
Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 1

13 Accessing Shared Resources: CREW
In this chapter and the next, techniques are described that were developed for, and are used most often in

shared memory multi-processing systems. In such systems great care has to be taken to ensure that

processes running on the same processor do not access an area of shared memory in an uncontrolled

manner. Up to now the solutions have simply ignored this problem because all data has been local to and

encapsulated within a process. One process has communicated data to another as required by the needs of

the solution. The process and channel mechanisms have implicitly provided two capabilities, namely

synchronisation between processes and mutual exclusion of data areas. In shared memory environments

the programmer has to be fully aware of both these aspects to ensure that neither is violated.

Mutual exclusion ensures that while one process is accessing a piece of shared data no other process will

be allowed access regardless of the interleaving of the processes on the processor. Synchronisation

ensures that processes gain access to such shared data areas in a manner that enables them to undertake

useful work. The simplest solution to both these problems is to use a pattern named CREW, Concurrent

Read Exclusive Write, which, as its names suggests, allows any number of reader processes to access a

piece of shared data at the same time but only one writer to process to access the same piece of data at

one time. The CREW mechanism manages this requirement and in sensible implementations also

imposes some concept of fairness. If access is by multiple instances of reader and writer processes then

one could envisage a situation where the readers could exclude writers and vice versa and this should be

ameliorated as far as is possible. The JCSP implementation of a CREW does exhibit this capability of

fairness, as shall be demonstrated.

At the simplest level the CREW has to be able to protect accesses to the shared data and the easiest way

of doing this is to surround each access, be it a read or write with a call to a method that allows the start of

an operation and subsequently when the operation is finished to indicate that it has ended. Between such

pairs of method calls the operation of the CREW is guaranteed. Thus the programmer has to surround

access to shared data with the required start and end method calls be they a read or write to the shared

data. It is up to the programmer to ensure that all such accesses to the shared data are suitably protected.

In the JCSP implementation of CREW we extend an existing storage collection with a Crew class. Then

we ensure that each access that puts data into the collection is surrounded by a startWrite() and

endWrite() pair of method calls on the Crew. Similarly, that each get access is surrounded by a

startRead() and endRead() method call. Internally, the Crew then ensures that access to the shared

storage collection is undertaken in accordance with the required behaviour. Further, fairness can be

implemented quite simply by ensuring that if the shared data is currently being accessed by one or more

reader processes then as soon as a writer process indicates that it wishes to put some data into the shared

collection then no further reader processes are permitted to start reading until the write has finished.

Similarly, a sequence of write processes, each of which requires exclusive access, will be interposed by

reader process accesses as necessary.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 2

13.1 CrewMap

Listing 13-1 shows a simple extension of a HashMap {1} by means of an instance of a Crew {2}. The put

and get methods of HashMap are then overwritten with new versions that surround them with the

appropriate start and end method calls {4, 6} and {9, 11}, between which the normal HashMap’s get and

put methods can be called as usual.

01 class CrewMap extends HashMap {

02 def theCrew = new Crew()

03 def Object put (Object itsKey, Object itsValue) {
04 theCrew.startWrite()
05 super.put (itsKey, itsValue)
06 theCrew.endWrite()
07 }

08 def Object get (Object itsKey) {
09 theCrew.startRead()
10 def result = super.get (itsKey)
11 theCrew.endRead()
12 return result
13 }
14 }

Listing 13-1 The CrewMap Class Definition

At this point a word of caution has to be given. This arises because Java allows exceptions to be thrown

at any point. Thus in the above formulation it might be possible for the lines that represent normal access

to the shared resource {5, 10} to fail. In such a case the call to the end synchronisation method {6, 11}

will never happen and thus the Crew will fail in due course as the required locks will not be released. The

associated documentation for JCSP Crew discusses this in more detail. The solution is to encapsulate the

access in a try .. catch .. finally block. The problem arises because Java invokes code sequences

that are not part of the coding sequence and thus the programmer has to be very wary of these

possibilities. In the following description we shall presume that all access is well behaved and such a

fault will not occur.

Once the CrewMap has been defined it can be used in a solution that requires multiple processes access to

its shared data collection. Figure 13-2 shows such a typical application. In this case two Read and two

Write processes access the shared DataBase resource. The coding of the DataBase process is shown in

Listing 13-2.

13.2 The DataBase Process

The DataBase process has two channel list properties {16, 17} comprising the channels used by the Read

and Write processes to access it. Additionally, properties are required that define the number of such

Read and Write processes, readers and writers respectively {18, 19}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 3

Figure 13-1 A Simple Use of CrewMap

15 class DataBase implements CSProcess {

16 def ChannelInputList inChannels
17 def ChannelOutputList outChannels
18 def int readers
19 def int writers

20 void run () {
21 def crewDataBase = new CrewMap()
22 for (i in 0 ..< 10) {
23 crewDataBase.put (i, 100 + i)
24 }

25 def processList = []
26 for (i in 0..< readers) {
27 processList.putAt (i, new ReadClerk (cin: inChannels.getAt(i),
28 cout: outChannels.getAt(i),
29 data: crewDataBase))
30 }

31 for (i in 0 ..< writers) {
32 processList.putAt ((i + readers),
33 new WriteClerk (cin: inChannels.getAt (i + readers),
34 cout: outChannels.getAt (i + readers),
35 data: crewDataBase))
36 }

37 new PAR (processList).run()
38 }
39 }

Listing 13-2 The DataBase Process definition

The run method {20} essentially creates the structure shown in Figure 13-1. An instance of CrewMap is

defined called crewDataBase {21}. The shared resource crewDataBase is then populated with initial

values {22-24}, which initialises the first ten locations with the values 100 to 109 in sequence. An empty

processList {25} is then defined that will hold instances of the required ReadClerk and WriteClerk

processes. The required number of ReadClerk processes are then created {27} and placed in

processList. Each ReadClerk is allocated the corresponding element of the inChannels and

outChannels channel lists {27, 28}. Finally, the ReadClerk process has its data property initialised to

the crewDataBase itself {29}. The WriteClerk processes are instantiated in the same manner {31-36}

ensuring that the correct elements of the inChannels and outChannels lists are allocated to the

c

Read 0

Read 1

Write 0

Write 1

DataBase
ReadClerk

ReadClerk

WriteClerk

WriteClerk

CrewMap

s

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 4

processes {32}. This means that the all the ReadClerk and WriteClerk processes have shared access to

the crewDataBase. The processList can now be passed to a PAR for running {37}.

Communication between the Read and Write processes and the DataBase is achieved by a single class

called DataObject {40}, see Listing 13-3. DataObject comprises three properties {41-43}, pid hold the

identity number of the accessing Read or Write process, location holds the index of the resource

element to be accessed and value is either the value read from that element or that is to be written to the

element.

40 class DataObject implements Serializable {
41 def int pid
42 def int location
43 def int value
44 }

Listing 13-3 The Definition of DataObject

It should be noted that this formulation of the DataBase contains no alternative (ALT) as might be

expected from previous examples. This arises because we are using a formulation that contains a CREW

that essentially provides the same functionality, but only for shared memory applications. The advantage

of the alternative is that it can be used to alternate over networked channels and thus is more flexible. It

also has the advantage of exposing the alternative concept that is so important in the modelling of parallel

systems.

13.3 The Read Clerk Process

Listing 13-4 shows the ReadClerk process, which has channel input and output properties cin {46} and

cout {47} respectively and a data property {48} that accesses the CREW resource.

45 class ReadClerk implements CSProcess {

46 def ChannelInput cin
47 def ChannelOutput cout
48 def CrewMap data

49 void run () {
50 def d = new DataObject()
51 while (true) {
52 d = cin.read()
53 d.value = data.get (d.location)
54 cout.write(d)
55 }
56 }
57 }

Listing 13-4 The ReadClerk Process

The run method {49-54} defines an instance d of type DataObject {50} after which the value of d is

read from cin {52}. The location property of d is then used to access the CrewMap property data {53}

to get the corresponding value which is then stored in the value property of d. The revised value of d is

then written to the channel cout {54}.

13.4 The Write Clerk Process

The WriteClerk process is shown in Listing 13-5 and is fundamentally the same as that shown in the

ReadClerk process except that a new value is put into the shared resource {66}. The unmodified

DataObject d is written back to the corresponding Write process to confirm that the operation has taken

place {67}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 5

58 class WriteClerk implements CSProcess {

59 def ChannelInput cin
60 def ChannelOutput cout
61 def CrewMap data

62 void run () {
63 def d = new DataObject()
64 while (true) {
65 d = cin.read()
66 data.put (d.location, d.value)
67 cout.write(d)
68 }
69 }
70 }

Listing 13-5 The WriteClerk Process

13.5 The Read Process

The Read process is shown in Listing 13-6. It has three properties. A channel by which it writes to the

database r2db {72} and one by which it reads returned values db2r {73}. The last property, id {74}, is

the identity number of the Read process. The run method {75} initialises a DataObject with the Read

process’ id {76} and then reads a value from each location of the shared resource in sequence {77},

printing out each returned value {81}. This is achieved by allocating the loop value i to the location

property of d {78}. The instance d is then written to the shared resource using the channel r2db {79}.

The process then waits until it can read the returned DataObject into d using the channel db2r {80}.

71 class Read implements CSProcess {

72 def ChannelOutput r2db
73 def ChannelInput db2r
74 def int id

75 void run () {
76 def d = new DataObject(pid:id)
77 for (i in 0 ..<10) {
78 d.location = i
79 r2db.write(d)
80 d = db2r.read()
81 println "Reader ${id}: Location - ${d.location} has value ${d.value}"
82 }
83 }
84 }

Listing 13-6 The Read Process

13.6 The Write Process

The Write process is shown in Listing 13-7 and is very similar to the Read process except that the

elements of the shared resource are accessed in reverse order, that is from 9 to 0 {94}. The value written

to the shared resource is dependant upon the id of the writing process {96}.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 6

85 class Write implements CSProcess {
86
87 def ChannelOutput w2db
88 def ChannelInput db2w
89 def int id
90
91 void run () {
92 def d = new DataObject(pid:id)
93 for (j in 0 ..<10) {
94 def i = 9 - j
95 d.location = i
96 d.value = i + ((id+1)*1000)
97 w2db.write(d)
98 d = db2w.read()
99 }
100 }
101 }

Listing 13-7 The Write Process

13.7 Creating the System

The script that invokes the DataBase system is shown in Listing 13-8.

102 def nReaders = Ask.Int ("Number of Readers ? ", 1, 5)
103 def nWriters = Ask.Int ("Number of Writers ? ", 1, 5)

104 def connections = nReaders + nWriters

105 One2OneChannel[] toDatabase = Channel.createOne2One(connections)
106 One2OneChannel[] fromDatabase = Channel.createOne2One(connections)
107 One2OneChannel[] consoleData = Channel.createOne2One(connections)

108 def toDB = new ChannelInputList(toDatabase)
109 def fromDB = new ChannelOutputList(fromDatabase)

110 def readers = (0 ..< nReaders).collect { r ->
111 return new Read (id: r,
112 r2db: toDatabase[r].out(),
113 db2r: fromDatabase[r].in(),
114 toConsole: consoleData[r].out())
115 }

116 def writers = (0 ..<nWriters).collect { w ->
117 def wNo = w + nReaders
118 return new Write (id: w,
119 w2db: toDatabase[wNo].out(),
120 db2w: fromDatabase[wNo].in(),
121 toConsole: consoleData[wNo].out())
122 }

123 def database = new DataBase (inChannels: toDB,
124 outChannels: fromDB,
125 readers: nReaders,
126 writers: nWriters)

127 def consoles = (0 ..< connections).collect { c ->
128 def frameString = c < nReaders ?
129 "Reader " + c :
130 "Writer " + (c - nReaders)
131 return new GConsole (toConsole: consoleData[c].in(),
132 frameLabel: frameString)
 }
133 def procList = readers + writers + database + consoles

134 new PAR(procList).run()

Listing 13-8 The Script to Invoke the DataBase System

Initially, the number of Read and Write processes is obtained {102, 103} by a console interaction. The

total number of connections to the DataBase is then calculated as nConnections {104}. The system

uses a GConsole propcessfor each Read and Write process to display the outcome of the interactions with

the DataBase. The channels used to connect the Read and Write processes to the Database and the

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 7

GConsoles are then defined {105-107}. The corresponding channel lists toDb and fromDb are then

defined {108, 109}, which connect the Read and Write processes to the DataBase.

The required number of Read processes is then created in the list readers {110-115}. Each instance uses

the closure property r to identify the required element of the previously declared channel arrays that

connect the process to the DataBase and its GConsole process. Similarly, the required number of Write

processes is defined {116-122}. The property wNo {117} is used to ensure that the index used to associate

Write process channel indeces is offset by the number of Read processes.

An instance of the DataBase process is then created {123-126}, using the previously declared channel

lists. The list consoles {127-132} contains the instances of GConsole required to connect to the Read

and Write processes. Finally, procList is created as the addition of all the process lists and the

database process {133} and then run {134}.

Outputs 13-1 and 13-2 show the output from the running of the system when it is started with two Read

and two Write processes. The order in which the Write process have been executed can be determined

from the values that have been read by the two Read processes. Recall that the Write processes access

the database locations in reverse order to the Read processes. The outputs indicate that the

implementation of the Crew class is inherently fair because the values read by the Read processes change

from the initial values to the modified values about half way through the cycle. The values read from

locations 5 and 6 also vary indicating that state of the DataBase was in flux at that point in the access

cycles with read and write operation fully interleaved.

Location 1 has value 101
Location 2 has value 102
Location 3 has value 103
Location 4 has value 104
Location 5 has value 105
Location 6 has value 1006
Location 7 has value 2007
Location 8 has value 2008
Location 9 has value 2009
Reader has finished

Output 13-1 Output From Read process 0

Location 1 has value 101
Location 2 has value 102
Location 3 has value 103
Location 4 has value 104
Location 5 has value 1005
Location 6 has value 2006
Location 7 has value 2007
Location 8 has value 2008
Location 9 has value 2009
Reader has finished

Output 13-2 Output From Read process 1

13.8 Summary

In this chapter we have investigated a typical mechanism used in shared memory multi-processing

system. The formulation tends to hide the interactions that take place because these are captured

somewhat remotely in the CrewMap class definition.

13.9 Challenge

Rewrite the system so that a Crew is not used and the DataBase process alternates over the input channels

from the Read and Write processes. The system should capture the same concept of fairness as exhibited

in the CREW based solution.

Jon Kerridge / Let’s Do It In Parallel (c) Jon Kerridge 2010 8

