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Abstract

1 Introduction

2 Definitions and notation

Let the symbol ⊥ denote failure.

2.1 Field elements

Let F be a finite field of prime order p. For an element x ∈ F, let res(x) be
the integer representative of x ∈ [0, p−1]. We call an element x ∈ F negative
if res(x) is odd. Call an element in F square if it is a quadratic residue, i.e.
if there exists

√
x ∈ F such that

√
x
2

= x. There will in general be two such
square roots; let the notation

√
x mean the unique non-negative square root

of x. If p ≡ 1 (mod 4), then F contains an element i :=
√
−1.

Let ` := dlog28 pe. Each x ∈ F has a unique little-endian byte representation,
namely the sequence

F to bytes(x) := JbiKl−1
i=0 where bi ∈ [0, 255] and

l−1∑
i=0

28i · bi = res(x)

[[TODO: bytes to F]]
∗Rambus Security Division
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2.2 Groups

For an abelian group G with identity O, let nG denote the subgroup of G
which are of the form n · g for some g ∈ G. Let Gn denote the n-torsion
group of G, namely the subgroup {g ∈ G : n · g = O}.

2.3 Edwards curves

We will work with twisted Edwards elliptic curves of the form

Ea,d : y2 + a · x2 = 1 + d · x2 · y2

where x, y ∈ F. Twisted Edwards curves curves have a group law

(x1, y1) + (x2, y2) :=

(
x1y2 + x2y1

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)
with identity point O := (0, 1) and group inverse operation

−(x, y) = (−x, y)

The group law is called complete if is produces the correct answer (rather
than e.g. 0/0) for all points on the curve. The above formulas are complete
when d and ad are nonsquare in F, which implies that a is square. When
these conditions hold, we also say that the curve itself is complete.

Let the number of points on the curve be

#Ea,d = h · q

where q is prime and h ∈ {4, 8}. We call h the cofactor.

For P = (x, y) ∈ E, we can define the projective homogeneous form of P as
(X,Y, Z) with Z 6= 0 and

(x, y) = (X/Z, Y/Z)

and the extended homogeneous form as (X,Y, Z, T ) where additionally XY =
ZT . Extended homogeneous form is popular because it supports simple and
efficient complete addition formulas [?].
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2.4 Montgomery curves

When a− d is square in F, the twisted Edwards curve Ea,d is isomorphic to
the Montgomery curve

v2 = u ·
(
u2 + 2 · a + d

a− d
· u + 1

)
by the map

(u, v) =

(
1 + y

1− y
,

1 + y

1− y
· 1

x
· 2√

a− d

)
with inverse

(x, y) =

(
u

v
·
√
a− d

2
,

u− 1

u + 1

)
If M = (u, v) is a point on the Montgomery curve, then the u-coordinate
of 2M is (u2 − 1)2/(4v2) is necessarily square. It follows that if (x, y) is a
point on Ea,d, and a− d is square, then (1 + y)/(1− y) is also square.

Likewhise, when d− a is square in F, Ea,d is isomorphic to the Montgomery
curve

v2 = u ·
(
u2 − 2 · a + d

a− d
· u + 1

)
by the map

(u, v) =

(
y + 1

y − 1
,

y + 1

y − 1
· 1

x
· 2√

d− a

)
with inverse

(x, y) =

(
u

v
·
√
d− a

2
,

1 + u

1− u

)

3 Lemmas

First, we characterize the 2-torsion and 4-torsion groups.

Lemma 1. Let Ea,d be a complete Edwards curve. Its 2-torsion subgroup is
generated by (0,−1). The 4-torsion subgroup is generated by (1/

√
a, 0).

Adding the 2-torsion generator to (x, y) produces (−x,−y). Adding the 4-
torsion generator (1/

√
a, 0) produces (y/

√
a,−x ·

√
a)
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Proof. Inspection.

Lemma 2. Let Ea,d be a complete twisted Edwards curve over F, and P1 =
(x1, y1) be any point on it. Then there are exactly two points P2 = (x2, y2)
satisfying x1y2 = x2y1, namely P1 itself and (−x1,−y1). That is, there are
either 0 or 2 points on any line through the origin.

Proof. Plugging into the group operation gives

x1y2 = x2y1 ⇐⇒ P1 − P2 = (0, y3)

for some y3. Plugging x = 0 into the curve equation gives y = ±1, the
2-torsion points. Adding back, we have P2 = P1 + (0,±1) = (±x1,±y1) as
claimed.

Lemma 3. If Ea,d is a complete Edwards curve, then a2−ad is square in F
(and thus a− d is square in F) if and only if the cofactor of Ea,d is divisible
by 8.

Proof. Doubling an 8-torsion generator (x, y) should produce a 4-torsion
generator, i.e. a point with y = 0. From the doubling formula, this happens
precisely when y2 = ax2, or 2ax2 = 1 + adx4. This has roots in F if and
only if its discriminant 4a2 − 4ad is square, so that a2 − ad is square.

Lemma 4. If (x2, y2) = 2 · (x1, y1) is an even point in Ea,d, then (1− ax22)
is a quadratic residue in F. [[TODO: (y22 − 1)]].

Proof. The doubling formula has

x2 =
2x1y1

y21 + ax21

so that

1− ax22 =

(
y21 − ax21
y21 + ax21

)2

is a quadratic residue. Now for any point (x, y) ∈ Ea,d, we have

(y2 − 1) · (1− ax2) = y2 + ax2 − 1− ax2y2 = (d− a)x2y2

which is a quadratic residue by Lemma 3.
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4 The Espresso groups

Let E be a complete twisted Edwards curve with a ∈ {±1} and cofactor 4
or 8. We describe the Espresso group G(E) as

Espresso(E) := 2E/Eh/2

This group has prime order q.

4.1 Group law

The group law on Espresso(E) is the same as that on E.

4.2 Equality

Two elements P1 := (x1, y1) and P2 := (x2, y2) in Espresso(E) are equal if
they differ by an element of Eh/2.

If h = 4, the points are equal if P1−P2 ∈ E2. By Lemma 2, this is equivalent
to

x1y2 = x2y1

If h = 8, the points are equal if P1 − P2 ∈ E4. By Lemmas 1 and 2, this is
equivalent to

x1y2 = x2y1 or x1x2 = −ay1y2

These equations are homogeneous, so they may be evaluated in projective
homogeneous form with Xi and Yi in place of xi and yi

4.3 Encoding

We now describe how to encode a point P = (x, y) to bytes. The require-
ments of encoding are that

• Any point P ∈ 2E can be encoded.

• Two points P,Q have the same encoding if and only if P −Q ∈ Eh/2.

When h = 4, we encode a point as
√

a(y − 1)/(y + 1)
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