] < mdl[n] + syn[o] < mdl[l]);

The component of a cell module, which appears in the right-hand side of a relative expression,

should be presented in the most left-hand side of the different relative expression. Note that we

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 96

never use the components of chemical or electrical synapse modules. They necessarily have the

components of cell modules on the input and output sides.

Examples:

connection:

/* Input the output from the 1st component of the

cell module "HH" to the 0th component of "HH"

through the 0th component of the synapse

module "G" */

HH[0] < (G[0] < HH[1]);

/* Input the sum of the output from the 4th

component of the cell module "HH" through

the 4th component of the synapse module "G"

and the output from the 6th component of

"HH" through the 5th component of "G" to

the 5th component of "HH" */

HH[5] < (G[4] < HH[4] + G[5] < HH[6]);

/* 2 inputs to the 10th component of the cell

module "HH":

The 1st input is the output from the 9th

component of "HH" through the 9th component

of the synapse module "G"

The 2nd input is the output from the 0th

component of "CA" through the 0th component

of the synapse module "SYN" */

HH[10] < (G[9] < HH[9])(SYN[0] < CA[0]);

13. function

Characteristics of the module are described by using mathematical expressions. The values of

parameters should be preset before they are used. The mathematical expressions are divided by

semicolons.

IF sentences can be used in function sentences.

if (condition) { sentence1 } [else { sentence2 }]

If the expression condition is true, then sentence1 is executed. Otherwise, sentence2 is performed.

Relative operators for conditional expressions are shown in Table 7.3.

Examples:

/* Descriptions of "INa" and "IK" */

function :

INa = GNa * (V - VNa);

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 97

Table 7.3: Operators for conditional expressions

Operation Operator

parity =
disparity <>

comparison <, >, <=, >=
logical OR .OR.

logical AND .AND.
negation .NOT.

if(V > 10){

IK = GK * (V - VK);

}

else{

IK = 0.;

}

14. Comment

The part contained in “/*” and “*/” is a comment sentence. It is possible to use it anywhere and

exceed two or more lines.

Description of cell type modules

The cell can be described using a membrane model based on the ionic currents. The sentences used in

the cell type module and their order are as follows:

1. type sentence

2. module sentence

3. exinput sentence

4. input sentence

5. output sentence

6. observable sentence

7. constant sentence

8. parameter sentence

9. function sentence

Although it is possible to omit some sentences, their order cannot be changed. See the previous section

for the details on each sentence. The “end;” word is required at the end of the module description.

Example:

/* cell type module */

type: CELL;

module: CL;

exinput: Iex;

input: Ig;

output: V;

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 98

observable: IK, Il, Ig, nK;

constant: VK = -12.0, Vl = 10.6;

parameter: Cm = 1.0, GK = 36.0, Gl = 0.3;

function:

if(V!=10.){

an = 0.01*(10.-V)/(exp((10.-V)/10.)-1);

}else{

an = 0.01*10.;

}

bn = 0.125*exp(-V / 80.);

dnK = an*(1.- nK) - bn * nK;

nk = integral(0.3177, dnK);

IK = GK * pow(nK, 4.) * (V - VK); /* Potassium Current */

Il = Gl * (V - Vl); /* Leak Current */

Iall = Iex - IK - Il + Ig;

dV = Iall/Cm;

V = integral(0., dV); /* Membrane Potential */

end;

Description of chemical synapse type modules

The chemical synapse type module is the module with one input and one output. It can combines two

or more cell type modules. In the description, there is no difference between the chemical synapse type

and the electrical synapse type. The sentences used in the chemical synapse type module and their order

are shown in the following:

1. type sentence

2. module sentence

3. input sentence

4. output sentence

5. observable sentence

6. constant sentence

7. parameter sentence

8. initial sentence

9. function sentence

Although it is possible to omit some sentences, their order cannot be changed. See the previous section

for the details on each sentence. The “end;” word is required at the end of the module description.

Example:

/* synapse type module */

type: SYNAPSE;

module: GABA;

input: P0(0.1, 0);

output: Tr;

parameter: FB = 0.01;

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 99

function:

Tr = P0 /(FB + P0);

end;

Description of electrical synapse type modules

The electrical synapse type module is the module with one input and one output. It can combines two

or more cell type modules. The sentences used in the electrical synapse type module and their order are

shown in the following:

1. type sentence

2. module sentence

3. input sentence

4. output sentence

5. observable sentence

6. constant sentence

7. parameter sentence

8. function sentence

Although it is possible to omit some sentences, their order cannot be changed. See the previous section

for the details on each sentence. Put “end;” word at the end of the module description.

Example:

/* gap type module */

type: GAP;

module: G;

input: VOP(0.1, 0);

output: Ig;

parameter: GL = 5.0;

function:

Ig = GL * (VOP - POSOUT);

end;

Network description

The modules used in the model are defined, and the properties of each component are described using

mathematical expressions. The sentences used in the network type and their order are shown in the

following:

1. type sentence

2. module sentence

3. cell sentence

4. synapse sentence

5. gap sentence

6. connection sentence

Although it is possible to omit some sentences, their order cannot be changed. See the previous section

for the details on each sentence. Put “end;” word at the end of the module description.

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 100

FOR sentences can be used in order to incorporate loops. The format of the FOR sentence is shown

in the following:

for (expr1 ; expr2 ; expr3) {

sentences

}

The expressions, such as substitution, relative operator, and so on, can take the place of expr1, expr2,

and expr3. expr1 is an expression for initializing the loop. sentence is executed if the result of expr2 is

true. Relative operators shown in Table 7.3 can be used in expr2. expr3 is evaluated at the end of every

iteration. In the FOR sentence, the parentheses “{“, “}” are necessary.

Example:

/* Hodgkin-Huxley’s cell model */

type: NETWORK;

module: SQUID;

cell: HH[11];

gap: G[10];

connection:

HH[0] < (G[0] < HH[1]);

for(n = 1; n <= 10; n++){

HH[n] < (G[n-1] < HH[n-1] + G[n] < HH[n+1]);

}

HH[10] < (G[9] < HH[9]);

end;

The description of networks must be at the beginning of the model description file.

7.2.4 Example — Hodgkin-Huxley model

In this section, the programming by the NCS language is explained using a real model. It is the network

model connecting the Hodgkin-Huxley (H-H) models (Table 7.1), as in Figure 7.4.

The sodium current of the H-H model is shown in the following equation.

INa = ḡNa ·m3 · h(V −ENa) (7.1)

dm

dt
= αm(1−m)− βm ·m (7.2)

αm =
0.1(25− V)

exp[(25− V)/10]− 1
(7.3)

βm = 4 exp
(
− V

18

)
(7.4)

dh

dt
= αh(1− h)− βh · h (7.5)

αh = 0.07 exp
(
− V

20

)
(7.6)

βh =
1

exp[(30− V)/10] + 1
(7.7)

ḡNa : Sodium membrane conductance, 120 [mS/cm2]
ENa : Sodium reversal potential, 115 [mV]

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 101

By using the NCS language, Eq.(7.3) and Eq.(7.4) are described as follows:

am = 0.1*(25.-V)/(exp((25.-V)/10.)-1);

bm = 4.*exp(-V/18.);

The value V = 25 [mV]. However, αm has to be rewritten as follows:

if(V != 25.){

am = 0.1*(25.-V)/(exp((25.-V)/10.)-1);

}else{

am = 0.1 * 10.;

}

The gating variable m of the sodium channel is expressed by a differential equation. It can be described

by the following:

dmNa = am * (1. - mNa) - bm * mNa;

mNa = integral(mNa0, dmNa);

Similarly h can be described as follows, from Eq.(7.5), Eq.(7.6), and Eq.(7.7):

ah = 0.07 * exp(-V / 20.);

bh = 1. / (exp((30.-V)/10.) + 1.);

dhNa = ah * (1. - hNa) - bh * hNa;

hNa = integral(hNa0, dhNa);

From Eq.(7.1), the sodium current INa is given by the following:

INa = GNa * pow(mNa, 3.0) * hNa * (V - VNa);

The potassium current is described by following equations:

IK = ḡK · n4(V −EK) (7.8)

dn

dt
= αn(1− n)− βn · n (7.9)

αn =
0.01(10− V)

exp[(10− V)/10]− 1
(7.10)

βn = 0.125 exp
(
− V

80

)
(7.11)

ḡK : Potassium membrane conductance, 36 [mS/cm2]
EK : Potassium reversal potential, -12l [mV]

From Eq.(7.9), Eq.(7.10), and Eq.(7.11), the gating variable n of potassium channel is described in the

same way as the sodium current:

if(V != 10.){

an = 0.01 * (10. - V) / (exp((10. - V) / 10.) - 1.);

}else{

an = 0.01 * 10;

}

bn = 0.125 * exp(-V / 80.);

dnK = an * (1 - nK) - bn * nK;

nK = integral(nK0, dnK);

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 102

From Eq.(7.8), the potassium current IK is given by the following:

IK = GK * pow(nK, 4.0) * (V - VK);

The leak current is defined by the following equation:

IL = ḡL(V −EL) (7.12)

ḡL : Leak-current membrane conductance, 0.3 [mS/cm2]
EL : Leak-current reversal potential, 10.6 [mV]

From the above equation, the description of the leak current is as follows:

Il = Gl * (V - Vl);

The current which crosses a membrane I is given by the following equation:

Cm
dV

dt
= I − INa − IK − IL (7.13)

From Figure 7.4, the total current I is the sum of currents from the neighboring cells through the electrical

synapse Ig and the injection current Iex:

I = Iex − INa − IK − IL + Ig (7.14)

Eq.(7.13) can be transformed as follows:

dV

dt
=

I

Cm
(7.15)

From the above, the description in the NCS language is given by the following:

Iall = Iex - INa - IK - Il + Ig;

dV = Iall / Cm;

V = integral(V0, dV);

The module with the above characteristics is described next. Assume that the “type” is the cell type

and the name is “HH”.

type: CELL;

module: HH;

The external input is the injection current Iex, the input is the current from the adjoining cell Ig , and

the output is the membrane potential V .

exinput: Iex;

input: Ig;

output: V;

The following are observed: Sodium current INa, potassium current IK , leak current IL, and the current

from the adjoining cell Ig .

observable: INa, IK, Il, Ig;

The reversal potential of each ion current, ENa, EK , and EL, is defined as a constant.

constant: VNa = 115.0, VK = -12.0, Vl = 10.6;

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 103

The followings are defined as parameters: membrane capacitance Cm, the initial value of an integration

constant, membrane conductance of each ion ḡNa, ḡK , ḡL.

parameter: Cm = 1.0, mNa0 = 0.05293, GNa = 120., GK = 36.,

Gl = 0.3, hNa0 = 0.5961, nK0 = 0.3177, V0 = 0.;

Above-mentioned descriptions are used for function sentences.

The description of the electrical synapse type module for connecting two cells is shown in the following;

the name is “G”:

type: GAP;

module: G;

Its input is the voltage and its output is the current. The initial value of the voltage is 0 with the delay

time 0.1[s].

input: VOP(0.1, 0);

output: Ig;

The conductance of the electric synapse is defined as a parameter.

parameter: GL = 5.0;

From Figure 7.4, the output current Ig is given by following equation:

Ig = g × (V1 − V2), (7.16)

where V1 and V2 are the voltages at both ends of the electric synapse. Thus, the function sentence is

described as follows:

function:

Ig = GL * (VOP - POSOUT);

Finally, consider the network description. The name of this module is “SQUID”.

type: NETWORK;

module: SQUID;

As shown in Figure 7.4, 11 “HH” cells and 10 “G” synapses are necessary. They are defined as follows:

cell: HH[11];

gap: G[10];

Relationship is described using the FOR sentence.

connection:

HH[0] < (G[0] < HH[0]);

for(n = 1; n <= 10; n++){

HH[n] < (G[n-1] < H[n-1] + G[n] < HH[n+1]);

}

HH[10] < (G[9] < HH[9]);

The description using the NCS language shown in Listing 1 is completed.

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 104

7.3 How to use NCS

This system is implemented in SATELLITE. Batch processing using the batch file or interactive processing

are possible. Refer to the SATELLITE language command reference manual for the details of commands.

The procedure for doing simulations using NCS is as follows:

1. Preparation of a model file.

The file that describes a model using the NCS language should be made. See §7.2 for further details

of the description method by the NCS language.

2. Registration of a model file.

The name of a model description file for simulation should be defined. After the definition, NCS

carries out the processing.

3. Preparation of an execution and a simulation condition file.

After starting the preprocessor and linking the registered model file, the execution file and the

simulation condition file group are created.

4. Setting simulation conditions.

The followings are set for the simulation: The simulation time, the external input variables, output

variables, etc.

5. Execution of the simulation.

The simulation is executed.

6. Display and analysis of the simulation results.

The results obtained by the simulation are graphically displayed.

By referring to the simulation using the model description shown in Listing 1, the detail of this procedure

are described in the next subsections.

7.3.1 Preparation of a model file

We can describe a model file with the specifications of the NCS language. “.mdl” should be the end of

the name of the model file. Using the NE command, an editor is executed for the model file which is

registered by the NASSIGN command (see §7.3.2). The default is “vi” editor. It can be changed by

setting the environmental variable EDITOR of UNIX.

7.3.2 Registration of a model file

Starting the preprocessor by the NPP command (see §7.3.3) and execution file by the NLINK command

are done for the model file registered in the work area of SATELLITE. The model must be registered in

order to carry out the simulation using the NCS. The registration is made by the NASSIGN command or

the NPP command (see §7.3.3). The NASSIGN command takes the model file name as its argument,

and registers the model file with the given name. In the model file name, there is no need to add “.mdl”.

[]SATELLITE[]~tom/rose:[50]% nassign("hhmodel") ←↩

In the above example, “hhmodel.mdl” is registered as a model file.

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 105

7.3.3 Preparation of an execution and a simulation condition file

After the execution of the NPP command, the preprocessor is started, and the model file described in

the NCS language is converted into the source file of C language including the simulation condition file

group.

[]SATELLITE[]~tom/rose:[51]% npp() ←↩

The NPP command can take the model file name as its argument, even if it is not registered by

NASSIGN. There is no necessity to add “.mdl” in this case. “hhmodel.mdl” is registered as a model

file and the preprocessor is started by the following:

[]SATELLITE[]~tom/rose:[51]% npp("hhmodel") ←↩

After executing NPP, the execution file is made by the NLINK command for compiling the source file

of C language and linking it with the library in NCS.

[]SATELLITE[]~tom/rose:[52]% nlink("-O2") ←↩

The argument of NLINK “-O2” is the optimization level for compilation. The cc command of UNIX is

used for compiling and linking. Refer to the manual of UNIX for further details.

7.3.4 Setting simulation conditions

Several conditions necessary for carrying out the simulation are required to set. Some of them are already

set in the model file at the point when the NPP command is executed.

The commands for the simulation conditions described in the following overwrite the simulation condi-

tion file, which is generated by NPP. That is, NPP must be executed before the execution of simulation

condition commands. If the simulation condition commands are not executed before NPP, the following

error message is displayed:

sl: Error [<NCS:nout> No.1] :

Improper Model File Name in near line <n>

The conditions are initialized when NPP is executed again.

Simulation time conditions

Simulation time conditions are set by the NTIME command. The format of NTIME is as follows:

Description) ntime(last, cal, str, itv)

Arguments) 1. last : Simulation time
2. cal : Calculation intervals
3. str : Sampling intervals
4. itv : Storing intervals

last is the time when the simulation ends. cal is the time interval used for numerical calculation. Since

the error, convergence speed, and the execution time of the simulation depend on this value , it should

be set to the appropriate value. str is the time interval for monitoring the calculation results. itv is the

time interval for storing the execution results to the buffer designated by the NOUT command. The

simulation time is dramatically prolonged when this value is too small. The unit of each argument is

[msec]. For example, to set the simulation time to 10[msec], the interval of calculation to 0.001[msec],

the interval of sampling to 0.01[msec], and the interval of storing to 1[msec], the following is required:

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 106

p

p

p
p

p

t

y

1

2

3

4

5

Figure 7.7: Pulse function.

p

p

p =

a

b

t

y

b
a

1

2

3

Figure 7.8: Ramp function.

[]SATELLITE[]~tom/rose:[53]% ntime(10, 0.001, 0.01, 1) ←↩

The simulation time conditions can be displayed by setting “T” as the argument of the NSCLIST

command.

[]SATELLITE[]~tom/rose:[54]% nsclist(T) ←↩

TIMER

Last Time = 10

Calc. Step = 0.001

Store Step = 0.01

BufferStep = 1

External input conditions

Conditions for the external input are set by the NSTIM command. NSTIM has the format that requires

the module name, the component number, and the input waveform. The followings are prepared for the

input waveform: Pulse function, ramp function, optional function from a file, and a function from a

buffer. The format is shown in the following:

Description) nstim(mdul, com, type, p1[, p2, p3, p4, p5])

Arguments) 1. mdul : Module name
2. com : Component number
3. type : Function type for input

P — Pulse function
R — Ramp function
F — Input from a file
B — Input from a buffer

4. p1 ... p5 : parameters (depending on type)

type p1 p2 p3 p4 p5

P Start time Initial value Height Width Period
R Start time Initial value Steepness
F File name Buffer no.
B Buffer name

The module with the name specified by this command must have the description of the external input

(using the exinput sentence). Setting to input pulse function of the 0th component of the module with

the name “HH” is carried out by the following:

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 107

[]SATELLITE[]~tom/rose:[55]% nstim("HH",0,P,1,0,100,3,999) ←↩

The conditions on the external input can be displayed by setting “S” as the argument of the NSCLIST

command.

[]SATELLITE[]~tom/rose:[56]% nsclist(S) ←↩

EXINPUT

EXTERNAL INPUTS

Data No. Component Function Data No.

1 HH(0) 1

No. 1 Function start_tm init_out height width period

< PULSE> [1] [0] [100] [3] [999]

Output conditions

The output conditions are set by the NOUT command. NOUT has the buffer name which stores output

values, the module name, the component number, and the attributes of output as the arguments. If the

output attribute is the internal variable, its name must be set as the argument. The format of NOUT

is shown in the following:

Description) nout(buff, mdl, com, type [, val])

Arguments) 1. buff : Buffer name for storing output values
2. mdl : Module name
3. com : Component number
4. type : Attribute of output

1 — Output value
2 — Input value
3 — Internal variable’s value

5. val : Variable name if type = 3

“Output value” is the value of the variable designated in the output sentence in the description of the

module with the name “mdl”. The value of the variable in the exinput sentence is “input value”. For

example, to set the input value of the 0th component of the module with the name “HH” as an output to

the buffer Iin is done as follows:

[]SATELLITE[]~tom/rose:[58]% nout(Iin,"HH",0,2) ←↩

To set the output value of the 0th component of the module “HH” as an output to the buffer V is carried

out as follows:

[]SATELLITE[]~tom/rose:[59]% nout(V,"HH",0,1) ←↩

To set the value of the internal variable INa of the 0th component of the module “HH” as an output to

the buffer INa0 is done by the following:

[]SATELLITE[]~tom/rose:[60]% nout(INa0,"HH",0,3,"INa") ←↩

The buffer which stores output values must be defined as Series type before the execution of the NOUT

command. For example, the buffers Iin, V, INa0 should be defined as follows:

[]SATELLITE[]~tom/rose:[57]% series Iin, V, INa0 ←↩

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 108

The conditions on the output can be displayed by setting “O” as the argument of the NSCLIST command.

[]SATELLITE[]~tom/rose:[61]% nsclist(O) ←↩

OUTPUT

Variable(Num) [index] OUTPUT VARIABLE

Iin(84) [0] EX.INPUT OF HH(0)

V(83) [0] OUTPUT OF HH(0)

INa0(87) [0] INa OF HH(0)

Change of the parameter values

The parameter values can be changed by the NPARA command. The format of NPARA is shown in

the following:

Description) npara(mdl, var, num)

Arguments) 1. mdl : Module name
2. var : Parameter name
3. num : Parameter value to set

For execution of the NPARA command, it is required to define the variable var of the module mdl in

the description of the model file by the parameter sentence.

[]SATELLITE[]~tom/rose:[62]% npara("HH", "Cm", 1.2) ←↩

The values that are changed by NPARA command are available until the simulation condition file is

initialized by command such as NPP.

It is possible to display the present parameter values by the NLIST command.

[]SATELLITE[]~tom/rose:[63]% nlist("HH") ←↩

Parameter List

Module name : HH

Cm = [1.2]

mNa0 = [0.05293]

GNa = [120]

GK = [36]

Gl = [0.3]

NLIST has the module name as its argument, and the parameter values of the module are displayed.

When “-ALL” is set as the argument, the parameter values of all modules are shown, as follows:

[]SATELLITE[]~tom/rose:[64]% nlist("-ALL") ←↩

Parameter List

Module name : HH

Cm = [1.2]

mNa0 = [0.05293]

GNa = [120]

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 109

GK = [36]

Gl = [0.3]

Module name : G

GL = [5]

Change of the delay

We can change the delay by the NDELAY command. The format of NDELAY is shown in the following:

Description) ndelay(mdl, var, dt [, init])

Arguments) 1. mdl : Module name
2. var : Internal variable’s name
3. dt : Delay time
2. init : Initial value of output

The delay of the internal variable VOP of a module with the name “G” is changed by the following:

[]SATELLITE[]~tom/rose:[65]% ndelay(G,VOP,0.25) ←↩

If the delay is added to the electrical/chemical synapse module, it is impossible to use the integration

with adaptive calculation steps, which is the default of integration in NCS. Therefore, we have to choose

another integration algorithm by NINTEG command.

The delay condition can be displayed by setting “D” as the argument of the NSCLIST command as

follows:

[]SATELLITE[]~tom/rose:[66]% nsclist(D) ←↩

DELAY

DELAY INFORMATION

Data No., Input Name, Delay Time, Initial Output

1 G(VOP) 0.25 0

Selection of the numerical integration algorithm

The algorithm with adaptive calculation steps is used for numerical integration. NCS provides also

Runge-Kutta and Euler methods. They can be used by the NINTEG command . The format is shown

in the following:

Description) ninteg(type [, mcell, relerr])

Arguments) 1. type : Integration algorithm
F — With adaptive calculation steps
R — Runge-Kutta method
E — Euler method

2. mcell : Maximum number of cells
3. relerr : Relative accuracy of integration

If the delay condition is added to the electrical/chemical synapse module, it is impossible to use the

integration with adaptive calculation steps, which is the default of integration in NCS. Therefore, we

have to choose another integration algorithm in this case, that is, Runge-Kutta or Euler.

[]SATELLITE[]~tom/rose:[67]% ninteg(R) ←↩

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 110

7.3.5 Execution of simulation

The simulation is executed by the NCAL command, after the simulation conditions are set.

[]SATELLITE[]~tom/rose:[11]% ncal() ←↩

The following message is displayed when NCAL is executed:

NCS Ver.6.8.3 SIMULATION PROGRAM on Sun

>>NOW CALCULATING...WAIT FOR A TIME, PLEASE!! << 0.0% done.

0.0% stands for the percentage of the completed calculation. If it reaches 100%, the following message is

displayed:

NCS Ver.6.8.3 SIMULATION PROGRAM on Sun

>>THE CALCULATION HAS FINISHED.............!! << 100.0% done.

[]SATELLITE[]~tom/rose:[12]%

The simulation finished and the shell is waiting for another command.

7.3.6 Use of batch file

The above procedure can be described in a batch file. We can execute it by using the INLINE command:

inline("batch file name")

The example of the batch file for the simulation using the model file hhmodel.mdl is shown in List 2.

When the name of this file is set to be “hhmodel.sl”, the execution of the simulation can be performed

as follows:

[]SATELLITE[]~tom/rose:[13]% inline("hhmodel.sl") ←↩

1 series V, Iin, INa0;

2 nassign("hhmodel"); # assign model file

3 npp(); # run the preprosessor

4 nlink("-O2"); # making simulation program

5 ntime(10,0.001,0.01,1); # set simulation time

6 nstim("HH",0,"P",1,0,100,3,999); # set external input variable

7 nout(Iin,"HH",0,2); # set output variable

8 nout(V,"HH",0,1);

9 nout(INa0,"HH",0,3, "INa");

10 ninteg("R"); # set integral method

11 ncal(); # run simulation program

List 2: Example of the simulation batch file.

CHAPTER 7. NEURAL CIRCUIT SIMULATOR — NCS 111

7.3.7 Display and analysis of simulation results

The calculation results are stored in the buffers specified by the NOUT command. The other system

modules of SATELLITE can carry out the graphical representation and analysis.

For example, the simulation results from hhmodel.sl are displayed as a graph using the system module

GPM (see Chapter 4), as follows:

[]SATELLITE[]~tom/rose:[14]% wopen(1,"A4",0,0) ←↩

[]SATELLITE[]~tom/rose:[15]% graph(V,"T",0,0,0,0,0) ←↩

[]SATELLITE[]~tom/rose:[16]% axis(1,1,"XY","XY",3.5,0,0,0,0,0) ←↩

0.0 200.0 400.0 600.0 800.0 1000.0

0.
0

20
.0

40
.0

60
.0

80
.0

10
0.

0

Figure 7.9: Example of a simulation result.

