
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

10 Deadlock Revisited: Circular Structures
In previous chapters the concept of a client-server design pattern has been introduced and then it has been

applied to a number of simple examples. The primary requirement of the pattern is that any resulting

network should not contain any circuits of client and server labels. Needless to say, that if we have a ring

of processes then a circuit is inevitable. Hence, we shall investigate a ring of processes to explore how,

even though the client-server pattern cannot be applied, we can construct a system that is deadlock free.

The aim of the application is to construct a message passing structure from one node to another by

providing a set of message passing elements that connect each node to the next. The simplest way of

doing this is to create a ring of message passing nodes to which message sender and receiver processes

are attached to each node. Figure 10-1 shows the basic structure with a client-server labelling that

demonstrates immediately that deadlock will occur, even ignoring the effect of the Sender and receiver

processes. It is obvious that the set of channels that connect the Ring Element processes has to be broken

in some way. Deadlock will occur trivially when every Ring Element attempts to either input or output a

message at the same time. Thus we have to find a way of breaking the ring

Figure 10-1 The Basic Message passing System

10.1 A First Sensible Attempt

The simplest way of the breaking the ring of channels connecting the Ring Element processes is to add

another element to the ring which does the input and output operations in a different order to that

undertaken by the Ring Elements. This will mean that there is at least one element on the ring that is

s

c

c

s

…..

Ring

Element

Sender

Receiver

Ring

Element

Sender

Receiver

s

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

always able to undertake an input operation if all the other Ring Elements are trying to output to the ring.

This is shown in Figure 10-2.

Figure 10-2 Adding the Extra Ring Element

The client-server labelling has not altered and still indicates a problem but we now know that the Extra

Ring Element undertakes its input – output operations in a different order to the Ring Elements. The

behaviour of a Ring Element is shown in Listing 10-1.

01 def RING = 0
02 def LOCAL= 1
03 def ringAlt = new ALT ([fromRing, fromLocal])
04 while (true) {
05 def index = ringAlt.priSelect()
06 switch (index) {
07 case RING:
08 def packet = (RingPacket) fromRing.read()
09 if (packet.destination == element) {
10 toLocal.write(packet)
11 }
12 else {
13 toRing.write (packet)
14 }
15 break
16 case LOCAL:
17 def packet = (RingPacket) fromLocal.read()
18 toRing.write (packet)
19 break

Listing 10-1 The Ring Element Process Behaviour

A Ring Element alternates over inputs from the ring and from its local sender process {3}. In a loop {4}

it determines the enabled alternative, giving priority to inputs from the ring {5}. An enabled input from

the ring is read {8} as a RingPacket, and if the message is for this element, it is written to the local

receiver {10}, otherwise it is written to the ring for onward transmission. If the enabled alternative is an

input from the local sender then it is read {17} and written to the ring {18}.

The behaviour of the Extra Ring Element is shown in Listing 10-2.

20 def packet = new RingPacket (source:-1, destination:-1,
21 value:-1, full: false)
22 while (true) {
23 toRing.write(packet)
24 packet = (RingPacket) fromRing.read()

Listing 10-2 The Behaviour of the Extra Ring Element

c

s

Extra Ring

Element

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

Given that the Ring Elements initially input from the ring, or local Sender process then the Extra Ring

Element has to output a packet, so that a Ring Element has a packet to read. A RingPacket is defined

{20, 21} which is then written to the ring {23}. Thereafter the process simply reads a RingPacket from

the ring {24} and then outputs it to the ring {23}. The empty packet will continue to circulate forever.

10.1.1 Evaluation

The accompanying web site contains a version of this first attempt c12.examples.Runv0.groovy that

has print statements inserted within it to show the effect of this solution formulation. The user is able to

indicate the number of nodes in the network when the system is executed. The messages received by

each receiver process are displayed using a GEclipseConsole process. A network with 4 nodes will

additionally have the extra node numbered as node 0. The output changes with each execution of the

network but never terminates. In a 4 node system each node should receive 3 messages from each of the

other nodes, that is, each should receive 9 messages. Typically, no node receives all its messages and

some nodes receive no messages. Inspection of the system console print messages indicates that the extra

node does indeed output its empty packet and that this read by the next node in the ring. This means that

the other nodes have no input on their ring input channels and so they read a message from their local

sender process. The sender processes attempt to send their messages as quickly as possibly. This then

has the effect of sending many messages on to the ring, which at some stage may deadlock when every

node, including the extra node attempt to undertake an input or an output operation. Just when this occurs

depends on the particular execution sequence. It is obvious that we have to find a way of managing the

number of messages in the ring.

10.2 An Improvement

A simple improvement can be seen quite easily. If a node sends a message to another node on behalf of

its local node then the receiving node undertakes to send a message back to the original source that the

message has been read. This means that each node can only ever have one packet on the ring at any one

time. On the first part of its journey it contains the desired message and then once it has been processed

by the destination node it is returned with an empty flag. The definition of the RingPacket used to send

messages around the system is shown in Listing 10-3. The property source {26} gives the number of the

node that sent the message and destination {27} is the node to which it is to be sent. The actual

message is contained in the property value {28} and the Boolean full {29} indicates whether the packet

contains a message or is just an empty packet. A toString method (not shown) is provided to enable

printing of the packet on the console window and also on the GEclipseConsole processes.

25 class RingPacket implements Serializable, JCSPCopy {

26 def int source
27 def int destination
28 def int value
29 def boolean full

30 def copy () {
31 def p = new RingPacket(source: this.source, value: this.value,
32 destination: this.destination, full: this.full)
33 return p
34 }
35 }

Listing 10-3 The RingPacket Class definition

A first running, c12.examples.Runv1.groovy, of this modification typically results in even worse

performance than the initial version. On reflection this is obvious. The Extra Ring Element process still

outputs an empty packet onto the ring and thus there will be no space for the messages to rotate around

the ring. The solution is to modify the Extra Ring Element process so that it provides an empty space on

the ring of nodes so that a communication can take place. This does mean that the Extra Ring Element

has to read and then write a packet. This behaviour is shown in Listing 10-4.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

36 while (true) {
37 def packet = (RingPacket) fromRing.read()
38 toRing.write(packet)
39 }

Listing 10-4 The Modified Behaviour of The Extra Ring Element

The execution of c12.examples.Runv1a.groovy now results in the proper operation of the network

with all Receivers getting and outputting the expected messages. The solution does however have some

limitations in that only one packet is ever in circulation for each node as shown in the behaviour given in

Listing 10-5.

The solution uses alternative pre-conditions to control the input of message from the ring or from the

local sender {40-43}. Initially, messages can be input either from the ring or from the local sender {44,

45}. The index of the enabled alternative is determined using a select method call {47}.

For messages read from the ring {50}, it is first determined whether the message has its destination at

this element {51}. It is then necessary to determine whether or not the packet is full {52}. If the

packet is full then we can write a copy of the packet to the local receiver process {53}. After which we

can update the content of the packet for its return journey to its originating node, because a copy was

written to the local receiver process. The destination and source properties of the packet are updated

accordingly {54, 55}, the packet.full indication is set false {56} and the revised packet written to the

ring {57}. If the received packet is not full {59} then this is a returned packet and the ring element

process can now input a message from its local sender, requiring an update to the associated pre-condition

{60}. If the initial packet was not destined for this node element {63} then it is simply written to the ring

{64}.

Messages read from the local sender process {68} are immediately written to the ring {69} and the pre-

condition controlling input from the local sender is set false. As described above, this pre-condition will

only be set true, when the returned empty packet has been received.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

40 def RING = 0
41 def LOCAL= 1
42 def ringAlt = new ALT ([fromRing, fromLocal])
43 def preCon = new boolean[2]
44 preCon[RING] = true
45 preCon[LOCAL] = true

46 while (true) {
47 def index = ringAlt.select(preCon)
48 switch (index) {

49 case RING:
50 def packet = (RingPacket) fromRing.read()
51 if (packet.destination == element) {
52 if (packet.full) {
53 toLocal.write(packet.copy())
54 packet.destination = packet.source
55 packet.source = element
56 packet.full = false
57 toRing.write(packet)
58 }
59 else {
60 preCon[LOCAL] = true
61 }
62 }
63 else {
64 toRing.write (packet)
65 }
66 break

67 case LOCAL:
68 def packet = (RingPacket) fromLocal.read()
69 toRing.write (packet)
70 preCon[LOCAL] = false
71 break
72 }
73 }

Listing 10-5 The Ring Element That Expects A Returned Empty Packet

10.2.1 Evaluation

This solution, though functional, does still have some performance limitations in that an element has to

wait for a sent packet to be returned before the next message can be sent. This means that on average half

the network is filled with empty packets. The next solution removes this restriction by allowing the reuse

of an empty packet if a node is ready to send a message from its local sender process.

10.3 A Final Resolution

The behaviour shown in Listing 10-6 shows the behaviour modification required to use an empty packet,

as it passes through a node that is ready to output a local message. The set up of the preconditions and

the alternative are the same as the previous version {74-79}. An emptyPacket is defined {80, 81} as is a

buffer {82} to hold messages from the local sender process. A Boolean flag, localBufferFull {83} is

used to signify whether or not the localBuffer is full. The first thing each RingElement node does is to

output an emptyPacket {84}, which has the effect of initialising the system. In general, this initial empty

packet will only pass as far as the next node, which by then will have input a message from its local

sender and will thus be able to use this empty packet. The extra element has the revised behaviour given

in Listing 10-4. As before, the index of the enabled alternative is determined {86) and the appropriate

case selected {87}.

If the selected alternative is to read an input packet from the local sender process {117} this is read into

the localBuffer {118}, the pre-condition flag for this alternative is set false {119} and the

localBufferFull flag set true{120}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

74 def RING = 0
75 def LOCAL= 1
76 def ringAlt = new ALT ([fromRing, fromLocal])
77 def preCon = new boolean[2]
78 preCon[RING] = true
79 preCon[LOCAL] = true

80 def emptyPacket = new RingPacket (source: -1, destination: -1 ,
81 value: -1 , full: false)
82 def localBuffer = new RingPacket()
83 def localBufferFull = false
84 toRing.write (emptyPacket)

85 while (true) {
86 def index = ringAlt.select(preCon)
87 switch (index) {

88 case RING:
89 def ringBuffer = (RingPacket) fromRing.read()
90 if (ringBuffer.destination == element) {
91 toLocal.write(ringBuffer)
92 if (localBufferFull) {
93 toRing.write (localBuffer)
94 preCon[LOCAL] = true
95 localBufferFull = false
96 }
97 else {
98 toRing.write (emptyPacket)
99 }
100 }
101 else {
102 if (ringBuffer.full) {
103 toRing.write (ringBuffer)
104 }
105 else {
106 if (localBufferFull) {
107 toRing.write (localBuffer)
108 preCon[LOCAL] = true
109 localBufferFull = false
110 }
111 else {
112 toRing.write (emptyPacket)
113 }
114 }
115 }
116 break

117 case LOCAL:
118 localBuffer = fromLocal.read()
119 preCon[LOCAL] = false
120 localBufferFull = true
121 break
122 }
123 }

Listing 10-6 The Final Ring Element Process

If the selected alternative relates to an input from the ring then the message packet is read into a

ringBuffer {89} and the subsequent processing is determined by the state of that message. If the

destination of the message is for this node {90} then the message is written to the local receiver

process {91}. This means that the node can output the localBuffer to the ring if it is full and update the

flags associated with the buffer {92-95}; otherwise an emptyPacket is written to the ring {98}. If the

ringBuffer does not have this node as its destination {101} then if the ringBuffer is full it is simply

written to the ring {103}, otherwise the localBuffer is processed in the way described previously {106-

112}.

10.3.1 Evaluation

This final version has resulted in a solution that routes messages around a circular network, which is

inherently prone to deadlock. This version does not suffer from the drawbacks of the previous solution in

that an empty packet only travels around the network until it comes to a node that needs to send a

message from its localBuffer to another node. An argument has been presented that explains why

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

deadlock will not occur because client-server label does not provide a categorical solution and

furthermore indicates that deadlock will occur.

10.4 Summary

This chapter has analysed a set of processes that inherently tend to deadlock. Two algorithms have been

developed that overcome the problems. The benefit of one solution over the other has been explained,

though this is difficult to measure unless the system is run over a real network, where each Ring Element

process can be placed on a specific processor of that network.

