
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

9 External Events: Handling Data Multiple Sources
Traditionally, real-time systems that respond to external stimuli have utilised interrupts

1
. Over the years a

great deal of effort has been expended in trying to make interrupt based systems more efficient and easier

to program. However, the basic problem still remains that an interrupt causes the halting of the current

program, saving its state and then starting an interrupt service routine. The problems become more

complex when an interrupt service routine is itself interrupted by a device with a higher priority. The

approach has been to reduce the amount of time when interrupts are disabled. This in itself leads to

further problems because it is very difficult then to foresee the precise nature of interactions between

interrupts that can then take place. It is these indeterminate interactions that cause problems when

systems are running because it is impossible to test for all the possible interactions, especially in highly

complex systems.

The framework built so far, uses parallelism and alternation to capture non-deterministic behaviour,

provides a means of describing, implementing and analysing such event driven systems. Rather than

building a system that interrupts itself on receipt of an event notification; build a system that expects such

events to occur so that programmers can better reason about its behaviour. In effect, the external event is

considered to be the same as a channel communication. Furthermore, the client-server design pattern

gives us a handle by which the system can be analysed to ensure that unwanted interactions between

events do not occur.

9.1 An Event Handling Design Pattern

The aim of the pattern is to allow the system to respond to external events as quickly as possible.

However, the situation has to be considered that events may occur so rapidly that the system cannot deal

with all the events. Such a situation tends to overwhelm interrupt based systems. The pattern also has to

take account of any priority requirement the application may have, thereby influencing the order in which

events are handled. Such ordering of the handling of events may result in some events being lost.

However, if the designer is aware of this situation then steps can be taken at design time to ameliorate

their effects.

The key to building an event handling system is that the process dealing with receipt of the event has to

be ready, waiting, for the associated channel (event) communication, so it can be read and the associated

data passed on to another process. The event receiving process can then return to the state of waiting for

the next event communication. If we connect the event receiving process directly to the event processing

process then the event receiver might be delayed by having to waiting for the processing of another event

to finish. We thus require an intermediate stage that separates event receiving from event processing.

1
 Interrupt: a hardware signal that indicates that a device needs to be serviced and which causes the processors’ central

processing unit to interrupt the current program and invoke the device’s service routine returning to the original program once

the device has been serviced.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

This can be implemented as some form of buffer. More specifically, the buffer should always be ready to

receive a communication from the event receiver process. This may mean that previous buffered values

may be overwritten. In addition, a mechanism by which buffered values can be requested from the buffer

process, in a manner similar to that used in the Queue process described in Chapter 6. The resulting

process structure is shown in Figure 9-1, to which a client-server labelling has been added. It

demonstrates that there are no client-server loops in the architecture.

Figure 9-1 Event Handling Design Pattern

Events are received by the EventReceiver and immediately sent to the EventOverwritingBuffer so that

EventReceiver is ready to read the next event. The EventPrompter indicates that it wants to get some

data, which it will receive immediately from the EventOverwritingBuffer if data is already buffered or it

will have to wait until an event has been input. The EventPrompter then writes the data to the rest of the

system where it is processed. Thus it is EventPrompter that has to wait until subsequent processing can

be undertaken, allowing EventReceiver always ready to read an event. Later we shall show that the time

required to process events can in fact be calculated to give an absolute upper bound on the performance of

the system. Such a bound cannot be calculated for interrupt based systems. In addition, the client-server

labelling shows that the pattern has no deadlock or livelock inherent within it and thus provided the rest

of the system is also deadlock and livelock free ensures that the system will behave as expected. This is

easily deduced because the EventOverwritingBuffer is a pure server and hence any client-server circuit

cannot exist.

9.2 Utilising the Event Handing Pattern

The pattern can be transformed easily into a set of processes that achieves its effect.

9.2.1 The EventReceiver Process

Listing 9-1 shows the definition of the EventReceiver process. The process has eventIn {2} and

eventOut {3} channel properties. In this implementation, every input that is read from eventIn is

immediately written to the eventOut channel {6}. In a realistic implementation it would probably be

necessary to determine the source of the event and possibly read some data from a hardware register.

However, we can presume that such additional processing would not create any delay within the system

because the event would not be raised if there was no reason.

receive get

c

s

c

s

toProcessing

events

EventPrompter

data c

s

EventReceiver

EventOverwritingBuffer

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

01 class EventReceiver implements CSProcess {

02 def ChannelInput eventIn
03 def ChannelOutput eventOut

04 void run() {
05 while (true){
06 eventOut.write(eventIn.read())
07 }
08 }
09 }

Listing 9-1 The EventReceiver Process

9.2.2 The Event Overwriting Buffer Process

The implementation of EventOWBuffer is shown in Listing 9-2.

10 class EventOWBuffer implements CSProcess {

11 def ChannelInput inChannel
12 def ChannelInput getChannel
13 def ChannelOutput outChannel

14 def void run () {
15 def owbAlt = new ALT ([inChannel, getChannel])
16 def INCHANNEL = 0
17 def GETCHANNEL = 1
18 def preCon = new boolean[2]
19 preCon[INCHANNEL] = true
20 preCon[GETCHANNEL] = false
21 def e = new EventData ()
22 def missed = -1

23 while (true) {
24 def index = owbAlt.priSelect (preCon)
25 switch (index) {
26 case INCHANNEL:
27 e = inChannel.read().copy()
28 missed = missed + 1
29 e.missed = missed
30 preCon[GETCHANNEL] = true
31 break
32 case GETCHANNEL:
33 def s = getChannel.read()
34 outChannel.write (e)
35 missed = -1
36 preCon[GETCHANNEL] = false
37 break
38 }
39 }
40 }
41 }

Listing 9-2 The EventOWBuffer Process

The channel inChannel {11} inputs data from the EventReceiver process. The getChannel {12}

receives a signal from EventPrompter whenever that process requires data. The response to

EventPrompter is output on the channel outChannel {13}. The process receives inputs on its input

channels over which it must alternate as the order in which such inputs are read cannot be determined.

This is captured in the definition of owbAlt {15}. The EventOWBuffer also has to capture the behaviour

that requests for data from the EventPrompter process can only be allowed when the buffer contains

data. To this end we used pre-conditions on owbAlt in a manner similar to that used in the Queue process

described in Chapter 6. The constants INCHANNEL {16} and GETCHANNEL {17} are used to access the

elements of the preCon {18} Boolean array and also to identify the cases within the switch that

implements the main processing loop. The initial values of the preCon elements can be specified as

follows. The process is always willing to accept inputs on its inChannel and thus this element is always

true {19}. Initially there is no data in the buffer and thus requests to get data from EventPrompter must

not be permitted and thus that pre-condition has to be set false {20}. The actual buffer is represented by

the variable e {21} and is of type EventData, see Listing 9-4. The variable missed {22} will count the

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

number of times the data in the buffer e was overwritten and will be passed through the system so that its

performance can be analysed. It is initialised to -1 so that when the next event is read its value will be

considered not have been overwritten because the value of missed will be 0.

The main loop of EventOWBuffer {23-37} initially determines the index of the enabled channel, with

priority being given to inChannel {24} because we always want EventReceiver to be ready to read the

next event. In that case, the event data is read from inChannel {27} and a deep copy is made into the

buffer variable e. The interface JCSPCopy, defined in org.jcsp.groovy, defines an abstract method

copy() that can be used to make a deep copy of an object. Recall that if an object is transferred from one

process to another then if these processes are on the same process then this communication is achieved by

passing an object reference. We must ensure that two processes do not access the same object at the same

time and hence the need to make a deep copy of the object. The value of missed is incremented {28} and

saved in the buffer variable e {29}. The preCon element GETCHANNEL can now be set true {30} because

there is data in the buffer that can be sent to EventPrompter following a request for data.

Once the buffer contains data then requests for data can be read from the getChannel {33} and the

contents of the buffer are immediately written to the outChannel {34}. This interaction ensures the

process behaves like a server. The preCon element GETCHANNEL must now be set false {36} because

there is no longer any data in the buffer and likewise the variable missed must be reset to -1 {35}.

9.2.3 The Event Prompter Process

This process is shown in Listing 9-3. This process has channel properties {43-45} that reflect the process

structure shown in Figure 9-1. A signal is written to the getChannel {48}, the completion of which may

be delayed until the EventOWBuffer contains event data. The response from EventOWBuffer is

immediately read into a variable e {49} and also uses the copy method to ensure that the data cannot be

modified as it resides within the EventPrompter before being output to the next process. The data is then

written {50} to the outChannel, where yet again a delay may be incurred due to the processing system

not being in a state where the data from this event source can be processed.

42 class EventPrompter implements CSProcess {

43 def ChannelInput inChannel
44 def ChannelOutput getChannel
45 def ChannelOutput outChannel

46 def void run () {
47 while (true) {
48 getChannel.write(1)
49 def e = inChannel.read().copy()
50 outChannel.write(e)
51 }
52 }
53 }

Listing 9-3 The EventPrompter Process

9.2.4 The EventData Class

EventData contains three properties for this explanatory description comprising source {55}, data {56}

and missed {57}. The class implements both the Serializable interface so that EventData objects can

be communicated over networks and JCSPCopy so that the copy method {58-63} can be defined that

makes deep copies of EventData objects. A toString method has also been provided so that event data

can be more easily output {64-70}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

54 class EventData implements Serializable, JCSPCopy {

55 def int source
56 def int data
57 def int missed

58 def copy() {
59 def e = new EventData (source: this.source,
60 data: this.data,
61 missed: this.missed)
62 return e
63 }

64 def String toString() {
65 def s = "EventData -> [source: "
66 s = s + source + ", data: "
67 s = s + data + ", missed: "
68 s = s + missed + "]"
69 return s
70 }

71 }

Listing 9-4 The EventData Class Definition

9.3 Analysing Performance Bounds

The ability of the design pattern to handle repeated events can be determined for two different cases. The

first and simplest case occurs when there is no outstanding request for data from the EventPrompter

process. The time to handle an event can be calculated by adding together the processing times of lines 6,

24, 25 and 27 to 31 plus the time to undertake a single communication from EventReceiver to

EventOWBuffer. This value can be determined by calculation if the time to execute each statement can

be determined.

The second case is slightly more complex and concerns the situation when EventOWBuffer has just

accepted a request to get data from EventPrompter and an event arrives at EventReceiver. The

required processing comprises lines 33 to 37, 49 and 24 plus the time taken to undertake a single

communication from EventOWBuffer to EventPrompter. Line 24 is the selection of the alternative,

which is bound to select the event input because it is given the highest priority. Thus this time, plus the

time to actually process the event, which is the same as the first case, gives the total time that is required

to handle an event. This therefore gives an upper bound for the time to process an event and thus the

maximum rate at which events can be handled in the worst case scenario. On a modern processor these

times will be measured in microseconds. The fact that the processing system might not be able to keep up

with such a rate merely points to a deficiency in the system design and not a failure of the ability to use

parallel processing techniques to handle events.

9.4 Demonstration of the Event Handling System

The demonstration comprises an EventHandler process that is the parallel composition of the processes

previously described and shown in Figure 9-1. This is fed with ‘events’ by an EventGenerator process

that outputs data values according to a uniformly distributed delay strategy.

9.4.1 The Event Generator Process

The EventGenerator process, shown in Listing 9-5, comprises two processes, EventStream and

UniformlyDistributedDelay. The properties of the process are passed directly to these processes and

will thus be described in the next sections.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

72 class EventGenerator implements CSProcess {

73 def ChannelOutput outChannel
74 def int source = 0
75 def int initialValue = 0
76 def int minTime = 100
77 def int maxTime = 1000
78 def int iterations = 10

79 def void run () {

80 One2OneChannel es2udd = Channel.createOne2One()

81 println "Event Generator for source ${source} has started"

82 def eventGeneratorList = [
83 new EventStream (source: source,
84 initialValue: initialValue,
85 iterations: iterations,
86 outChannel: es2udd.out()),
87 new UniformlyDistributedDelay (minTime: minTime,
88 maxTime: maxTime,
89 inChannel: es2udd.in(),
90 outChannel: outChannel)
91]
92 new PAR (eventGeneratorList).run()
93 }
94 }

Listing 9-5 The EventGenerator Process

9.4.2 The Event Stream Process

Listing 9-6 shows the EventStream process, in which the source property {96} is used to identify the

stream and which has an initialValue {97}. The process will output a stream of length iterations

{98}. The stream of ‘events’ will be output on the channel outChannel {99}. The process uses the upto

method to create the loop {102}. An event e is constructed {103} and then written to outChannel {104}.

On completion the process outputs a message {107} as this will prove invaluable in understanding how

the system functions.

95 class EventStream implements CSProcess {

96 def int source = 0
97 def int initialValue = 0
98 def int iterations = 10
99 def ChannelOutput outChannel

100 def void run () {
101 def i = initialValue
102 1.upto(iterations) {
103 def e = new EventData (source: source, data: i)
104 outChannel.write(e)
105 i = i + 1
106 }
107 println "Source $source has finished"
108 }
109 }

Listing 9-6 The EventStream Process

9.4.3 The Uniformly Distributed Delay Process

The UniformlyDistributedDelay process, shown in Listing 9-7, uses a random number generator

{117} to produce a delay between minTime and maxTime {120}. The event data is read from inChannel

{119} and after waiting for the delay {121} period it is output on outChannel {122}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

110 class UniformlyDistributedDelay implements CSProcess {

111 def ChannelInput inChannel
112 def ChannelOutput outChannel
113 def int minTime = 100
114 def int maxTime = 1000

115 def void run () {
116 def timer = new CSTimer()
117 def rng = new Random()
118 while (true) {
119 def v = inChannel.read().copy()
120 def delay = minTime + rng.nextInt (maxTime - minTime)
121 timer.sleep (delay)
122 outChannel.write(v)
123 }
124 }
125 }

Listing 9-7 The UniformlyDistributedDelay Process

9.4.4 Demonstration of the Event Processing System

The script that invokes the system is shown in Listing 9-8. The collection of processes comprises the

processes already described, executed in parallel. An additional UniformlyDistributedDelay process

has been included to represent the varying time it takes to process an event. The events are passed to a

GPrint process where they are simply printed. Of particular interest is the number of events that are

missed.

The events are generated with a delay that varies between 100 and 200 milliseconds {136, 137}. The

simulation of processing time {142, 143} between 1000 and 2000 milliseconds means we would expect

around 8 or 9 events to be missed but will depend on the actual random. A sample output from the

system is shown in Output 9-1.

The first two events pass through the system without any delay because that is the time when the buffers

within the system are being filled. Thereafter, data appears with varying numbers of events missed and in

general these match what would be expected. The last three events are produced after the event generator

has finished because they are buffered up within the system. It should be noted that a check of

correctness of operation is possible because the data value, after the first, is equal to the previous output

data value plus the number missed plus 1.

126 One2OneChannel eg2h = Channel.createOne2One()
127 One2OneChannel h2udd = Channel.createOne2One()
128 One2OneChannel udd2prn = Channel.createOne2One()
129
130
131 def eventTestList = [
132 new EventGenerator (source: 1,
133 initialValue: 100,
134 iterations: 100,
135 outChannel: eg2h.out(),
136 minTime: 100,
137 maxTime:200),
138 new EventHandler (inChannel: eg2h.in(),
139 outChannel: h2udd.out()),
140 new UniformlyDistributedDelay (inChannel:h2udd.in(),
141 outChannel: udd2prn.out(),
142 minTime: 1000,
143 maxTime: 2000),
144 new GPrint (inChannel: udd2prn.in(),
145 heading : "Event Output",
146 delay: 0)
147]
148 new PAR (eventTestList).run()

Listing 9-8 The Srcipt Used to Invoke the Event Handling System

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 8

Event Output
Event Generator for source 1 has started
EventData -> [source: 1, data: 100, missed: 0]
EventData -> [source: 1, data: 101, missed: 0]
EventData -> [source: 1, data: 110, missed: 8]
EventData -> [source: 1, data: 122, missed: 11]
EventData -> [source: 1, data: 128, missed: 5]
EventData -> [source: 1, data: 140, missed: 11]
EventData -> [source: 1, data: 149, missed: 8]
EventData -> [source: 1, data: 159, missed: 9]
EventData -> [source: 1, data: 168, missed: 8]
EventData -> [source: 1, data: 176, missed: 7]
Source 1 has finished
EventData -> [source: 1, data: 186, missed: 9]
EventData -> [source: 1, data: 195, missed: 8]
EventData -> [source: 1, data: 199, missed: 3]

Output 9-1 A Sample Output from the Event Handling System

9.5 Summary

This chapter has shown that the adoption of parallel processing design techniques and implementation can

shed a new light on age old computing problems. In particular, it allows designers to reason about both a

system’s behaviour and its performance when subjected to a large number of randomly occurring events.

9.6 Exercises

1. Using the suggestion made earlier in the chapter construct a GroovyTestCase for the event handling

system.

1. The accompanying web site contains a version of the event handling system, MultiStreamTest,

which allows the creation of 1 to 9 event streams. By modifying the times associated with each event

generation stream and also of the processing system explore the performance of the system. What do

you conclude?

2. The process EventProcessing has three versions of multiplexer defined within it, two of which are

commented out. By choosing each of the options in turn, comment upon the effect that each

multiplexer variation has on overall system performance.

3. A manufacturing process utilises hoppers and a blender. The hoppers are used hold raw materials and

the blender is used to mix the contents from one or more hoppers. The collection of hoppers and the

blender is managed by a controller. The hoppers indicate when they are ready to be used. The

blender indicates when it is ready and also when mixing is to stop. The hoppers and the blender are

clients to the server manager of the controller. The hoppers nake a request to the manager to

determine when they should stop processing raw materials. The aim of this exercise is to create three

different control regimes as follows:

i) The hoppers and the blender indicate they are ready to start but mixing only commences

when all three hoppers are ready after which the ready signal from the blender is ready.

ii) As in (i) above but mixing commences as soon as two hoppers and the blender are ready.

If three hoppers are ready before the blender is ready then the last hopper is not used and

will only be used during the following mixing cycle.

iii) As in (ii) above but mixing commences as soon as just one hopper and the blender are

ready. If more than one hopper is ready before the blender becomes ready then these are

retained untilthe following mixing cycle(s).

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 9

The accompanying web site has definitions for Hopper and Blender processes that utilise the

GConsole to enable user interaction. These processes are complete and implement a client style

behaviour. The user inputs an ‘r’ into the input area of the GConsole of the required Hopper or

Blender to signify that it is ready. The Hopper or Blender process then outputs a’1’ to signal to

the Manager process that it is ready. The Manager then implements the required control regime as

described above. A Hopper process then sends a ‘2’ signal to the Manager indicating that it is

ready to be stopped. The Blender process waits for the userto input an ‘f’ to indicate that blending

can stop. The Blender then sends a’2’ to the Manager process. The Manager then completes the

client-server interactions. The web site contains scripts to execute each of the above control

regimes. There are also outline process definitions for each of the control regimes that need to be

completed. Initially, you are advised to produce a process network diagram to enablea

betterunderstanding of the interactions and process architecture.

