
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

12 Dining Philosophers: A Classic Problem
This problem first formulated by Dijkstra is cited by Hoare in his original paper on Communicating

Sequential Processes []. Tantalisingly, Hoare presents the problem and a partial solution leaving it up to

the reader to finish the solution. The problem was formulated at a time in the mid-1970’s when computer

manufacturers were having a great deal of difficulty in building operating systems that were correct and

could withstand continued use. Typical problems that had to be overcome were deadlock between

different tasks and other tasks being starved of resources; exactly the same problems that the client-server

design pattern solves.

The problem has the following statement. Five philosophers spend their lives thinking and eating. They

share a common dining room in their college where there is a circular table surrounded by five chairs,

each is assigned to one of the philosophers. In the centre of the table there is a large bowl of spaghetti.

The table is set with five forks each one assigned to a specific philosopher. On feeling hungry the

philosopher enters the room, sits in his own chair and picks up his fork, which is to his left hand. The

spaghetti is so tangled that he needs to use the fork to his right hand side as well. When he has finished

eating he replaces both forks and leaves the room. The college has provided a butler who ensures that the

bowl of spaghetti is always full and can carry out other duties as necessary such as washing-up and

guiding philosophers to their own seat.

It is apparent that the critical aspect of this problem is in the management of the forks. If a philosopher is

never able to pick up the fork to their right then they will never be able to eat and will thus exhibit

starvation or as we have termed it, livelock. Similarly, if all the philosophers enter the room at the same

time and each picks up their own left fork none of them will be able to pick up their neighbour’s fork to

their right and thus deadlock will ensue as none of the philosophers will ever be able to eat.

12.1 Naïve Management

The behaviour of a philosopher is relatively simple and is captured in Listing 12-1. A Philosopher can

access their own leftFork {3}, and their neighbour’s as their rightFork {4} they can also enter {5}

into or exit {6} from the room. A set of output channels is provided for each Philosopher so they can

indicate their intentions. A philosopher is identified by a property id {7}. The behaviour of each

philosopher will be governed by a timer {9}. A method, action, has been provided {11-14} that prints

the current action of a philosopher and also makes them wait for a specified period. A Philosopher is

initially thinking for 1 second {18}, after which they enter the room {19}. They then indicate they are

picking up their left fork by means of a signal {21} and similarly for their right fork {23}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

01 class Philosopher implements CSProcess {
02
03 def ChannelOutput leftFork
04 def ChannelOutput rightFork
05 def ChannelOutput enter
06 def ChannelOutput exit
07 def int id
08
09 def timer = new CSTimer()
10
11 def void action (id, type, delay) {
12 println "${type} : ${id} "
13 timer.sleep(delay)
14 }
15
16 def void run() {
17 while (true) {
18 action (id, " thinking", 1000)
19 enter.write(1)
20 println "${id}: entered"
21 leftFork.write(1)
22 println "${id}: got left fork"
23 rightFork.write(1)
24 println "${id}: got right fork"
25 action (id, " eating", 2000)
26 leftFork.write(1)
27 println "${id}: put down left"
28 rightFork.write(1)
29 println "${id}: put down right"
30 exit.write(1)
31 println "${id}: exited"
32 }
33 }
34 }

Listing 12-1The Behaviour of a Philosopher

They are then eating for 2 seconds {25}, after which they put down their left fork {26}, then their right

fork {28} and then they leave the room {30} to resume thinking {18}.

A Fork, Listing 12-2, can either be picked up from the right or the left depending upon which Philosopher

has sat down. These are indicated by a signal on the appropriate channel, left {37}, or right {38}.

35 class Fork implements CSProcess {
36
37 def ChannelInput left
38 def ChannelInput right
39
40 def void run () {
41 def fromPhilosopher = [left, right]
42 def forkAlt = new ALT (fromPhilosopher)
43 while (true) {
44 def i = forkAlt.select()
45 fromPhilosopher[i].read() //pick up fork i
46 fromPhilosopher[i].read() //put down fork i
47 }
48 }
49 }

Listing 12-2 The Fork Behaviour

An alternative is constructed, forkAlt {41, 42}. Once a fork has been picked up by a philosopher it can

only be put down by that philosopher, thus all we have to do is process the signal indicating the picking

up of the fork {45} and then wait for the signal indicating that it has been put down {46}.

The college has employed a lazy butler who simply notes the entries and exits to the dining room and

does little else apart from washing the forks and replenishing the bowl of spaghetti. The latter actions are

of no concern. The behaviour of the LazyButler is shown in Listing 12-3.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

50 class LazyButler implements CSProcess {
51
52 def ChannelInputList enters
53 def ChannelInputList exits
54
55 def void run() {
56 def seats = enters.size()
57 def allChans = []
58
59 for (i in 0 ..< seats) { allChans << exits[i] }
60 for (i in 0 ..< seats) { allChans << enters[i] }
61
62 def eitherAlt = new ALT (allChans)
63
64 while (true) {
65 def i = eitherAlt.select()
66 allChans[i].read()
67 }
68 }
69 }

Listing 12-3 The Lazy Butler’s Behaviour

The channels used to signal the entry and exit from the room are passed to the LazyButler as

ChannelInputLists enters {52} and exits {53}. The number of seats in the dining room can be

determined by the size of the list enters {56}. A list of all the channels, allChans {57} is defined to

which each of the elements of the exits and enters lists are appended {59, 60}. An alternative,

eitherAlt is defined over allChans {62} and as signals are received {65} on any of the channels they

are read {66} and ignored by the lazy butler.

The college, believing this to be a sufficient solution, implements it as shown in Listing 12-4.

70 def PHILOSOPHERS = 5
71
72 One2OneChannel[] lefts = Channel.createOne2One(PHILOSOPHERS)
73 One2OneChannel[] rights = Channel.createOne2One(PHILOSOPHERS)
74 One2OneChannel[] enters = Channel.createOne2One(PHILOSOPHERS)
75 One2OneChannel[] exits = Channel.createOne2One(PHILOSOPHERS)
76
77 def entersList = new ChannelInputList(enters)
78 def exitsList = new ChannelInputList(exits)
79
80 def butler = new LazyButler (enters: entersList, exits: exitsList)
81
82 def philosophers = (0 ..< PHILOSOPHERS).collect { i ->
83 return new Philosopher (leftFork: lefts[i].out(),
84 rightFork: rights[i].out(),
85 enter: enters[i].out(),
86 exit: exits[i].out(), id:i) }
87
88 def forks = (0 ..< PHILOSOPHERS).collect { i ->
89 return new Fork (left: lefts[i].in(),
90 right: rights[(i+1)%PHILOSOPHERS].in()) }
91
92
93 def processList = philosophers + forks + butler
94
95 new PAR (processList).run()

Listing 12-4 The College's Lazy Implementation

The number of PHILOSOPHERS is defined {70} and then each of the required channel arrays {72-75} and

corresponding channel lists {77, 78} are defined. The butler and collection of philosophers are

defined, passing channel parameters as required {82 – 86}. The collection of forks is then defined {88-

90} noting that the same fork can be accessed as the left fork of the i’th philosopher and the right fork of

the i+1’th philosopher {90}, using modulo arithmetic to ensure the subscripts stay in range. Execution of

this scheme produces the output shown in Output 12-1.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

 thinking : 1
 thinking : 2
 thinking : 3
 thinking : 4
 thinking : 0
1: entered
2: entered
3: entered
4: entered
0: entered
2: got left fork
3: got left fork
1: got left fork
4: got left fork
0: got left fork

Output 12-1Operation Of The Lazy College

As can be observed, all the philosophers think, then enter the dining room and then they each pick up

their left fork after which no further progress is possible. Faced with this situation the college reflects on

their operation and decides that the butler has to be more proactive in managing the dining room.

12.2 Proactive Management

The butler is now required to ensure that no more than four of the philosophers are in the room at any one

time. This guarantees that at least one of the philosophers will be able to pick the single spare fork on

their right hand side. The required behaviour of the butler is shown in Listing 12-5.

The first part of the behaviour up to {109} is identical to that of the LazyButler except that a variable

seated has been defined {103}, which counts the number of philosophers already sitting. In addition, an

extra alternative, exitAlt {110} is defined over the exits only. Initially, the butler determines whether

there are at least two spare seats in the room {113}, in which case there is space for another philosopher

to enter and start eating. In this case we can accept an input on any of the channels, allChans, managed

by the butler. If there is no space then we can only accept inputs from philosophers wishing to exit the

room. The alternative to use is determined based on the value of space {114}. An enabled input is then

selected {115} and read {116}. It is important to note that allChans contains the exits channels first

so that we can read exit signals from allChans; regardless of which alternative is used. We can

determine whether or not this instance results from a philosopher exiting or entering the room by testing

the index of the read channel, i, against the number of seats {118} and updating the number of

philosophers seated accordingly.

The college is very relieved to discover that this simple change of butler behaviour is sufficient to remedy

the situation provided they replace the invocation of the LazyButler by the Butler on line {80} of

Listing 12-4.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

96 class Butler implements CSProcess {
97
98 def ChannelInputList enters
99 def ChannelInputList exits
100
101 def void run() {
102 def seats = enters.size()
103 def seated = 0
104
105 def allChans = []
106 for (i in 0 ..< seats) { allChans << exits[i] }
107 for (i in 0 ..< seats) { allChans << enters[i] }
108
109 def eitherAlt = new ALT (allChans)
110 def exitAlt = new ALT (exits)
111
112 while (true) {
113 def space = seated < (seats - 1)
114 def usedAlt = space ? eitherAlt : exitAlt
115 def i = usedAlt.select()
116 allChans[i].read()
117 def exiting = i < seats
118 seated = exiting ? seated - 1 : seated + 1
119 }
120 }
121 }

Listing 12-5 The Modified Butler Behaviour

Output from the modified butler behaviour is shown in Output 12-2. It can be seen that all bar

Philosopher 0 enter the room and that means that Philosopher 1 and 2 can eat at the same time. When

Philosopher 1 finishes eating and leaves the room to resume thinking, Philosopher 3 is now able to eat.

Further analysis shows that there are two Philosophers eating most of the time as should be expected.

Thinking appears to be a solitary activity!

 thinking : 0
 thinking : 1
 thinking : 2
 thinking : 3
 thinking : 4
1: entered
2: entered
3: entered
4: entered
1: got left fork
2: got left fork
3: got left fork
4: got left fork
1: got right fork
 eating : 1
2: got right fork
 eating : 2
1: put down left
1: put down right
0: entered
0: got left fork
1: exited
 thinking : 1
2: put down left
3: got right fork
 eating : 3

Output 12-2 Modified Behaviour

12.3 A More Sophisticated Canteen

In an effort to provide a better service the college decides that, rather than having a single dinning room

with its somewhat limited eating facilities, it is going to invest in a canteen style food facility.

Philosophers will be allowed to enter the canteen, go to a serving hatch, pick up their food, in the form of

a chicken, without having to wait, in fact waiting will not be allowed and then go into the canteen to find

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

a place to sit. The college authorities guarantee that there will be sufficient places for every one to sit and

that nothing else can go wrong. They are so confident that they allow any number of philosophers to

enter the canteen. To this end they have decided that a visual display will be provided showing the state

of the kitchen, in which the chef cooks the chickens, the state at the serving hatch and they have also

installed monitoring devices that shows the action each philosopher is currently undertaking.

The chef is capable of cooking four chickens at a time but it does take time for them to cook and also to

take them to the serving hatch. This is shown in Listing 12-6.

122 class Chef implements CSProcess {

123 def ChannelOutput supply
124 def ChannelOutput toConsole

125 def void run () {
126 def tim = new CSTimer()
127 def CHICKENS = 4
128 toConsole.write("Starting ... \n")

129 while(true){
130 toConsole.write("Cooking ... \n")
131 tim.after (tim.read () + 2000)
132 toConsole.write("${CHICKENS} chickens ready ... \n")
133 supply.write (CHICKENS)
134 toConsole.write("Taking chickens to Canteen ... \n")
135 supply.write (0)
136 }
137 }
138
139 }

Listing 12-6 The Chef's behaviour

The supply channel {123} is used to indicate to the canteen how many chickens are about to arrive. The

toConsole channel {124} is used to write information on the display. It takes 2 seconds to cook the

chickens {131} with appropriate messages output to the console. The number of chickens is sent on the

supply channel to the canteen {133}. The write to the supply channel {135} is used to represent the

point at which the chickens have been transferred to the serving hatch as can be seen in Listing 12-7.

The canteen receives requests for a chicken from a philosopher on the service channel {141} and

notification of its availability is given on the deliver channel {142}. The Chef process uses the supply

channel to indicate that chickens are ready for serving {143}. The toConsole channel is used to display

the current availability of chickens on the display {144}. The canteen alternates over the supply and

service channels {146}. A timer {149} is required reflect the time it takes to set down the chickens by

the Chef. The enabled alternative is selected using the fair option {153}.

In the case of SUPPLY, when more chickens become available, the value is read from supply {155} and a

message written to the console {156}. A delay of 3 seconds is created {157} representing the time taken

to transfer chickens from the kitchen to the canteen. After this the number of chickens available is

incremented {158} by value. The canteen console is updated {159} and the signal written by the Chef

{135} is read {160} and this permits the Chef to return to the Kitchen to cook more chickens.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

140 class InstantCanteen implements CSProcess {

141 def ChannelInput service
142 def ChannelOutput deliver
143 def ChannelInput supply
144 def ChannelOutput toConsole

145 def void run () {

146 def canteenAlt = new ALT ([supply, service])
147 def SUPPLY = 0
148 def SERVICE = 1
149 def timer = new CSTimer()
150 def chickens = 0
151 toConsole.write("Canteen : starting ... \n")

152 while (true) {
153 switch (canteenAlt.fairSelect ()) {

154 case SUPPLY:
155 def value = supply.read()
156 toConsole.write("Chickens on the way ...\n")
157 timer.after (timer.read() + 3000)
158 chickens = chickens + value
159 toConsole.write("${chickens} chickens now available ...\n")
160 supply.read()
161 break

162 case SERVICE:
163 def id = service.read()
164 if (chickens > 0) {
165 chickens = chickens - 1
166 toConsole.write ("chicken ready for Philosoper ${id} ...

 chickens left \n")
167 deliver.write(1)
168 }
169 else {
170 toConsole.write(" NO chickens left ... \n")
171 deliver.write(0)
172 }
173 break
174 }
175 }
176 }
177 }

Listing 12-7 The Canteen Behaviour

When a philosopher requires SERVICE, their id is read from the service channel {163}. The Canteen at

this point recognises that there may be no chickens available but is sure that this will not happen. Thus a

test is undertaken on the number of available chickens {164} and if there is a chicken available the

number of chickens is decremented {165} and a message to that effect output {166}. The philosopher is

informed by the writing of a 1 on the deliver channel {167}. If no chickens are available, a message is

displayed {170} and a zero is written to the deliver channel {171}.

The behaviour of the Philosophers is now somewhat different; they still think and eat forever, in rotation.

However the philosophers are somewhat sanguine about the College authorities’ capabilities and use a

behaviour in which they try to cover every eventuality as shown in Listing 12-8. A philosopher has an id

{179}, a channel upon which a service request is made {180} and one upon which a chicken delivery

is made {181} plus a channel to write messages on a console {182}. A timer {184} is required to time

the philosopher’s actions and an initial message is written toConsole {185}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 8

178 class PhilosopherBehaviour implements CSProcess {

179 def int id = -1
180 def ChannelOutput service
181 def ChannelInput deliver
182 def ChannelOutput toConsole

183 def void run() {
184 def timer = new CSTimer()
185 toConsole.write("Starting ... \n")

186 while (true) {
187 toConsole.write("Thinking ... \n")
188 if (id > 0) {
189 timer.sleep (3000)
190 }
191 else {
192 timer.sleep (100)
193 }

194 toConsole.write("Need a chicken ...\n")
195 service.write(id)
196 def gotOne = deliver.read()

197 if (gotOne > 0) {
198 toConsole.write("Eating ... \n")
199 timer.sleep (2000)
200 toConsole.write("Brrrp ... \n")
201 }
202 else {
203 toConsole.write(" Oh dear No chickens left \n")
204 }
205 }
206 }
207 }

Listing 12-8 The Philosopher Behaviour

Initially, a philosopher thinks for 3 seconds {189}, unless they are philosopher 0 who only thinks for 0.1

seconds {192}. At this point the behaviour is common and starts by indicating on the console that the

philosopher needs a chicken {194}, and is followed by a signal request on the service channel with the

philosopher’s id {195}. At this point we note that the philosopher is behaving like a client and thus

immediately follows the service request with the input of the chicken on the deliver channel {196}

containing the server response from the canteen. The philosopher now tests the value of gotOne {197} to

see if they have been given a chicken. If this is the case, then a message is output and the philosopher

takes 2 seconds to eat the chicken, after which he burps {200}. If no chicken is available a sad message

appears {203}.

The above processes are formed into a further process each with a GEclipseConsole, upon which

console messages can be displayed. The script that invokes the system is shown in Listing 12-9. The

channels that implement the service and deliver connections between the philosophers and the canteen

are shared {208, 209}, Any2One and One2Any channels respectively, enabling any of the philosophers to

access the canteen. A list of five philosophers is then created with each connected to service and

deliver {212, 216}. The other processes, InstantServery comprising the canteen and its console and

the Kitchen comprising the Chef and its console are added to processList {218-222}. The processes

are then run. This can be observed by running the script InstantCollege in c14.examples.canteen.

Needless to say we observe that some philosophers do not get a chicken and more importantly miss their

turn!

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 9

208 Any2OneChannel service = Channel.createAny2One ()
209 One2AnyChannel deliver = Channel.createOne2Any ()
210 One2OneChannel supply = Channel.createOne2One ()
211
212 def philosopherList = (0 .. 4).collect{
213 i -> return new Philosopher(philosopherId: i,
214 service: service.out(),
215 deliver: deliver.in())
216 }
217
218 def processList = [new InstantServery (service:service.in(),
219 deliver:deliver.out(),
220 supply:supply.in()),
221 new Kitchen (supply:supply.out())
222]
223
224 processList = processList + philosopherList
225
226 new PAR (processList).run()

Listing 12-9 The Instant Canteen Script

It is obvious that the behaviour of the canteen is at fault as it did not stop philosophers making requests

for service when there were no chickens available. The revised behaviour is shown in Listing 12-10,

which has been augmented by the use of pre-conditions.

The precondition array is initialised {234} so that chickens can always be supplied from the kitchen.

Initially, there are no chickens available so the service precondition is false. At the start of the

process’ main loop the state of the service precondition is re-evaluated {241}. If no chickens are

available a message to that effect is displayed {243}. Now, of course, we enter each case in the switch

associated with the enabled alternative knowing the precise state of the canteen and thus the coding is

much simpler. In particular, we only permit service requests when we are assured that chickens are

available {254-258}.

This version of the system can be executed using the script QueuingCollege and another version that

shows clock ticks in the canteen console is also available, ClockedQueuingCollege. It can be observed

from an execution of the system, which allows numbers other than five philosophers, that every

philosopher gets a chicken whenever they are hungry, they may have to wait.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 10

227 class QueuingCanteen implements CSProcess {

228 def ChannelInput service
229 def ChannelOutput deliver
230 def ChannelInput supply
231 def ChannelOutput toConsole

232 def void run () {
233 def canteenAlt = new ALT ([supply, service])
234 def boolean [] precondition = [true, false]
235 def SUPPLY = 0
236 def SERVICE = 1
237 def tim = new CSTimer()
238 def chickens = 0
239 toConsole.write ("Canteen : starting ... \n")

240 while (true) {
241 precondition[SERVICE] = (chickens > 0)

242 if (chickens == 0){
243 toConsole.write ("Waiting for chickens ...\n")
244 }

245 switch (canteenAlt.fairSelect (precondition)) {

246 case SUPPLY:
247 def value = supply.read()
248 toConsole.write ("Chickens on the way ...\n")
249 tim.after (tim.read() + 3000)
250 chickens = chickens + value
251 toConsole.write ("${chickens} chickens now available ...\n")
252 supply.read()
253 Break

254 case SERVICE:
255 def id = service.read()
256 chickens = chickens - 1
257 toConsole.write ("chicken ready for Philosoper ${id} ...

 ${chickens} chickens left \n")
258 deliver.write(1)
259 break
260 }
261 }
262 }
263 }

Listing 12-10 The Revised Canteen With a Queue

12.4 Summary

This chapter has presented solutions to the classical dining philosophers’ problem using two different

formulations. The second solution, using a canteen is also an instance of the client-server design pattern

with the canteen acting as a pure server and the chef and philosophers acting as pure clients. This perhaps

demonstrates that even though the coding in both cases followed the client–server pattern it was still

possible to create an erroneous solution. The client-server design pattern is not a panacea for all

occasions; it has to be applied sensibly and with understanding. Even if the communication patterns are

correct it is still possible to create incorrect systems if insufficient thought is given to the problem

solution.

